2173 lines
60 KiB
C
2173 lines
60 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Copyright (C) 2011 Fujitsu. All rights reserved.
|
||
|
* Written by Miao Xie <miaox@cn.fujitsu.com>
|
||
|
*/
|
||
|
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/iversion.h>
|
||
|
#include "misc.h"
|
||
|
#include "delayed-inode.h"
|
||
|
#include "disk-io.h"
|
||
|
#include "transaction.h"
|
||
|
#include "ctree.h"
|
||
|
#include "qgroup.h"
|
||
|
#include "locking.h"
|
||
|
#include "inode-item.h"
|
||
|
|
||
|
#define BTRFS_DELAYED_WRITEBACK 512
|
||
|
#define BTRFS_DELAYED_BACKGROUND 128
|
||
|
#define BTRFS_DELAYED_BATCH 16
|
||
|
|
||
|
static struct kmem_cache *delayed_node_cache;
|
||
|
|
||
|
int __init btrfs_delayed_inode_init(void)
|
||
|
{
|
||
|
delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
|
||
|
sizeof(struct btrfs_delayed_node),
|
||
|
0,
|
||
|
SLAB_MEM_SPREAD,
|
||
|
NULL);
|
||
|
if (!delayed_node_cache)
|
||
|
return -ENOMEM;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void __cold btrfs_delayed_inode_exit(void)
|
||
|
{
|
||
|
kmem_cache_destroy(delayed_node_cache);
|
||
|
}
|
||
|
|
||
|
static inline void btrfs_init_delayed_node(
|
||
|
struct btrfs_delayed_node *delayed_node,
|
||
|
struct btrfs_root *root, u64 inode_id)
|
||
|
{
|
||
|
delayed_node->root = root;
|
||
|
delayed_node->inode_id = inode_id;
|
||
|
refcount_set(&delayed_node->refs, 0);
|
||
|
delayed_node->ins_root = RB_ROOT_CACHED;
|
||
|
delayed_node->del_root = RB_ROOT_CACHED;
|
||
|
mutex_init(&delayed_node->mutex);
|
||
|
INIT_LIST_HEAD(&delayed_node->n_list);
|
||
|
INIT_LIST_HEAD(&delayed_node->p_list);
|
||
|
}
|
||
|
|
||
|
static struct btrfs_delayed_node *btrfs_get_delayed_node(
|
||
|
struct btrfs_inode *btrfs_inode)
|
||
|
{
|
||
|
struct btrfs_root *root = btrfs_inode->root;
|
||
|
u64 ino = btrfs_ino(btrfs_inode);
|
||
|
struct btrfs_delayed_node *node;
|
||
|
|
||
|
node = READ_ONCE(btrfs_inode->delayed_node);
|
||
|
if (node) {
|
||
|
refcount_inc(&node->refs);
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
spin_lock(&root->inode_lock);
|
||
|
node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
|
||
|
|
||
|
if (node) {
|
||
|
if (btrfs_inode->delayed_node) {
|
||
|
refcount_inc(&node->refs); /* can be accessed */
|
||
|
BUG_ON(btrfs_inode->delayed_node != node);
|
||
|
spin_unlock(&root->inode_lock);
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* It's possible that we're racing into the middle of removing
|
||
|
* this node from the radix tree. In this case, the refcount
|
||
|
* was zero and it should never go back to one. Just return
|
||
|
* NULL like it was never in the radix at all; our release
|
||
|
* function is in the process of removing it.
|
||
|
*
|
||
|
* Some implementations of refcount_inc refuse to bump the
|
||
|
* refcount once it has hit zero. If we don't do this dance
|
||
|
* here, refcount_inc() may decide to just WARN_ONCE() instead
|
||
|
* of actually bumping the refcount.
|
||
|
*
|
||
|
* If this node is properly in the radix, we want to bump the
|
||
|
* refcount twice, once for the inode and once for this get
|
||
|
* operation.
|
||
|
*/
|
||
|
if (refcount_inc_not_zero(&node->refs)) {
|
||
|
refcount_inc(&node->refs);
|
||
|
btrfs_inode->delayed_node = node;
|
||
|
} else {
|
||
|
node = NULL;
|
||
|
}
|
||
|
|
||
|
spin_unlock(&root->inode_lock);
|
||
|
return node;
|
||
|
}
|
||
|
spin_unlock(&root->inode_lock);
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Will return either the node or PTR_ERR(-ENOMEM) */
|
||
|
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
|
||
|
struct btrfs_inode *btrfs_inode)
|
||
|
{
|
||
|
struct btrfs_delayed_node *node;
|
||
|
struct btrfs_root *root = btrfs_inode->root;
|
||
|
u64 ino = btrfs_ino(btrfs_inode);
|
||
|
int ret;
|
||
|
|
||
|
again:
|
||
|
node = btrfs_get_delayed_node(btrfs_inode);
|
||
|
if (node)
|
||
|
return node;
|
||
|
|
||
|
node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
|
||
|
if (!node)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
btrfs_init_delayed_node(node, root, ino);
|
||
|
|
||
|
/* cached in the btrfs inode and can be accessed */
|
||
|
refcount_set(&node->refs, 2);
|
||
|
|
||
|
ret = radix_tree_preload(GFP_NOFS);
|
||
|
if (ret) {
|
||
|
kmem_cache_free(delayed_node_cache, node);
|
||
|
return ERR_PTR(ret);
|
||
|
}
|
||
|
|
||
|
spin_lock(&root->inode_lock);
|
||
|
ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
|
||
|
if (ret == -EEXIST) {
|
||
|
spin_unlock(&root->inode_lock);
|
||
|
kmem_cache_free(delayed_node_cache, node);
|
||
|
radix_tree_preload_end();
|
||
|
goto again;
|
||
|
}
|
||
|
btrfs_inode->delayed_node = node;
|
||
|
spin_unlock(&root->inode_lock);
|
||
|
radix_tree_preload_end();
|
||
|
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Call it when holding delayed_node->mutex
|
||
|
*
|
||
|
* If mod = 1, add this node into the prepared list.
|
||
|
*/
|
||
|
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
|
||
|
struct btrfs_delayed_node *node,
|
||
|
int mod)
|
||
|
{
|
||
|
spin_lock(&root->lock);
|
||
|
if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
|
||
|
if (!list_empty(&node->p_list))
|
||
|
list_move_tail(&node->p_list, &root->prepare_list);
|
||
|
else if (mod)
|
||
|
list_add_tail(&node->p_list, &root->prepare_list);
|
||
|
} else {
|
||
|
list_add_tail(&node->n_list, &root->node_list);
|
||
|
list_add_tail(&node->p_list, &root->prepare_list);
|
||
|
refcount_inc(&node->refs); /* inserted into list */
|
||
|
root->nodes++;
|
||
|
set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
|
||
|
}
|
||
|
spin_unlock(&root->lock);
|
||
|
}
|
||
|
|
||
|
/* Call it when holding delayed_node->mutex */
|
||
|
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
|
||
|
struct btrfs_delayed_node *node)
|
||
|
{
|
||
|
spin_lock(&root->lock);
|
||
|
if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
|
||
|
root->nodes--;
|
||
|
refcount_dec(&node->refs); /* not in the list */
|
||
|
list_del_init(&node->n_list);
|
||
|
if (!list_empty(&node->p_list))
|
||
|
list_del_init(&node->p_list);
|
||
|
clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
|
||
|
}
|
||
|
spin_unlock(&root->lock);
|
||
|
}
|
||
|
|
||
|
static struct btrfs_delayed_node *btrfs_first_delayed_node(
|
||
|
struct btrfs_delayed_root *delayed_root)
|
||
|
{
|
||
|
struct list_head *p;
|
||
|
struct btrfs_delayed_node *node = NULL;
|
||
|
|
||
|
spin_lock(&delayed_root->lock);
|
||
|
if (list_empty(&delayed_root->node_list))
|
||
|
goto out;
|
||
|
|
||
|
p = delayed_root->node_list.next;
|
||
|
node = list_entry(p, struct btrfs_delayed_node, n_list);
|
||
|
refcount_inc(&node->refs);
|
||
|
out:
|
||
|
spin_unlock(&delayed_root->lock);
|
||
|
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
static struct btrfs_delayed_node *btrfs_next_delayed_node(
|
||
|
struct btrfs_delayed_node *node)
|
||
|
{
|
||
|
struct btrfs_delayed_root *delayed_root;
|
||
|
struct list_head *p;
|
||
|
struct btrfs_delayed_node *next = NULL;
|
||
|
|
||
|
delayed_root = node->root->fs_info->delayed_root;
|
||
|
spin_lock(&delayed_root->lock);
|
||
|
if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
|
||
|
/* not in the list */
|
||
|
if (list_empty(&delayed_root->node_list))
|
||
|
goto out;
|
||
|
p = delayed_root->node_list.next;
|
||
|
} else if (list_is_last(&node->n_list, &delayed_root->node_list))
|
||
|
goto out;
|
||
|
else
|
||
|
p = node->n_list.next;
|
||
|
|
||
|
next = list_entry(p, struct btrfs_delayed_node, n_list);
|
||
|
refcount_inc(&next->refs);
|
||
|
out:
|
||
|
spin_unlock(&delayed_root->lock);
|
||
|
|
||
|
return next;
|
||
|
}
|
||
|
|
||
|
static void __btrfs_release_delayed_node(
|
||
|
struct btrfs_delayed_node *delayed_node,
|
||
|
int mod)
|
||
|
{
|
||
|
struct btrfs_delayed_root *delayed_root;
|
||
|
|
||
|
if (!delayed_node)
|
||
|
return;
|
||
|
|
||
|
delayed_root = delayed_node->root->fs_info->delayed_root;
|
||
|
|
||
|
mutex_lock(&delayed_node->mutex);
|
||
|
if (delayed_node->count)
|
||
|
btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
|
||
|
else
|
||
|
btrfs_dequeue_delayed_node(delayed_root, delayed_node);
|
||
|
mutex_unlock(&delayed_node->mutex);
|
||
|
|
||
|
if (refcount_dec_and_test(&delayed_node->refs)) {
|
||
|
struct btrfs_root *root = delayed_node->root;
|
||
|
|
||
|
spin_lock(&root->inode_lock);
|
||
|
/*
|
||
|
* Once our refcount goes to zero, nobody is allowed to bump it
|
||
|
* back up. We can delete it now.
|
||
|
*/
|
||
|
ASSERT(refcount_read(&delayed_node->refs) == 0);
|
||
|
radix_tree_delete(&root->delayed_nodes_tree,
|
||
|
delayed_node->inode_id);
|
||
|
spin_unlock(&root->inode_lock);
|
||
|
kmem_cache_free(delayed_node_cache, delayed_node);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
|
||
|
{
|
||
|
__btrfs_release_delayed_node(node, 0);
|
||
|
}
|
||
|
|
||
|
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
|
||
|
struct btrfs_delayed_root *delayed_root)
|
||
|
{
|
||
|
struct list_head *p;
|
||
|
struct btrfs_delayed_node *node = NULL;
|
||
|
|
||
|
spin_lock(&delayed_root->lock);
|
||
|
if (list_empty(&delayed_root->prepare_list))
|
||
|
goto out;
|
||
|
|
||
|
p = delayed_root->prepare_list.next;
|
||
|
list_del_init(p);
|
||
|
node = list_entry(p, struct btrfs_delayed_node, p_list);
|
||
|
refcount_inc(&node->refs);
|
||
|
out:
|
||
|
spin_unlock(&delayed_root->lock);
|
||
|
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
static inline void btrfs_release_prepared_delayed_node(
|
||
|
struct btrfs_delayed_node *node)
|
||
|
{
|
||
|
__btrfs_release_delayed_node(node, 1);
|
||
|
}
|
||
|
|
||
|
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
|
||
|
struct btrfs_delayed_node *node,
|
||
|
enum btrfs_delayed_item_type type)
|
||
|
{
|
||
|
struct btrfs_delayed_item *item;
|
||
|
|
||
|
item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
|
||
|
if (item) {
|
||
|
item->data_len = data_len;
|
||
|
item->type = type;
|
||
|
item->bytes_reserved = 0;
|
||
|
item->delayed_node = node;
|
||
|
RB_CLEAR_NODE(&item->rb_node);
|
||
|
INIT_LIST_HEAD(&item->log_list);
|
||
|
item->logged = false;
|
||
|
refcount_set(&item->refs, 1);
|
||
|
}
|
||
|
return item;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __btrfs_lookup_delayed_item - look up the delayed item by key
|
||
|
* @delayed_node: pointer to the delayed node
|
||
|
* @index: the dir index value to lookup (offset of a dir index key)
|
||
|
*
|
||
|
* Note: if we don't find the right item, we will return the prev item and
|
||
|
* the next item.
|
||
|
*/
|
||
|
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
|
||
|
struct rb_root *root,
|
||
|
u64 index)
|
||
|
{
|
||
|
struct rb_node *node = root->rb_node;
|
||
|
struct btrfs_delayed_item *delayed_item = NULL;
|
||
|
|
||
|
while (node) {
|
||
|
delayed_item = rb_entry(node, struct btrfs_delayed_item,
|
||
|
rb_node);
|
||
|
if (delayed_item->index < index)
|
||
|
node = node->rb_right;
|
||
|
else if (delayed_item->index > index)
|
||
|
node = node->rb_left;
|
||
|
else
|
||
|
return delayed_item;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
|
||
|
struct btrfs_delayed_item *ins)
|
||
|
{
|
||
|
struct rb_node **p, *node;
|
||
|
struct rb_node *parent_node = NULL;
|
||
|
struct rb_root_cached *root;
|
||
|
struct btrfs_delayed_item *item;
|
||
|
bool leftmost = true;
|
||
|
|
||
|
if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
|
||
|
root = &delayed_node->ins_root;
|
||
|
else
|
||
|
root = &delayed_node->del_root;
|
||
|
|
||
|
p = &root->rb_root.rb_node;
|
||
|
node = &ins->rb_node;
|
||
|
|
||
|
while (*p) {
|
||
|
parent_node = *p;
|
||
|
item = rb_entry(parent_node, struct btrfs_delayed_item,
|
||
|
rb_node);
|
||
|
|
||
|
if (item->index < ins->index) {
|
||
|
p = &(*p)->rb_right;
|
||
|
leftmost = false;
|
||
|
} else if (item->index > ins->index) {
|
||
|
p = &(*p)->rb_left;
|
||
|
} else {
|
||
|
return -EEXIST;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rb_link_node(node, parent_node, p);
|
||
|
rb_insert_color_cached(node, root, leftmost);
|
||
|
|
||
|
if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
|
||
|
ins->index >= delayed_node->index_cnt)
|
||
|
delayed_node->index_cnt = ins->index + 1;
|
||
|
|
||
|
delayed_node->count++;
|
||
|
atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
|
||
|
{
|
||
|
int seq = atomic_inc_return(&delayed_root->items_seq);
|
||
|
|
||
|
/* atomic_dec_return implies a barrier */
|
||
|
if ((atomic_dec_return(&delayed_root->items) <
|
||
|
BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
|
||
|
cond_wake_up_nomb(&delayed_root->wait);
|
||
|
}
|
||
|
|
||
|
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
|
||
|
{
|
||
|
struct rb_root_cached *root;
|
||
|
struct btrfs_delayed_root *delayed_root;
|
||
|
|
||
|
/* Not inserted, ignore it. */
|
||
|
if (RB_EMPTY_NODE(&delayed_item->rb_node))
|
||
|
return;
|
||
|
|
||
|
delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
|
||
|
|
||
|
BUG_ON(!delayed_root);
|
||
|
|
||
|
if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
|
||
|
root = &delayed_item->delayed_node->ins_root;
|
||
|
else
|
||
|
root = &delayed_item->delayed_node->del_root;
|
||
|
|
||
|
rb_erase_cached(&delayed_item->rb_node, root);
|
||
|
RB_CLEAR_NODE(&delayed_item->rb_node);
|
||
|
delayed_item->delayed_node->count--;
|
||
|
|
||
|
finish_one_item(delayed_root);
|
||
|
}
|
||
|
|
||
|
static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
|
||
|
{
|
||
|
if (item) {
|
||
|
__btrfs_remove_delayed_item(item);
|
||
|
if (refcount_dec_and_test(&item->refs))
|
||
|
kfree(item);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
|
||
|
struct btrfs_delayed_node *delayed_node)
|
||
|
{
|
||
|
struct rb_node *p;
|
||
|
struct btrfs_delayed_item *item = NULL;
|
||
|
|
||
|
p = rb_first_cached(&delayed_node->ins_root);
|
||
|
if (p)
|
||
|
item = rb_entry(p, struct btrfs_delayed_item, rb_node);
|
||
|
|
||
|
return item;
|
||
|
}
|
||
|
|
||
|
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
|
||
|
struct btrfs_delayed_node *delayed_node)
|
||
|
{
|
||
|
struct rb_node *p;
|
||
|
struct btrfs_delayed_item *item = NULL;
|
||
|
|
||
|
p = rb_first_cached(&delayed_node->del_root);
|
||
|
if (p)
|
||
|
item = rb_entry(p, struct btrfs_delayed_item, rb_node);
|
||
|
|
||
|
return item;
|
||
|
}
|
||
|
|
||
|
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
|
||
|
struct btrfs_delayed_item *item)
|
||
|
{
|
||
|
struct rb_node *p;
|
||
|
struct btrfs_delayed_item *next = NULL;
|
||
|
|
||
|
p = rb_next(&item->rb_node);
|
||
|
if (p)
|
||
|
next = rb_entry(p, struct btrfs_delayed_item, rb_node);
|
||
|
|
||
|
return next;
|
||
|
}
|
||
|
|
||
|
static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_delayed_item *item)
|
||
|
{
|
||
|
struct btrfs_block_rsv *src_rsv;
|
||
|
struct btrfs_block_rsv *dst_rsv;
|
||
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
||
|
u64 num_bytes;
|
||
|
int ret;
|
||
|
|
||
|
if (!trans->bytes_reserved)
|
||
|
return 0;
|
||
|
|
||
|
src_rsv = trans->block_rsv;
|
||
|
dst_rsv = &fs_info->delayed_block_rsv;
|
||
|
|
||
|
num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
|
||
|
|
||
|
/*
|
||
|
* Here we migrate space rsv from transaction rsv, since have already
|
||
|
* reserved space when starting a transaction. So no need to reserve
|
||
|
* qgroup space here.
|
||
|
*/
|
||
|
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
|
||
|
if (!ret) {
|
||
|
trace_btrfs_space_reservation(fs_info, "delayed_item",
|
||
|
item->delayed_node->inode_id,
|
||
|
num_bytes, 1);
|
||
|
/*
|
||
|
* For insertions we track reserved metadata space by accounting
|
||
|
* for the number of leaves that will be used, based on the delayed
|
||
|
* node's index_items_size field.
|
||
|
*/
|
||
|
if (item->type == BTRFS_DELAYED_DELETION_ITEM)
|
||
|
item->bytes_reserved = num_bytes;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
|
||
|
struct btrfs_delayed_item *item)
|
||
|
{
|
||
|
struct btrfs_block_rsv *rsv;
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
|
||
|
if (!item->bytes_reserved)
|
||
|
return;
|
||
|
|
||
|
rsv = &fs_info->delayed_block_rsv;
|
||
|
/*
|
||
|
* Check btrfs_delayed_item_reserve_metadata() to see why we don't need
|
||
|
* to release/reserve qgroup space.
|
||
|
*/
|
||
|
trace_btrfs_space_reservation(fs_info, "delayed_item",
|
||
|
item->delayed_node->inode_id,
|
||
|
item->bytes_reserved, 0);
|
||
|
btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
|
||
|
}
|
||
|
|
||
|
static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
|
||
|
unsigned int num_leaves)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = node->root->fs_info;
|
||
|
const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
|
||
|
|
||
|
/* There are no space reservations during log replay, bail out. */
|
||
|
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
|
||
|
return;
|
||
|
|
||
|
trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
|
||
|
bytes, 0);
|
||
|
btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
|
||
|
}
|
||
|
|
||
|
static int btrfs_delayed_inode_reserve_metadata(
|
||
|
struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_root *root,
|
||
|
struct btrfs_delayed_node *node)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
struct btrfs_block_rsv *src_rsv;
|
||
|
struct btrfs_block_rsv *dst_rsv;
|
||
|
u64 num_bytes;
|
||
|
int ret;
|
||
|
|
||
|
src_rsv = trans->block_rsv;
|
||
|
dst_rsv = &fs_info->delayed_block_rsv;
|
||
|
|
||
|
num_bytes = btrfs_calc_metadata_size(fs_info, 1);
|
||
|
|
||
|
/*
|
||
|
* btrfs_dirty_inode will update the inode under btrfs_join_transaction
|
||
|
* which doesn't reserve space for speed. This is a problem since we
|
||
|
* still need to reserve space for this update, so try to reserve the
|
||
|
* space.
|
||
|
*
|
||
|
* Now if src_rsv == delalloc_block_rsv we'll let it just steal since
|
||
|
* we always reserve enough to update the inode item.
|
||
|
*/
|
||
|
if (!src_rsv || (!trans->bytes_reserved &&
|
||
|
src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
|
||
|
ret = btrfs_qgroup_reserve_meta(root, num_bytes,
|
||
|
BTRFS_QGROUP_RSV_META_PREALLOC, true);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
|
||
|
BTRFS_RESERVE_NO_FLUSH);
|
||
|
/* NO_FLUSH could only fail with -ENOSPC */
|
||
|
ASSERT(ret == 0 || ret == -ENOSPC);
|
||
|
if (ret)
|
||
|
btrfs_qgroup_free_meta_prealloc(root, num_bytes);
|
||
|
} else {
|
||
|
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
|
||
|
}
|
||
|
|
||
|
if (!ret) {
|
||
|
trace_btrfs_space_reservation(fs_info, "delayed_inode",
|
||
|
node->inode_id, num_bytes, 1);
|
||
|
node->bytes_reserved = num_bytes;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
|
||
|
struct btrfs_delayed_node *node,
|
||
|
bool qgroup_free)
|
||
|
{
|
||
|
struct btrfs_block_rsv *rsv;
|
||
|
|
||
|
if (!node->bytes_reserved)
|
||
|
return;
|
||
|
|
||
|
rsv = &fs_info->delayed_block_rsv;
|
||
|
trace_btrfs_space_reservation(fs_info, "delayed_inode",
|
||
|
node->inode_id, node->bytes_reserved, 0);
|
||
|
btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
|
||
|
if (qgroup_free)
|
||
|
btrfs_qgroup_free_meta_prealloc(node->root,
|
||
|
node->bytes_reserved);
|
||
|
else
|
||
|
btrfs_qgroup_convert_reserved_meta(node->root,
|
||
|
node->bytes_reserved);
|
||
|
node->bytes_reserved = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Insert a single delayed item or a batch of delayed items, as many as possible
|
||
|
* that fit in a leaf. The delayed items (dir index keys) are sorted by their key
|
||
|
* in the rbtree, and if there's a gap between two consecutive dir index items,
|
||
|
* then it means at some point we had delayed dir indexes to add but they got
|
||
|
* removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
|
||
|
* into the subvolume tree. Dir index keys also have their offsets coming from a
|
||
|
* monotonically increasing counter, so we can't get new keys with an offset that
|
||
|
* fits within a gap between delayed dir index items.
|
||
|
*/
|
||
|
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_root *root,
|
||
|
struct btrfs_path *path,
|
||
|
struct btrfs_delayed_item *first_item)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
struct btrfs_delayed_node *node = first_item->delayed_node;
|
||
|
LIST_HEAD(item_list);
|
||
|
struct btrfs_delayed_item *curr;
|
||
|
struct btrfs_delayed_item *next;
|
||
|
const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
|
||
|
struct btrfs_item_batch batch;
|
||
|
struct btrfs_key first_key;
|
||
|
const u32 first_data_size = first_item->data_len;
|
||
|
int total_size;
|
||
|
char *ins_data = NULL;
|
||
|
int ret;
|
||
|
bool continuous_keys_only = false;
|
||
|
|
||
|
lockdep_assert_held(&node->mutex);
|
||
|
|
||
|
/*
|
||
|
* During normal operation the delayed index offset is continuously
|
||
|
* increasing, so we can batch insert all items as there will not be any
|
||
|
* overlapping keys in the tree.
|
||
|
*
|
||
|
* The exception to this is log replay, where we may have interleaved
|
||
|
* offsets in the tree, so our batch needs to be continuous keys only in
|
||
|
* order to ensure we do not end up with out of order items in our leaf.
|
||
|
*/
|
||
|
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
|
||
|
continuous_keys_only = true;
|
||
|
|
||
|
/*
|
||
|
* For delayed items to insert, we track reserved metadata bytes based
|
||
|
* on the number of leaves that we will use.
|
||
|
* See btrfs_insert_delayed_dir_index() and
|
||
|
* btrfs_delayed_item_reserve_metadata()).
|
||
|
*/
|
||
|
ASSERT(first_item->bytes_reserved == 0);
|
||
|
|
||
|
list_add_tail(&first_item->tree_list, &item_list);
|
||
|
batch.total_data_size = first_data_size;
|
||
|
batch.nr = 1;
|
||
|
total_size = first_data_size + sizeof(struct btrfs_item);
|
||
|
curr = first_item;
|
||
|
|
||
|
while (true) {
|
||
|
int next_size;
|
||
|
|
||
|
next = __btrfs_next_delayed_item(curr);
|
||
|
if (!next)
|
||
|
break;
|
||
|
|
||
|
/*
|
||
|
* We cannot allow gaps in the key space if we're doing log
|
||
|
* replay.
|
||
|
*/
|
||
|
if (continuous_keys_only && (next->index != curr->index + 1))
|
||
|
break;
|
||
|
|
||
|
ASSERT(next->bytes_reserved == 0);
|
||
|
|
||
|
next_size = next->data_len + sizeof(struct btrfs_item);
|
||
|
if (total_size + next_size > max_size)
|
||
|
break;
|
||
|
|
||
|
list_add_tail(&next->tree_list, &item_list);
|
||
|
batch.nr++;
|
||
|
total_size += next_size;
|
||
|
batch.total_data_size += next->data_len;
|
||
|
curr = next;
|
||
|
}
|
||
|
|
||
|
if (batch.nr == 1) {
|
||
|
first_key.objectid = node->inode_id;
|
||
|
first_key.type = BTRFS_DIR_INDEX_KEY;
|
||
|
first_key.offset = first_item->index;
|
||
|
batch.keys = &first_key;
|
||
|
batch.data_sizes = &first_data_size;
|
||
|
} else {
|
||
|
struct btrfs_key *ins_keys;
|
||
|
u32 *ins_sizes;
|
||
|
int i = 0;
|
||
|
|
||
|
ins_data = kmalloc(batch.nr * sizeof(u32) +
|
||
|
batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
|
||
|
if (!ins_data) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
ins_sizes = (u32 *)ins_data;
|
||
|
ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
|
||
|
batch.keys = ins_keys;
|
||
|
batch.data_sizes = ins_sizes;
|
||
|
list_for_each_entry(curr, &item_list, tree_list) {
|
||
|
ins_keys[i].objectid = node->inode_id;
|
||
|
ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
|
||
|
ins_keys[i].offset = curr->index;
|
||
|
ins_sizes[i] = curr->data_len;
|
||
|
i++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ret = btrfs_insert_empty_items(trans, root, path, &batch);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
|
||
|
list_for_each_entry(curr, &item_list, tree_list) {
|
||
|
char *data_ptr;
|
||
|
|
||
|
data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
|
||
|
write_extent_buffer(path->nodes[0], &curr->data,
|
||
|
(unsigned long)data_ptr, curr->data_len);
|
||
|
path->slots[0]++;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now release our path before releasing the delayed items and their
|
||
|
* metadata reservations, so that we don't block other tasks for more
|
||
|
* time than needed.
|
||
|
*/
|
||
|
btrfs_release_path(path);
|
||
|
|
||
|
ASSERT(node->index_item_leaves > 0);
|
||
|
|
||
|
/*
|
||
|
* For normal operations we will batch an entire leaf's worth of delayed
|
||
|
* items, so if there are more items to process we can decrement
|
||
|
* index_item_leaves by 1 as we inserted 1 leaf's worth of items.
|
||
|
*
|
||
|
* However for log replay we may not have inserted an entire leaf's
|
||
|
* worth of items, we may have not had continuous items, so decrementing
|
||
|
* here would mess up the index_item_leaves accounting. For this case
|
||
|
* only clean up the accounting when there are no items left.
|
||
|
*/
|
||
|
if (next && !continuous_keys_only) {
|
||
|
/*
|
||
|
* We inserted one batch of items into a leaf a there are more
|
||
|
* items to flush in a future batch, now release one unit of
|
||
|
* metadata space from the delayed block reserve, corresponding
|
||
|
* the leaf we just flushed to.
|
||
|
*/
|
||
|
btrfs_delayed_item_release_leaves(node, 1);
|
||
|
node->index_item_leaves--;
|
||
|
} else if (!next) {
|
||
|
/*
|
||
|
* There are no more items to insert. We can have a number of
|
||
|
* reserved leaves > 1 here - this happens when many dir index
|
||
|
* items are added and then removed before they are flushed (file
|
||
|
* names with a very short life, never span a transaction). So
|
||
|
* release all remaining leaves.
|
||
|
*/
|
||
|
btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
|
||
|
node->index_item_leaves = 0;
|
||
|
}
|
||
|
|
||
|
list_for_each_entry_safe(curr, next, &item_list, tree_list) {
|
||
|
list_del(&curr->tree_list);
|
||
|
btrfs_release_delayed_item(curr);
|
||
|
}
|
||
|
out:
|
||
|
kfree(ins_data);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_path *path,
|
||
|
struct btrfs_root *root,
|
||
|
struct btrfs_delayed_node *node)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
while (ret == 0) {
|
||
|
struct btrfs_delayed_item *curr;
|
||
|
|
||
|
mutex_lock(&node->mutex);
|
||
|
curr = __btrfs_first_delayed_insertion_item(node);
|
||
|
if (!curr) {
|
||
|
mutex_unlock(&node->mutex);
|
||
|
break;
|
||
|
}
|
||
|
ret = btrfs_insert_delayed_item(trans, root, path, curr);
|
||
|
mutex_unlock(&node->mutex);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_root *root,
|
||
|
struct btrfs_path *path,
|
||
|
struct btrfs_delayed_item *item)
|
||
|
{
|
||
|
const u64 ino = item->delayed_node->inode_id;
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
struct btrfs_delayed_item *curr, *next;
|
||
|
struct extent_buffer *leaf = path->nodes[0];
|
||
|
LIST_HEAD(batch_list);
|
||
|
int nitems, slot, last_slot;
|
||
|
int ret;
|
||
|
u64 total_reserved_size = item->bytes_reserved;
|
||
|
|
||
|
ASSERT(leaf != NULL);
|
||
|
|
||
|
slot = path->slots[0];
|
||
|
last_slot = btrfs_header_nritems(leaf) - 1;
|
||
|
/*
|
||
|
* Our caller always gives us a path pointing to an existing item, so
|
||
|
* this can not happen.
|
||
|
*/
|
||
|
ASSERT(slot <= last_slot);
|
||
|
if (WARN_ON(slot > last_slot))
|
||
|
return -ENOENT;
|
||
|
|
||
|
nitems = 1;
|
||
|
curr = item;
|
||
|
list_add_tail(&curr->tree_list, &batch_list);
|
||
|
|
||
|
/*
|
||
|
* Keep checking if the next delayed item matches the next item in the
|
||
|
* leaf - if so, we can add it to the batch of items to delete from the
|
||
|
* leaf.
|
||
|
*/
|
||
|
while (slot < last_slot) {
|
||
|
struct btrfs_key key;
|
||
|
|
||
|
next = __btrfs_next_delayed_item(curr);
|
||
|
if (!next)
|
||
|
break;
|
||
|
|
||
|
slot++;
|
||
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
||
|
if (key.objectid != ino ||
|
||
|
key.type != BTRFS_DIR_INDEX_KEY ||
|
||
|
key.offset != next->index)
|
||
|
break;
|
||
|
nitems++;
|
||
|
curr = next;
|
||
|
list_add_tail(&curr->tree_list, &batch_list);
|
||
|
total_reserved_size += curr->bytes_reserved;
|
||
|
}
|
||
|
|
||
|
ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
|
||
|
if (total_reserved_size > 0) {
|
||
|
/*
|
||
|
* Check btrfs_delayed_item_reserve_metadata() to see why we
|
||
|
* don't need to release/reserve qgroup space.
|
||
|
*/
|
||
|
trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
|
||
|
total_reserved_size, 0);
|
||
|
btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
|
||
|
total_reserved_size, NULL);
|
||
|
}
|
||
|
|
||
|
list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
|
||
|
list_del(&curr->tree_list);
|
||
|
btrfs_release_delayed_item(curr);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_path *path,
|
||
|
struct btrfs_root *root,
|
||
|
struct btrfs_delayed_node *node)
|
||
|
{
|
||
|
struct btrfs_key key;
|
||
|
int ret = 0;
|
||
|
|
||
|
key.objectid = node->inode_id;
|
||
|
key.type = BTRFS_DIR_INDEX_KEY;
|
||
|
|
||
|
while (ret == 0) {
|
||
|
struct btrfs_delayed_item *item;
|
||
|
|
||
|
mutex_lock(&node->mutex);
|
||
|
item = __btrfs_first_delayed_deletion_item(node);
|
||
|
if (!item) {
|
||
|
mutex_unlock(&node->mutex);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
key.offset = item->index;
|
||
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
||
|
if (ret > 0) {
|
||
|
/*
|
||
|
* There's no matching item in the leaf. This means we
|
||
|
* have already deleted this item in a past run of the
|
||
|
* delayed items. We ignore errors when running delayed
|
||
|
* items from an async context, through a work queue job
|
||
|
* running btrfs_async_run_delayed_root(), and don't
|
||
|
* release delayed items that failed to complete. This
|
||
|
* is because we will retry later, and at transaction
|
||
|
* commit time we always run delayed items and will
|
||
|
* then deal with errors if they fail to run again.
|
||
|
*
|
||
|
* So just release delayed items for which we can't find
|
||
|
* an item in the tree, and move to the next item.
|
||
|
*/
|
||
|
btrfs_release_path(path);
|
||
|
btrfs_release_delayed_item(item);
|
||
|
ret = 0;
|
||
|
} else if (ret == 0) {
|
||
|
ret = btrfs_batch_delete_items(trans, root, path, item);
|
||
|
btrfs_release_path(path);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We unlock and relock on each iteration, this is to prevent
|
||
|
* blocking other tasks for too long while we are being run from
|
||
|
* the async context (work queue job). Those tasks are typically
|
||
|
* running system calls like creat/mkdir/rename/unlink/etc which
|
||
|
* need to add delayed items to this delayed node.
|
||
|
*/
|
||
|
mutex_unlock(&node->mutex);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
|
||
|
{
|
||
|
struct btrfs_delayed_root *delayed_root;
|
||
|
|
||
|
if (delayed_node &&
|
||
|
test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
|
||
|
BUG_ON(!delayed_node->root);
|
||
|
clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
|
||
|
delayed_node->count--;
|
||
|
|
||
|
delayed_root = delayed_node->root->fs_info->delayed_root;
|
||
|
finish_one_item(delayed_root);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
|
||
|
{
|
||
|
|
||
|
if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
|
||
|
struct btrfs_delayed_root *delayed_root;
|
||
|
|
||
|
ASSERT(delayed_node->root);
|
||
|
delayed_node->count--;
|
||
|
|
||
|
delayed_root = delayed_node->root->fs_info->delayed_root;
|
||
|
finish_one_item(delayed_root);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_root *root,
|
||
|
struct btrfs_path *path,
|
||
|
struct btrfs_delayed_node *node)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
struct btrfs_key key;
|
||
|
struct btrfs_inode_item *inode_item;
|
||
|
struct extent_buffer *leaf;
|
||
|
int mod;
|
||
|
int ret;
|
||
|
|
||
|
key.objectid = node->inode_id;
|
||
|
key.type = BTRFS_INODE_ITEM_KEY;
|
||
|
key.offset = 0;
|
||
|
|
||
|
if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
|
||
|
mod = -1;
|
||
|
else
|
||
|
mod = 1;
|
||
|
|
||
|
ret = btrfs_lookup_inode(trans, root, path, &key, mod);
|
||
|
if (ret > 0)
|
||
|
ret = -ENOENT;
|
||
|
if (ret < 0)
|
||
|
goto out;
|
||
|
|
||
|
leaf = path->nodes[0];
|
||
|
inode_item = btrfs_item_ptr(leaf, path->slots[0],
|
||
|
struct btrfs_inode_item);
|
||
|
write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
|
||
|
sizeof(struct btrfs_inode_item));
|
||
|
btrfs_mark_buffer_dirty(leaf);
|
||
|
|
||
|
if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
|
||
|
goto out;
|
||
|
|
||
|
path->slots[0]++;
|
||
|
if (path->slots[0] >= btrfs_header_nritems(leaf))
|
||
|
goto search;
|
||
|
again:
|
||
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
||
|
if (key.objectid != node->inode_id)
|
||
|
goto out;
|
||
|
|
||
|
if (key.type != BTRFS_INODE_REF_KEY &&
|
||
|
key.type != BTRFS_INODE_EXTREF_KEY)
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* Delayed iref deletion is for the inode who has only one link,
|
||
|
* so there is only one iref. The case that several irefs are
|
||
|
* in the same item doesn't exist.
|
||
|
*/
|
||
|
btrfs_del_item(trans, root, path);
|
||
|
out:
|
||
|
btrfs_release_delayed_iref(node);
|
||
|
btrfs_release_path(path);
|
||
|
err_out:
|
||
|
btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
|
||
|
btrfs_release_delayed_inode(node);
|
||
|
|
||
|
/*
|
||
|
* If we fail to update the delayed inode we need to abort the
|
||
|
* transaction, because we could leave the inode with the improper
|
||
|
* counts behind.
|
||
|
*/
|
||
|
if (ret && ret != -ENOENT)
|
||
|
btrfs_abort_transaction(trans, ret);
|
||
|
|
||
|
return ret;
|
||
|
|
||
|
search:
|
||
|
btrfs_release_path(path);
|
||
|
|
||
|
key.type = BTRFS_INODE_EXTREF_KEY;
|
||
|
key.offset = -1;
|
||
|
|
||
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
||
|
if (ret < 0)
|
||
|
goto err_out;
|
||
|
ASSERT(ret);
|
||
|
|
||
|
ret = 0;
|
||
|
leaf = path->nodes[0];
|
||
|
path->slots[0]--;
|
||
|
goto again;
|
||
|
}
|
||
|
|
||
|
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_root *root,
|
||
|
struct btrfs_path *path,
|
||
|
struct btrfs_delayed_node *node)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
mutex_lock(&node->mutex);
|
||
|
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
|
||
|
mutex_unlock(&node->mutex);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
ret = __btrfs_update_delayed_inode(trans, root, path, node);
|
||
|
mutex_unlock(&node->mutex);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_path *path,
|
||
|
struct btrfs_delayed_node *node)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = btrfs_insert_delayed_items(trans, path, node->root, node);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = btrfs_delete_delayed_items(trans, path, node->root, node);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = btrfs_update_delayed_inode(trans, node->root, path, node);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called when committing the transaction.
|
||
|
* Returns 0 on success.
|
||
|
* Returns < 0 on error and returns with an aborted transaction with any
|
||
|
* outstanding delayed items cleaned up.
|
||
|
*/
|
||
|
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
||
|
struct btrfs_delayed_root *delayed_root;
|
||
|
struct btrfs_delayed_node *curr_node, *prev_node;
|
||
|
struct btrfs_path *path;
|
||
|
struct btrfs_block_rsv *block_rsv;
|
||
|
int ret = 0;
|
||
|
bool count = (nr > 0);
|
||
|
|
||
|
if (TRANS_ABORTED(trans))
|
||
|
return -EIO;
|
||
|
|
||
|
path = btrfs_alloc_path();
|
||
|
if (!path)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
block_rsv = trans->block_rsv;
|
||
|
trans->block_rsv = &fs_info->delayed_block_rsv;
|
||
|
|
||
|
delayed_root = fs_info->delayed_root;
|
||
|
|
||
|
curr_node = btrfs_first_delayed_node(delayed_root);
|
||
|
while (curr_node && (!count || nr--)) {
|
||
|
ret = __btrfs_commit_inode_delayed_items(trans, path,
|
||
|
curr_node);
|
||
|
if (ret) {
|
||
|
btrfs_abort_transaction(trans, ret);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
prev_node = curr_node;
|
||
|
curr_node = btrfs_next_delayed_node(curr_node);
|
||
|
/*
|
||
|
* See the comment below about releasing path before releasing
|
||
|
* node. If the commit of delayed items was successful the path
|
||
|
* should always be released, but in case of an error, it may
|
||
|
* point to locked extent buffers (a leaf at the very least).
|
||
|
*/
|
||
|
ASSERT(path->nodes[0] == NULL);
|
||
|
btrfs_release_delayed_node(prev_node);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Release the path to avoid a potential deadlock and lockdep splat when
|
||
|
* releasing the delayed node, as that requires taking the delayed node's
|
||
|
* mutex. If another task starts running delayed items before we take
|
||
|
* the mutex, it will first lock the mutex and then it may try to lock
|
||
|
* the same btree path (leaf).
|
||
|
*/
|
||
|
btrfs_free_path(path);
|
||
|
|
||
|
if (curr_node)
|
||
|
btrfs_release_delayed_node(curr_node);
|
||
|
trans->block_rsv = block_rsv;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
|
||
|
{
|
||
|
return __btrfs_run_delayed_items(trans, -1);
|
||
|
}
|
||
|
|
||
|
int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
|
||
|
{
|
||
|
return __btrfs_run_delayed_items(trans, nr);
|
||
|
}
|
||
|
|
||
|
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_inode *inode)
|
||
|
{
|
||
|
struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
|
||
|
struct btrfs_path *path;
|
||
|
struct btrfs_block_rsv *block_rsv;
|
||
|
int ret;
|
||
|
|
||
|
if (!delayed_node)
|
||
|
return 0;
|
||
|
|
||
|
mutex_lock(&delayed_node->mutex);
|
||
|
if (!delayed_node->count) {
|
||
|
mutex_unlock(&delayed_node->mutex);
|
||
|
btrfs_release_delayed_node(delayed_node);
|
||
|
return 0;
|
||
|
}
|
||
|
mutex_unlock(&delayed_node->mutex);
|
||
|
|
||
|
path = btrfs_alloc_path();
|
||
|
if (!path) {
|
||
|
btrfs_release_delayed_node(delayed_node);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
block_rsv = trans->block_rsv;
|
||
|
trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
|
||
|
|
||
|
ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
|
||
|
|
||
|
btrfs_release_delayed_node(delayed_node);
|
||
|
btrfs_free_path(path);
|
||
|
trans->block_rsv = block_rsv;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
||
|
struct btrfs_trans_handle *trans;
|
||
|
struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
|
||
|
struct btrfs_path *path;
|
||
|
struct btrfs_block_rsv *block_rsv;
|
||
|
int ret;
|
||
|
|
||
|
if (!delayed_node)
|
||
|
return 0;
|
||
|
|
||
|
mutex_lock(&delayed_node->mutex);
|
||
|
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
|
||
|
mutex_unlock(&delayed_node->mutex);
|
||
|
btrfs_release_delayed_node(delayed_node);
|
||
|
return 0;
|
||
|
}
|
||
|
mutex_unlock(&delayed_node->mutex);
|
||
|
|
||
|
trans = btrfs_join_transaction(delayed_node->root);
|
||
|
if (IS_ERR(trans)) {
|
||
|
ret = PTR_ERR(trans);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
path = btrfs_alloc_path();
|
||
|
if (!path) {
|
||
|
ret = -ENOMEM;
|
||
|
goto trans_out;
|
||
|
}
|
||
|
|
||
|
block_rsv = trans->block_rsv;
|
||
|
trans->block_rsv = &fs_info->delayed_block_rsv;
|
||
|
|
||
|
mutex_lock(&delayed_node->mutex);
|
||
|
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
|
||
|
ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
|
||
|
path, delayed_node);
|
||
|
else
|
||
|
ret = 0;
|
||
|
mutex_unlock(&delayed_node->mutex);
|
||
|
|
||
|
btrfs_free_path(path);
|
||
|
trans->block_rsv = block_rsv;
|
||
|
trans_out:
|
||
|
btrfs_end_transaction(trans);
|
||
|
btrfs_btree_balance_dirty(fs_info);
|
||
|
out:
|
||
|
btrfs_release_delayed_node(delayed_node);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void btrfs_remove_delayed_node(struct btrfs_inode *inode)
|
||
|
{
|
||
|
struct btrfs_delayed_node *delayed_node;
|
||
|
|
||
|
delayed_node = READ_ONCE(inode->delayed_node);
|
||
|
if (!delayed_node)
|
||
|
return;
|
||
|
|
||
|
inode->delayed_node = NULL;
|
||
|
btrfs_release_delayed_node(delayed_node);
|
||
|
}
|
||
|
|
||
|
struct btrfs_async_delayed_work {
|
||
|
struct btrfs_delayed_root *delayed_root;
|
||
|
int nr;
|
||
|
struct btrfs_work work;
|
||
|
};
|
||
|
|
||
|
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
|
||
|
{
|
||
|
struct btrfs_async_delayed_work *async_work;
|
||
|
struct btrfs_delayed_root *delayed_root;
|
||
|
struct btrfs_trans_handle *trans;
|
||
|
struct btrfs_path *path;
|
||
|
struct btrfs_delayed_node *delayed_node = NULL;
|
||
|
struct btrfs_root *root;
|
||
|
struct btrfs_block_rsv *block_rsv;
|
||
|
int total_done = 0;
|
||
|
|
||
|
async_work = container_of(work, struct btrfs_async_delayed_work, work);
|
||
|
delayed_root = async_work->delayed_root;
|
||
|
|
||
|
path = btrfs_alloc_path();
|
||
|
if (!path)
|
||
|
goto out;
|
||
|
|
||
|
do {
|
||
|
if (atomic_read(&delayed_root->items) <
|
||
|
BTRFS_DELAYED_BACKGROUND / 2)
|
||
|
break;
|
||
|
|
||
|
delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
|
||
|
if (!delayed_node)
|
||
|
break;
|
||
|
|
||
|
root = delayed_node->root;
|
||
|
|
||
|
trans = btrfs_join_transaction(root);
|
||
|
if (IS_ERR(trans)) {
|
||
|
btrfs_release_path(path);
|
||
|
btrfs_release_prepared_delayed_node(delayed_node);
|
||
|
total_done++;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
block_rsv = trans->block_rsv;
|
||
|
trans->block_rsv = &root->fs_info->delayed_block_rsv;
|
||
|
|
||
|
__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
|
||
|
|
||
|
trans->block_rsv = block_rsv;
|
||
|
btrfs_end_transaction(trans);
|
||
|
btrfs_btree_balance_dirty_nodelay(root->fs_info);
|
||
|
|
||
|
btrfs_release_path(path);
|
||
|
btrfs_release_prepared_delayed_node(delayed_node);
|
||
|
total_done++;
|
||
|
|
||
|
} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
|
||
|
|| total_done < async_work->nr);
|
||
|
|
||
|
btrfs_free_path(path);
|
||
|
out:
|
||
|
wake_up(&delayed_root->wait);
|
||
|
kfree(async_work);
|
||
|
}
|
||
|
|
||
|
|
||
|
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
|
||
|
struct btrfs_fs_info *fs_info, int nr)
|
||
|
{
|
||
|
struct btrfs_async_delayed_work *async_work;
|
||
|
|
||
|
async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
|
||
|
if (!async_work)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
async_work->delayed_root = delayed_root;
|
||
|
btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
|
||
|
NULL);
|
||
|
async_work->nr = nr;
|
||
|
|
||
|
btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
|
||
|
{
|
||
|
WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
|
||
|
}
|
||
|
|
||
|
static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
|
||
|
{
|
||
|
int val = atomic_read(&delayed_root->items_seq);
|
||
|
|
||
|
if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
|
||
|
return 1;
|
||
|
|
||
|
if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
|
||
|
return 1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
|
||
|
{
|
||
|
struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
|
||
|
|
||
|
if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
|
||
|
btrfs_workqueue_normal_congested(fs_info->delayed_workers))
|
||
|
return;
|
||
|
|
||
|
if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
|
||
|
int seq;
|
||
|
int ret;
|
||
|
|
||
|
seq = atomic_read(&delayed_root->items_seq);
|
||
|
|
||
|
ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
|
||
|
if (ret)
|
||
|
return;
|
||
|
|
||
|
wait_event_interruptible(delayed_root->wait,
|
||
|
could_end_wait(delayed_root, seq));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
|
||
|
}
|
||
|
|
||
|
/* Will return 0 or -ENOMEM */
|
||
|
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
|
||
|
const char *name, int name_len,
|
||
|
struct btrfs_inode *dir,
|
||
|
struct btrfs_disk_key *disk_key, u8 type,
|
||
|
u64 index)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
||
|
const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
|
||
|
struct btrfs_delayed_node *delayed_node;
|
||
|
struct btrfs_delayed_item *delayed_item;
|
||
|
struct btrfs_dir_item *dir_item;
|
||
|
bool reserve_leaf_space;
|
||
|
u32 data_len;
|
||
|
int ret;
|
||
|
|
||
|
delayed_node = btrfs_get_or_create_delayed_node(dir);
|
||
|
if (IS_ERR(delayed_node))
|
||
|
return PTR_ERR(delayed_node);
|
||
|
|
||
|
delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
|
||
|
delayed_node,
|
||
|
BTRFS_DELAYED_INSERTION_ITEM);
|
||
|
if (!delayed_item) {
|
||
|
ret = -ENOMEM;
|
||
|
goto release_node;
|
||
|
}
|
||
|
|
||
|
delayed_item->index = index;
|
||
|
|
||
|
dir_item = (struct btrfs_dir_item *)delayed_item->data;
|
||
|
dir_item->location = *disk_key;
|
||
|
btrfs_set_stack_dir_transid(dir_item, trans->transid);
|
||
|
btrfs_set_stack_dir_data_len(dir_item, 0);
|
||
|
btrfs_set_stack_dir_name_len(dir_item, name_len);
|
||
|
btrfs_set_stack_dir_type(dir_item, type);
|
||
|
memcpy((char *)(dir_item + 1), name, name_len);
|
||
|
|
||
|
data_len = delayed_item->data_len + sizeof(struct btrfs_item);
|
||
|
|
||
|
mutex_lock(&delayed_node->mutex);
|
||
|
|
||
|
if (delayed_node->index_item_leaves == 0 ||
|
||
|
delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
|
||
|
delayed_node->curr_index_batch_size = data_len;
|
||
|
reserve_leaf_space = true;
|
||
|
} else {
|
||
|
delayed_node->curr_index_batch_size += data_len;
|
||
|
reserve_leaf_space = false;
|
||
|
}
|
||
|
|
||
|
if (reserve_leaf_space) {
|
||
|
ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
|
||
|
/*
|
||
|
* Space was reserved for a dir index item insertion when we
|
||
|
* started the transaction, so getting a failure here should be
|
||
|
* impossible.
|
||
|
*/
|
||
|
if (WARN_ON(ret)) {
|
||
|
mutex_unlock(&delayed_node->mutex);
|
||
|
btrfs_release_delayed_item(delayed_item);
|
||
|
goto release_node;
|
||
|
}
|
||
|
|
||
|
delayed_node->index_item_leaves++;
|
||
|
} else if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
|
||
|
const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
|
||
|
|
||
|
/*
|
||
|
* Adding the new dir index item does not require touching another
|
||
|
* leaf, so we can release 1 unit of metadata that was previously
|
||
|
* reserved when starting the transaction. This applies only to
|
||
|
* the case where we had a transaction start and excludes the
|
||
|
* transaction join case (when replaying log trees).
|
||
|
*/
|
||
|
trace_btrfs_space_reservation(fs_info, "transaction",
|
||
|
trans->transid, bytes, 0);
|
||
|
btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
|
||
|
ASSERT(trans->bytes_reserved >= bytes);
|
||
|
trans->bytes_reserved -= bytes;
|
||
|
}
|
||
|
|
||
|
ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
|
||
|
if (unlikely(ret)) {
|
||
|
btrfs_err(trans->fs_info,
|
||
|
"err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
|
||
|
name_len, name, delayed_node->root->root_key.objectid,
|
||
|
delayed_node->inode_id, ret);
|
||
|
BUG();
|
||
|
}
|
||
|
mutex_unlock(&delayed_node->mutex);
|
||
|
|
||
|
release_node:
|
||
|
btrfs_release_delayed_node(delayed_node);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
|
||
|
struct btrfs_delayed_node *node,
|
||
|
u64 index)
|
||
|
{
|
||
|
struct btrfs_delayed_item *item;
|
||
|
|
||
|
mutex_lock(&node->mutex);
|
||
|
item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
|
||
|
if (!item) {
|
||
|
mutex_unlock(&node->mutex);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For delayed items to insert, we track reserved metadata bytes based
|
||
|
* on the number of leaves that we will use.
|
||
|
* See btrfs_insert_delayed_dir_index() and
|
||
|
* btrfs_delayed_item_reserve_metadata()).
|
||
|
*/
|
||
|
ASSERT(item->bytes_reserved == 0);
|
||
|
ASSERT(node->index_item_leaves > 0);
|
||
|
|
||
|
/*
|
||
|
* If there's only one leaf reserved, we can decrement this item from the
|
||
|
* current batch, otherwise we can not because we don't know which leaf
|
||
|
* it belongs to. With the current limit on delayed items, we rarely
|
||
|
* accumulate enough dir index items to fill more than one leaf (even
|
||
|
* when using a leaf size of 4K).
|
||
|
*/
|
||
|
if (node->index_item_leaves == 1) {
|
||
|
const u32 data_len = item->data_len + sizeof(struct btrfs_item);
|
||
|
|
||
|
ASSERT(node->curr_index_batch_size >= data_len);
|
||
|
node->curr_index_batch_size -= data_len;
|
||
|
}
|
||
|
|
||
|
btrfs_release_delayed_item(item);
|
||
|
|
||
|
/* If we now have no more dir index items, we can release all leaves. */
|
||
|
if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
|
||
|
btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
|
||
|
node->index_item_leaves = 0;
|
||
|
}
|
||
|
|
||
|
mutex_unlock(&node->mutex);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_inode *dir, u64 index)
|
||
|
{
|
||
|
struct btrfs_delayed_node *node;
|
||
|
struct btrfs_delayed_item *item;
|
||
|
int ret;
|
||
|
|
||
|
node = btrfs_get_or_create_delayed_node(dir);
|
||
|
if (IS_ERR(node))
|
||
|
return PTR_ERR(node);
|
||
|
|
||
|
ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
|
||
|
if (!ret)
|
||
|
goto end;
|
||
|
|
||
|
item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
|
||
|
if (!item) {
|
||
|
ret = -ENOMEM;
|
||
|
goto end;
|
||
|
}
|
||
|
|
||
|
item->index = index;
|
||
|
|
||
|
ret = btrfs_delayed_item_reserve_metadata(trans, item);
|
||
|
/*
|
||
|
* we have reserved enough space when we start a new transaction,
|
||
|
* so reserving metadata failure is impossible.
|
||
|
*/
|
||
|
if (ret < 0) {
|
||
|
btrfs_err(trans->fs_info,
|
||
|
"metadata reservation failed for delayed dir item deltiona, should have been reserved");
|
||
|
btrfs_release_delayed_item(item);
|
||
|
goto end;
|
||
|
}
|
||
|
|
||
|
mutex_lock(&node->mutex);
|
||
|
ret = __btrfs_add_delayed_item(node, item);
|
||
|
if (unlikely(ret)) {
|
||
|
btrfs_err(trans->fs_info,
|
||
|
"err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
|
||
|
index, node->root->root_key.objectid,
|
||
|
node->inode_id, ret);
|
||
|
btrfs_delayed_item_release_metadata(dir->root, item);
|
||
|
btrfs_release_delayed_item(item);
|
||
|
}
|
||
|
mutex_unlock(&node->mutex);
|
||
|
end:
|
||
|
btrfs_release_delayed_node(node);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
|
||
|
{
|
||
|
struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
|
||
|
|
||
|
if (!delayed_node)
|
||
|
return -ENOENT;
|
||
|
|
||
|
/*
|
||
|
* Since we have held i_mutex of this directory, it is impossible that
|
||
|
* a new directory index is added into the delayed node and index_cnt
|
||
|
* is updated now. So we needn't lock the delayed node.
|
||
|
*/
|
||
|
if (!delayed_node->index_cnt) {
|
||
|
btrfs_release_delayed_node(delayed_node);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
inode->index_cnt = delayed_node->index_cnt;
|
||
|
btrfs_release_delayed_node(delayed_node);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
bool btrfs_readdir_get_delayed_items(struct inode *inode,
|
||
|
struct list_head *ins_list,
|
||
|
struct list_head *del_list)
|
||
|
{
|
||
|
struct btrfs_delayed_node *delayed_node;
|
||
|
struct btrfs_delayed_item *item;
|
||
|
|
||
|
delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
|
||
|
if (!delayed_node)
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* We can only do one readdir with delayed items at a time because of
|
||
|
* item->readdir_list.
|
||
|
*/
|
||
|
btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
|
||
|
btrfs_inode_lock(inode, 0);
|
||
|
|
||
|
mutex_lock(&delayed_node->mutex);
|
||
|
item = __btrfs_first_delayed_insertion_item(delayed_node);
|
||
|
while (item) {
|
||
|
refcount_inc(&item->refs);
|
||
|
list_add_tail(&item->readdir_list, ins_list);
|
||
|
item = __btrfs_next_delayed_item(item);
|
||
|
}
|
||
|
|
||
|
item = __btrfs_first_delayed_deletion_item(delayed_node);
|
||
|
while (item) {
|
||
|
refcount_inc(&item->refs);
|
||
|
list_add_tail(&item->readdir_list, del_list);
|
||
|
item = __btrfs_next_delayed_item(item);
|
||
|
}
|
||
|
mutex_unlock(&delayed_node->mutex);
|
||
|
/*
|
||
|
* This delayed node is still cached in the btrfs inode, so refs
|
||
|
* must be > 1 now, and we needn't check it is going to be freed
|
||
|
* or not.
|
||
|
*
|
||
|
* Besides that, this function is used to read dir, we do not
|
||
|
* insert/delete delayed items in this period. So we also needn't
|
||
|
* requeue or dequeue this delayed node.
|
||
|
*/
|
||
|
refcount_dec(&delayed_node->refs);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void btrfs_readdir_put_delayed_items(struct inode *inode,
|
||
|
struct list_head *ins_list,
|
||
|
struct list_head *del_list)
|
||
|
{
|
||
|
struct btrfs_delayed_item *curr, *next;
|
||
|
|
||
|
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
|
||
|
list_del(&curr->readdir_list);
|
||
|
if (refcount_dec_and_test(&curr->refs))
|
||
|
kfree(curr);
|
||
|
}
|
||
|
|
||
|
list_for_each_entry_safe(curr, next, del_list, readdir_list) {
|
||
|
list_del(&curr->readdir_list);
|
||
|
if (refcount_dec_and_test(&curr->refs))
|
||
|
kfree(curr);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The VFS is going to do up_read(), so we need to downgrade back to a
|
||
|
* read lock.
|
||
|
*/
|
||
|
downgrade_write(&inode->i_rwsem);
|
||
|
}
|
||
|
|
||
|
int btrfs_should_delete_dir_index(struct list_head *del_list,
|
||
|
u64 index)
|
||
|
{
|
||
|
struct btrfs_delayed_item *curr;
|
||
|
int ret = 0;
|
||
|
|
||
|
list_for_each_entry(curr, del_list, readdir_list) {
|
||
|
if (curr->index > index)
|
||
|
break;
|
||
|
if (curr->index == index) {
|
||
|
ret = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
|
||
|
*
|
||
|
*/
|
||
|
int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
|
||
|
struct list_head *ins_list)
|
||
|
{
|
||
|
struct btrfs_dir_item *di;
|
||
|
struct btrfs_delayed_item *curr, *next;
|
||
|
struct btrfs_key location;
|
||
|
char *name;
|
||
|
int name_len;
|
||
|
int over = 0;
|
||
|
unsigned char d_type;
|
||
|
|
||
|
if (list_empty(ins_list))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Changing the data of the delayed item is impossible. So
|
||
|
* we needn't lock them. And we have held i_mutex of the
|
||
|
* directory, nobody can delete any directory indexes now.
|
||
|
*/
|
||
|
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
|
||
|
list_del(&curr->readdir_list);
|
||
|
|
||
|
if (curr->index < ctx->pos) {
|
||
|
if (refcount_dec_and_test(&curr->refs))
|
||
|
kfree(curr);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
ctx->pos = curr->index;
|
||
|
|
||
|
di = (struct btrfs_dir_item *)curr->data;
|
||
|
name = (char *)(di + 1);
|
||
|
name_len = btrfs_stack_dir_name_len(di);
|
||
|
|
||
|
d_type = fs_ftype_to_dtype(di->type);
|
||
|
btrfs_disk_key_to_cpu(&location, &di->location);
|
||
|
|
||
|
over = !dir_emit(ctx, name, name_len,
|
||
|
location.objectid, d_type);
|
||
|
|
||
|
if (refcount_dec_and_test(&curr->refs))
|
||
|
kfree(curr);
|
||
|
|
||
|
if (over)
|
||
|
return 1;
|
||
|
ctx->pos++;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_inode_item *inode_item,
|
||
|
struct inode *inode)
|
||
|
{
|
||
|
u64 flags;
|
||
|
|
||
|
btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
|
||
|
btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
|
||
|
btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
|
||
|
btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
|
||
|
btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
|
||
|
btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
|
||
|
btrfs_set_stack_inode_generation(inode_item,
|
||
|
BTRFS_I(inode)->generation);
|
||
|
btrfs_set_stack_inode_sequence(inode_item,
|
||
|
inode_peek_iversion(inode));
|
||
|
btrfs_set_stack_inode_transid(inode_item, trans->transid);
|
||
|
btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
|
||
|
flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
|
||
|
BTRFS_I(inode)->ro_flags);
|
||
|
btrfs_set_stack_inode_flags(inode_item, flags);
|
||
|
btrfs_set_stack_inode_block_group(inode_item, 0);
|
||
|
|
||
|
btrfs_set_stack_timespec_sec(&inode_item->atime,
|
||
|
inode->i_atime.tv_sec);
|
||
|
btrfs_set_stack_timespec_nsec(&inode_item->atime,
|
||
|
inode->i_atime.tv_nsec);
|
||
|
|
||
|
btrfs_set_stack_timespec_sec(&inode_item->mtime,
|
||
|
inode->i_mtime.tv_sec);
|
||
|
btrfs_set_stack_timespec_nsec(&inode_item->mtime,
|
||
|
inode->i_mtime.tv_nsec);
|
||
|
|
||
|
btrfs_set_stack_timespec_sec(&inode_item->ctime,
|
||
|
inode->i_ctime.tv_sec);
|
||
|
btrfs_set_stack_timespec_nsec(&inode_item->ctime,
|
||
|
inode->i_ctime.tv_nsec);
|
||
|
|
||
|
btrfs_set_stack_timespec_sec(&inode_item->otime,
|
||
|
BTRFS_I(inode)->i_otime.tv_sec);
|
||
|
btrfs_set_stack_timespec_nsec(&inode_item->otime,
|
||
|
BTRFS_I(inode)->i_otime.tv_nsec);
|
||
|
}
|
||
|
|
||
|
int btrfs_fill_inode(struct inode *inode, u32 *rdev)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
|
||
|
struct btrfs_delayed_node *delayed_node;
|
||
|
struct btrfs_inode_item *inode_item;
|
||
|
|
||
|
delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
|
||
|
if (!delayed_node)
|
||
|
return -ENOENT;
|
||
|
|
||
|
mutex_lock(&delayed_node->mutex);
|
||
|
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
|
||
|
mutex_unlock(&delayed_node->mutex);
|
||
|
btrfs_release_delayed_node(delayed_node);
|
||
|
return -ENOENT;
|
||
|
}
|
||
|
|
||
|
inode_item = &delayed_node->inode_item;
|
||
|
|
||
|
i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
|
||
|
i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
|
||
|
btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
|
||
|
btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
|
||
|
round_up(i_size_read(inode), fs_info->sectorsize));
|
||
|
inode->i_mode = btrfs_stack_inode_mode(inode_item);
|
||
|
set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
|
||
|
inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
|
||
|
BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
|
||
|
BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
|
||
|
|
||
|
inode_set_iversion_queried(inode,
|
||
|
btrfs_stack_inode_sequence(inode_item));
|
||
|
inode->i_rdev = 0;
|
||
|
*rdev = btrfs_stack_inode_rdev(inode_item);
|
||
|
btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
|
||
|
&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
|
||
|
|
||
|
inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
|
||
|
inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
|
||
|
|
||
|
inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
|
||
|
inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
|
||
|
|
||
|
inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
|
||
|
inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
|
||
|
|
||
|
BTRFS_I(inode)->i_otime.tv_sec =
|
||
|
btrfs_stack_timespec_sec(&inode_item->otime);
|
||
|
BTRFS_I(inode)->i_otime.tv_nsec =
|
||
|
btrfs_stack_timespec_nsec(&inode_item->otime);
|
||
|
|
||
|
inode->i_generation = BTRFS_I(inode)->generation;
|
||
|
BTRFS_I(inode)->index_cnt = (u64)-1;
|
||
|
|
||
|
mutex_unlock(&delayed_node->mutex);
|
||
|
btrfs_release_delayed_node(delayed_node);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_root *root,
|
||
|
struct btrfs_inode *inode)
|
||
|
{
|
||
|
struct btrfs_delayed_node *delayed_node;
|
||
|
int ret = 0;
|
||
|
|
||
|
delayed_node = btrfs_get_or_create_delayed_node(inode);
|
||
|
if (IS_ERR(delayed_node))
|
||
|
return PTR_ERR(delayed_node);
|
||
|
|
||
|
mutex_lock(&delayed_node->mutex);
|
||
|
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
|
||
|
fill_stack_inode_item(trans, &delayed_node->inode_item,
|
||
|
&inode->vfs_inode);
|
||
|
goto release_node;
|
||
|
}
|
||
|
|
||
|
ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
|
||
|
if (ret)
|
||
|
goto release_node;
|
||
|
|
||
|
fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
|
||
|
set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
|
||
|
delayed_node->count++;
|
||
|
atomic_inc(&root->fs_info->delayed_root->items);
|
||
|
release_node:
|
||
|
mutex_unlock(&delayed_node->mutex);
|
||
|
btrfs_release_delayed_node(delayed_node);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
||
|
struct btrfs_delayed_node *delayed_node;
|
||
|
|
||
|
/*
|
||
|
* we don't do delayed inode updates during log recovery because it
|
||
|
* leads to enospc problems. This means we also can't do
|
||
|
* delayed inode refs
|
||
|
*/
|
||
|
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
|
||
|
return -EAGAIN;
|
||
|
|
||
|
delayed_node = btrfs_get_or_create_delayed_node(inode);
|
||
|
if (IS_ERR(delayed_node))
|
||
|
return PTR_ERR(delayed_node);
|
||
|
|
||
|
/*
|
||
|
* We don't reserve space for inode ref deletion is because:
|
||
|
* - We ONLY do async inode ref deletion for the inode who has only
|
||
|
* one link(i_nlink == 1), it means there is only one inode ref.
|
||
|
* And in most case, the inode ref and the inode item are in the
|
||
|
* same leaf, and we will deal with them at the same time.
|
||
|
* Since we are sure we will reserve the space for the inode item,
|
||
|
* it is unnecessary to reserve space for inode ref deletion.
|
||
|
* - If the inode ref and the inode item are not in the same leaf,
|
||
|
* We also needn't worry about enospc problem, because we reserve
|
||
|
* much more space for the inode update than it needs.
|
||
|
* - At the worst, we can steal some space from the global reservation.
|
||
|
* It is very rare.
|
||
|
*/
|
||
|
mutex_lock(&delayed_node->mutex);
|
||
|
if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
|
||
|
goto release_node;
|
||
|
|
||
|
set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
|
||
|
delayed_node->count++;
|
||
|
atomic_inc(&fs_info->delayed_root->items);
|
||
|
release_node:
|
||
|
mutex_unlock(&delayed_node->mutex);
|
||
|
btrfs_release_delayed_node(delayed_node);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
|
||
|
{
|
||
|
struct btrfs_root *root = delayed_node->root;
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
struct btrfs_delayed_item *curr_item, *prev_item;
|
||
|
|
||
|
mutex_lock(&delayed_node->mutex);
|
||
|
curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
|
||
|
while (curr_item) {
|
||
|
prev_item = curr_item;
|
||
|
curr_item = __btrfs_next_delayed_item(prev_item);
|
||
|
btrfs_release_delayed_item(prev_item);
|
||
|
}
|
||
|
|
||
|
if (delayed_node->index_item_leaves > 0) {
|
||
|
btrfs_delayed_item_release_leaves(delayed_node,
|
||
|
delayed_node->index_item_leaves);
|
||
|
delayed_node->index_item_leaves = 0;
|
||
|
}
|
||
|
|
||
|
curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
|
||
|
while (curr_item) {
|
||
|
btrfs_delayed_item_release_metadata(root, curr_item);
|
||
|
prev_item = curr_item;
|
||
|
curr_item = __btrfs_next_delayed_item(prev_item);
|
||
|
btrfs_release_delayed_item(prev_item);
|
||
|
}
|
||
|
|
||
|
btrfs_release_delayed_iref(delayed_node);
|
||
|
|
||
|
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
|
||
|
btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
|
||
|
btrfs_release_delayed_inode(delayed_node);
|
||
|
}
|
||
|
mutex_unlock(&delayed_node->mutex);
|
||
|
}
|
||
|
|
||
|
void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
|
||
|
{
|
||
|
struct btrfs_delayed_node *delayed_node;
|
||
|
|
||
|
delayed_node = btrfs_get_delayed_node(inode);
|
||
|
if (!delayed_node)
|
||
|
return;
|
||
|
|
||
|
__btrfs_kill_delayed_node(delayed_node);
|
||
|
btrfs_release_delayed_node(delayed_node);
|
||
|
}
|
||
|
|
||
|
void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
|
||
|
{
|
||
|
u64 inode_id = 0;
|
||
|
struct btrfs_delayed_node *delayed_nodes[8];
|
||
|
int i, n;
|
||
|
|
||
|
while (1) {
|
||
|
spin_lock(&root->inode_lock);
|
||
|
n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
|
||
|
(void **)delayed_nodes, inode_id,
|
||
|
ARRAY_SIZE(delayed_nodes));
|
||
|
if (!n) {
|
||
|
spin_unlock(&root->inode_lock);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
inode_id = delayed_nodes[n - 1]->inode_id + 1;
|
||
|
for (i = 0; i < n; i++) {
|
||
|
/*
|
||
|
* Don't increase refs in case the node is dead and
|
||
|
* about to be removed from the tree in the loop below
|
||
|
*/
|
||
|
if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
|
||
|
delayed_nodes[i] = NULL;
|
||
|
}
|
||
|
spin_unlock(&root->inode_lock);
|
||
|
|
||
|
for (i = 0; i < n; i++) {
|
||
|
if (!delayed_nodes[i])
|
||
|
continue;
|
||
|
__btrfs_kill_delayed_node(delayed_nodes[i]);
|
||
|
btrfs_release_delayed_node(delayed_nodes[i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
|
||
|
{
|
||
|
struct btrfs_delayed_node *curr_node, *prev_node;
|
||
|
|
||
|
curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
|
||
|
while (curr_node) {
|
||
|
__btrfs_kill_delayed_node(curr_node);
|
||
|
|
||
|
prev_node = curr_node;
|
||
|
curr_node = btrfs_next_delayed_node(curr_node);
|
||
|
btrfs_release_delayed_node(prev_node);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
|
||
|
struct list_head *ins_list,
|
||
|
struct list_head *del_list)
|
||
|
{
|
||
|
struct btrfs_delayed_node *node;
|
||
|
struct btrfs_delayed_item *item;
|
||
|
|
||
|
node = btrfs_get_delayed_node(inode);
|
||
|
if (!node)
|
||
|
return;
|
||
|
|
||
|
mutex_lock(&node->mutex);
|
||
|
item = __btrfs_first_delayed_insertion_item(node);
|
||
|
while (item) {
|
||
|
/*
|
||
|
* It's possible that the item is already in a log list. This
|
||
|
* can happen in case two tasks are trying to log the same
|
||
|
* directory. For example if we have tasks A and task B:
|
||
|
*
|
||
|
* Task A collected the delayed items into a log list while
|
||
|
* under the inode's log_mutex (at btrfs_log_inode()), but it
|
||
|
* only releases the items after logging the inodes they point
|
||
|
* to (if they are new inodes), which happens after unlocking
|
||
|
* the log mutex;
|
||
|
*
|
||
|
* Task B enters btrfs_log_inode() and acquires the log_mutex
|
||
|
* of the same directory inode, before task B releases the
|
||
|
* delayed items. This can happen for example when logging some
|
||
|
* inode we need to trigger logging of its parent directory, so
|
||
|
* logging two files that have the same parent directory can
|
||
|
* lead to this.
|
||
|
*
|
||
|
* If this happens, just ignore delayed items already in a log
|
||
|
* list. All the tasks logging the directory are under a log
|
||
|
* transaction and whichever finishes first can not sync the log
|
||
|
* before the other completes and leaves the log transaction.
|
||
|
*/
|
||
|
if (!item->logged && list_empty(&item->log_list)) {
|
||
|
refcount_inc(&item->refs);
|
||
|
list_add_tail(&item->log_list, ins_list);
|
||
|
}
|
||
|
item = __btrfs_next_delayed_item(item);
|
||
|
}
|
||
|
|
||
|
item = __btrfs_first_delayed_deletion_item(node);
|
||
|
while (item) {
|
||
|
/* It may be non-empty, for the same reason mentioned above. */
|
||
|
if (!item->logged && list_empty(&item->log_list)) {
|
||
|
refcount_inc(&item->refs);
|
||
|
list_add_tail(&item->log_list, del_list);
|
||
|
}
|
||
|
item = __btrfs_next_delayed_item(item);
|
||
|
}
|
||
|
mutex_unlock(&node->mutex);
|
||
|
|
||
|
/*
|
||
|
* We are called during inode logging, which means the inode is in use
|
||
|
* and can not be evicted before we finish logging the inode. So we never
|
||
|
* have the last reference on the delayed inode.
|
||
|
* Also, we don't use btrfs_release_delayed_node() because that would
|
||
|
* requeue the delayed inode (change its order in the list of prepared
|
||
|
* nodes) and we don't want to do such change because we don't create or
|
||
|
* delete delayed items.
|
||
|
*/
|
||
|
ASSERT(refcount_read(&node->refs) > 1);
|
||
|
refcount_dec(&node->refs);
|
||
|
}
|
||
|
|
||
|
void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
|
||
|
struct list_head *ins_list,
|
||
|
struct list_head *del_list)
|
||
|
{
|
||
|
struct btrfs_delayed_node *node;
|
||
|
struct btrfs_delayed_item *item;
|
||
|
struct btrfs_delayed_item *next;
|
||
|
|
||
|
node = btrfs_get_delayed_node(inode);
|
||
|
if (!node)
|
||
|
return;
|
||
|
|
||
|
mutex_lock(&node->mutex);
|
||
|
|
||
|
list_for_each_entry_safe(item, next, ins_list, log_list) {
|
||
|
item->logged = true;
|
||
|
list_del_init(&item->log_list);
|
||
|
if (refcount_dec_and_test(&item->refs))
|
||
|
kfree(item);
|
||
|
}
|
||
|
|
||
|
list_for_each_entry_safe(item, next, del_list, log_list) {
|
||
|
item->logged = true;
|
||
|
list_del_init(&item->log_list);
|
||
|
if (refcount_dec_and_test(&item->refs))
|
||
|
kfree(item);
|
||
|
}
|
||
|
|
||
|
mutex_unlock(&node->mutex);
|
||
|
|
||
|
/*
|
||
|
* We are called during inode logging, which means the inode is in use
|
||
|
* and can not be evicted before we finish logging the inode. So we never
|
||
|
* have the last reference on the delayed inode.
|
||
|
* Also, we don't use btrfs_release_delayed_node() because that would
|
||
|
* requeue the delayed inode (change its order in the list of prepared
|
||
|
* nodes) and we don't want to do such change because we don't create or
|
||
|
* delete delayed items.
|
||
|
*/
|
||
|
ASSERT(refcount_read(&node->refs) > 1);
|
||
|
refcount_dec(&node->refs);
|
||
|
}
|