linuxdebug/drivers/net/wireless/realtek/rtw89/efuse.c

331 lines
8.1 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2019-2020 Realtek Corporation
*/
#include "debug.h"
#include "efuse.h"
#include "mac.h"
#include "reg.h"
enum rtw89_efuse_bank {
RTW89_EFUSE_BANK_WIFI,
RTW89_EFUSE_BANK_BT,
};
static int rtw89_switch_efuse_bank(struct rtw89_dev *rtwdev,
enum rtw89_efuse_bank bank)
{
u8 val;
if (rtwdev->chip->chip_id != RTL8852A)
return 0;
val = rtw89_read32_mask(rtwdev, R_AX_EFUSE_CTRL_1,
B_AX_EF_CELL_SEL_MASK);
if (bank == val)
return 0;
rtw89_write32_mask(rtwdev, R_AX_EFUSE_CTRL_1, B_AX_EF_CELL_SEL_MASK,
bank);
val = rtw89_read32_mask(rtwdev, R_AX_EFUSE_CTRL_1,
B_AX_EF_CELL_SEL_MASK);
if (bank == val)
return 0;
return -EBUSY;
}
static void rtw89_enable_otp_burst_mode(struct rtw89_dev *rtwdev, bool en)
{
if (en)
rtw89_write32_set(rtwdev, R_AX_EFUSE_CTRL_1_V1, B_AX_EF_BURST);
else
rtw89_write32_clr(rtwdev, R_AX_EFUSE_CTRL_1_V1, B_AX_EF_BURST);
}
static void rtw89_enable_efuse_pwr_cut_ddv(struct rtw89_dev *rtwdev)
{
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
struct rtw89_hal *hal = &rtwdev->hal;
if (chip_id == RTL8852A)
return;
rtw89_write8_set(rtwdev, R_AX_PMC_DBG_CTRL2, B_AX_SYSON_DIS_PMCR_AX_WRMSK);
rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B14);
fsleep(1000);
rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B15);
rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_ISO_EB2CORE);
if (chip_id == RTL8852B && hal->cv == CHIP_CAV)
rtw89_enable_otp_burst_mode(rtwdev, true);
}
static void rtw89_disable_efuse_pwr_cut_ddv(struct rtw89_dev *rtwdev)
{
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
struct rtw89_hal *hal = &rtwdev->hal;
if (chip_id == RTL8852A)
return;
if (chip_id == RTL8852B && hal->cv == CHIP_CAV)
rtw89_enable_otp_burst_mode(rtwdev, false);
rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_ISO_EB2CORE);
rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B15);
fsleep(1000);
rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B14);
rtw89_write8_clr(rtwdev, R_AX_PMC_DBG_CTRL2, B_AX_SYSON_DIS_PMCR_AX_WRMSK);
}
static int rtw89_dump_physical_efuse_map_ddv(struct rtw89_dev *rtwdev, u8 *map,
u32 dump_addr, u32 dump_size)
{
u32 efuse_ctl;
u32 addr;
int ret;
rtw89_enable_efuse_pwr_cut_ddv(rtwdev);
for (addr = dump_addr; addr < dump_addr + dump_size; addr++) {
efuse_ctl = u32_encode_bits(addr, B_AX_EF_ADDR_MASK);
rtw89_write32(rtwdev, R_AX_EFUSE_CTRL, efuse_ctl & ~B_AX_EF_RDY);
ret = read_poll_timeout_atomic(rtw89_read32, efuse_ctl,
efuse_ctl & B_AX_EF_RDY, 1, 1000000,
true, rtwdev, R_AX_EFUSE_CTRL);
if (ret)
return -EBUSY;
*map++ = (u8)(efuse_ctl & 0xff);
}
rtw89_disable_efuse_pwr_cut_ddv(rtwdev);
return 0;
}
static int rtw89_dump_physical_efuse_map_dav(struct rtw89_dev *rtwdev, u8 *map,
u32 dump_addr, u32 dump_size)
{
u32 addr;
u8 val8;
int err;
int ret;
for (addr = dump_addr; addr < dump_addr + dump_size; addr++) {
ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0x40, FULL_BIT_MASK);
if (ret)
return ret;
ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_LOW_ADDR,
addr & 0xff, XTAL_SI_LOW_ADDR_MASK);
if (ret)
return ret;
ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, addr >> 8,
XTAL_SI_HIGH_ADDR_MASK);
if (ret)
return ret;
ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0,
XTAL_SI_MODE_SEL_MASK);
if (ret)
return ret;
ret = read_poll_timeout_atomic(rtw89_mac_read_xtal_si, err,
!err && (val8 & XTAL_SI_RDY),
1, 10000, false,
rtwdev, XTAL_SI_CTRL, &val8);
if (ret) {
rtw89_warn(rtwdev, "failed to read dav efuse\n");
return ret;
}
ret = rtw89_mac_read_xtal_si(rtwdev, XTAL_SI_READ_VAL, &val8);
if (ret)
return ret;
*map++ = val8;
}
return 0;
}
static int rtw89_dump_physical_efuse_map(struct rtw89_dev *rtwdev, u8 *map,
u32 dump_addr, u32 dump_size, bool dav)
{
int ret;
if (!map || dump_size == 0)
return 0;
rtw89_switch_efuse_bank(rtwdev, RTW89_EFUSE_BANK_WIFI);
if (dav) {
ret = rtw89_dump_physical_efuse_map_dav(rtwdev, map, dump_addr, dump_size);
if (ret)
return ret;
} else {
ret = rtw89_dump_physical_efuse_map_ddv(rtwdev, map, dump_addr, dump_size);
if (ret)
return ret;
}
return 0;
}
#define invalid_efuse_header(hdr1, hdr2) \
((hdr1) == 0xff || (hdr2) == 0xff)
#define invalid_efuse_content(word_en, i) \
(((word_en) & BIT(i)) != 0x0)
#define get_efuse_blk_idx(hdr1, hdr2) \
((((hdr2) & 0xf0) >> 4) | (((hdr1) & 0x0f) << 4))
#define block_idx_to_logical_idx(blk_idx, i) \
(((blk_idx) << 3) + ((i) << 1))
static int rtw89_dump_logical_efuse_map(struct rtw89_dev *rtwdev, u8 *phy_map,
u8 *log_map)
{
u32 physical_size = rtwdev->chip->physical_efuse_size;
u32 logical_size = rtwdev->chip->logical_efuse_size;
u8 sec_ctrl_size = rtwdev->chip->sec_ctrl_efuse_size;
u32 phy_idx = sec_ctrl_size;
u32 log_idx;
u8 hdr1, hdr2;
u8 blk_idx;
u8 word_en;
int i;
if (!phy_map)
return 0;
while (phy_idx < physical_size - sec_ctrl_size) {
hdr1 = phy_map[phy_idx];
hdr2 = phy_map[phy_idx + 1];
if (invalid_efuse_header(hdr1, hdr2))
break;
blk_idx = get_efuse_blk_idx(hdr1, hdr2);
word_en = hdr2 & 0xf;
phy_idx += 2;
for (i = 0; i < 4; i++) {
if (invalid_efuse_content(word_en, i))
continue;
log_idx = block_idx_to_logical_idx(blk_idx, i);
if (phy_idx + 1 > physical_size - sec_ctrl_size - 1 ||
log_idx + 1 > logical_size)
return -EINVAL;
log_map[log_idx] = phy_map[phy_idx];
log_map[log_idx + 1] = phy_map[phy_idx + 1];
phy_idx += 2;
}
}
return 0;
}
int rtw89_parse_efuse_map(struct rtw89_dev *rtwdev)
{
u32 phy_size = rtwdev->chip->physical_efuse_size;
u32 log_size = rtwdev->chip->logical_efuse_size;
u32 dav_phy_size = rtwdev->chip->dav_phy_efuse_size;
u32 dav_log_size = rtwdev->chip->dav_log_efuse_size;
u32 full_log_size = log_size + dav_log_size;
u8 *phy_map = NULL;
u8 *log_map = NULL;
u8 *dav_phy_map = NULL;
u8 *dav_log_map = NULL;
int ret;
if (rtw89_read16(rtwdev, R_AX_SYS_WL_EFUSE_CTRL) & B_AX_AUTOLOAD_SUS)
rtwdev->efuse.valid = true;
else
rtw89_warn(rtwdev, "failed to check efuse autoload\n");
phy_map = kmalloc(phy_size, GFP_KERNEL);
log_map = kmalloc(full_log_size, GFP_KERNEL);
if (dav_phy_size && dav_log_size) {
dav_phy_map = kmalloc(dav_phy_size, GFP_KERNEL);
dav_log_map = log_map + log_size;
}
if (!phy_map || !log_map || (dav_phy_size && !dav_phy_map)) {
ret = -ENOMEM;
goto out_free;
}
ret = rtw89_dump_physical_efuse_map(rtwdev, phy_map, 0, phy_size, false);
if (ret) {
rtw89_warn(rtwdev, "failed to dump efuse physical map\n");
goto out_free;
}
ret = rtw89_dump_physical_efuse_map(rtwdev, dav_phy_map, 0, dav_phy_size, true);
if (ret) {
rtw89_warn(rtwdev, "failed to dump efuse dav physical map\n");
goto out_free;
}
memset(log_map, 0xff, full_log_size);
ret = rtw89_dump_logical_efuse_map(rtwdev, phy_map, log_map);
if (ret) {
rtw89_warn(rtwdev, "failed to dump efuse logical map\n");
goto out_free;
}
ret = rtw89_dump_logical_efuse_map(rtwdev, dav_phy_map, dav_log_map);
if (ret) {
rtw89_warn(rtwdev, "failed to dump efuse dav logical map\n");
goto out_free;
}
rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "log_map: ", log_map, full_log_size);
ret = rtwdev->chip->ops->read_efuse(rtwdev, log_map);
if (ret) {
rtw89_warn(rtwdev, "failed to read efuse map\n");
goto out_free;
}
out_free:
kfree(dav_phy_map);
kfree(log_map);
kfree(phy_map);
return ret;
}
int rtw89_parse_phycap_map(struct rtw89_dev *rtwdev)
{
u32 phycap_addr = rtwdev->chip->phycap_addr;
u32 phycap_size = rtwdev->chip->phycap_size;
u8 *phycap_map = NULL;
int ret = 0;
if (!phycap_size)
return 0;
phycap_map = kmalloc(phycap_size, GFP_KERNEL);
if (!phycap_map)
return -ENOMEM;
ret = rtw89_dump_physical_efuse_map(rtwdev, phycap_map,
phycap_addr, phycap_size, false);
if (ret) {
rtw89_warn(rtwdev, "failed to dump phycap map\n");
goto out_free;
}
ret = rtwdev->chip->ops->read_phycap(rtwdev, phycap_map);
if (ret) {
rtw89_warn(rtwdev, "failed to read phycap map\n");
goto out_free;
}
out_free:
kfree(phycap_map);
return ret;
}