2235 lines
64 KiB
C
2235 lines
64 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Xilinx Axi Ethernet device driver
|
||
|
*
|
||
|
* Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
|
||
|
* Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
|
||
|
* Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
|
||
|
* Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
|
||
|
* Copyright (c) 2010 - 2011 PetaLogix
|
||
|
* Copyright (c) 2019 - 2022 Calian Advanced Technologies
|
||
|
* Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
|
||
|
*
|
||
|
* This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
|
||
|
* and Spartan6.
|
||
|
*
|
||
|
* TODO:
|
||
|
* - Add Axi Fifo support.
|
||
|
* - Factor out Axi DMA code into separate driver.
|
||
|
* - Test and fix basic multicast filtering.
|
||
|
* - Add support for extended multicast filtering.
|
||
|
* - Test basic VLAN support.
|
||
|
* - Add support for extended VLAN support.
|
||
|
*/
|
||
|
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/etherdevice.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/netdevice.h>
|
||
|
#include <linux/of_mdio.h>
|
||
|
#include <linux/of_net.h>
|
||
|
#include <linux/of_platform.h>
|
||
|
#include <linux/of_irq.h>
|
||
|
#include <linux/of_address.h>
|
||
|
#include <linux/skbuff.h>
|
||
|
#include <linux/math64.h>
|
||
|
#include <linux/phy.h>
|
||
|
#include <linux/mii.h>
|
||
|
#include <linux/ethtool.h>
|
||
|
|
||
|
#include "xilinx_axienet.h"
|
||
|
|
||
|
/* Descriptors defines for Tx and Rx DMA */
|
||
|
#define TX_BD_NUM_DEFAULT 128
|
||
|
#define RX_BD_NUM_DEFAULT 1024
|
||
|
#define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1)
|
||
|
#define TX_BD_NUM_MAX 4096
|
||
|
#define RX_BD_NUM_MAX 4096
|
||
|
|
||
|
/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
|
||
|
#define DRIVER_NAME "xaxienet"
|
||
|
#define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
|
||
|
#define DRIVER_VERSION "1.00a"
|
||
|
|
||
|
#define AXIENET_REGS_N 40
|
||
|
|
||
|
/* Match table for of_platform binding */
|
||
|
static const struct of_device_id axienet_of_match[] = {
|
||
|
{ .compatible = "xlnx,axi-ethernet-1.00.a", },
|
||
|
{ .compatible = "xlnx,axi-ethernet-1.01.a", },
|
||
|
{ .compatible = "xlnx,axi-ethernet-2.01.a", },
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
MODULE_DEVICE_TABLE(of, axienet_of_match);
|
||
|
|
||
|
/* Option table for setting up Axi Ethernet hardware options */
|
||
|
static struct axienet_option axienet_options[] = {
|
||
|
/* Turn on jumbo packet support for both Rx and Tx */
|
||
|
{
|
||
|
.opt = XAE_OPTION_JUMBO,
|
||
|
.reg = XAE_TC_OFFSET,
|
||
|
.m_or = XAE_TC_JUM_MASK,
|
||
|
}, {
|
||
|
.opt = XAE_OPTION_JUMBO,
|
||
|
.reg = XAE_RCW1_OFFSET,
|
||
|
.m_or = XAE_RCW1_JUM_MASK,
|
||
|
}, { /* Turn on VLAN packet support for both Rx and Tx */
|
||
|
.opt = XAE_OPTION_VLAN,
|
||
|
.reg = XAE_TC_OFFSET,
|
||
|
.m_or = XAE_TC_VLAN_MASK,
|
||
|
}, {
|
||
|
.opt = XAE_OPTION_VLAN,
|
||
|
.reg = XAE_RCW1_OFFSET,
|
||
|
.m_or = XAE_RCW1_VLAN_MASK,
|
||
|
}, { /* Turn on FCS stripping on receive packets */
|
||
|
.opt = XAE_OPTION_FCS_STRIP,
|
||
|
.reg = XAE_RCW1_OFFSET,
|
||
|
.m_or = XAE_RCW1_FCS_MASK,
|
||
|
}, { /* Turn on FCS insertion on transmit packets */
|
||
|
.opt = XAE_OPTION_FCS_INSERT,
|
||
|
.reg = XAE_TC_OFFSET,
|
||
|
.m_or = XAE_TC_FCS_MASK,
|
||
|
}, { /* Turn off length/type field checking on receive packets */
|
||
|
.opt = XAE_OPTION_LENTYPE_ERR,
|
||
|
.reg = XAE_RCW1_OFFSET,
|
||
|
.m_or = XAE_RCW1_LT_DIS_MASK,
|
||
|
}, { /* Turn on Rx flow control */
|
||
|
.opt = XAE_OPTION_FLOW_CONTROL,
|
||
|
.reg = XAE_FCC_OFFSET,
|
||
|
.m_or = XAE_FCC_FCRX_MASK,
|
||
|
}, { /* Turn on Tx flow control */
|
||
|
.opt = XAE_OPTION_FLOW_CONTROL,
|
||
|
.reg = XAE_FCC_OFFSET,
|
||
|
.m_or = XAE_FCC_FCTX_MASK,
|
||
|
}, { /* Turn on promiscuous frame filtering */
|
||
|
.opt = XAE_OPTION_PROMISC,
|
||
|
.reg = XAE_FMI_OFFSET,
|
||
|
.m_or = XAE_FMI_PM_MASK,
|
||
|
}, { /* Enable transmitter */
|
||
|
.opt = XAE_OPTION_TXEN,
|
||
|
.reg = XAE_TC_OFFSET,
|
||
|
.m_or = XAE_TC_TX_MASK,
|
||
|
}, { /* Enable receiver */
|
||
|
.opt = XAE_OPTION_RXEN,
|
||
|
.reg = XAE_RCW1_OFFSET,
|
||
|
.m_or = XAE_RCW1_RX_MASK,
|
||
|
},
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* axienet_dma_in32 - Memory mapped Axi DMA register read
|
||
|
* @lp: Pointer to axienet local structure
|
||
|
* @reg: Address offset from the base address of the Axi DMA core
|
||
|
*
|
||
|
* Return: The contents of the Axi DMA register
|
||
|
*
|
||
|
* This function returns the contents of the corresponding Axi DMA register.
|
||
|
*/
|
||
|
static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
|
||
|
{
|
||
|
return ioread32(lp->dma_regs + reg);
|
||
|
}
|
||
|
|
||
|
static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
|
||
|
struct axidma_bd *desc)
|
||
|
{
|
||
|
desc->phys = lower_32_bits(addr);
|
||
|
if (lp->features & XAE_FEATURE_DMA_64BIT)
|
||
|
desc->phys_msb = upper_32_bits(addr);
|
||
|
}
|
||
|
|
||
|
static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
|
||
|
struct axidma_bd *desc)
|
||
|
{
|
||
|
dma_addr_t ret = desc->phys;
|
||
|
|
||
|
if (lp->features & XAE_FEATURE_DMA_64BIT)
|
||
|
ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_dma_bd_release - Release buffer descriptor rings
|
||
|
* @ndev: Pointer to the net_device structure
|
||
|
*
|
||
|
* This function is used to release the descriptors allocated in
|
||
|
* axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
|
||
|
* driver stop api is called.
|
||
|
*/
|
||
|
static void axienet_dma_bd_release(struct net_device *ndev)
|
||
|
{
|
||
|
int i;
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
/* If we end up here, tx_bd_v must have been DMA allocated. */
|
||
|
dma_free_coherent(lp->dev,
|
||
|
sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
|
||
|
lp->tx_bd_v,
|
||
|
lp->tx_bd_p);
|
||
|
|
||
|
if (!lp->rx_bd_v)
|
||
|
return;
|
||
|
|
||
|
for (i = 0; i < lp->rx_bd_num; i++) {
|
||
|
dma_addr_t phys;
|
||
|
|
||
|
/* A NULL skb means this descriptor has not been initialised
|
||
|
* at all.
|
||
|
*/
|
||
|
if (!lp->rx_bd_v[i].skb)
|
||
|
break;
|
||
|
|
||
|
dev_kfree_skb(lp->rx_bd_v[i].skb);
|
||
|
|
||
|
/* For each descriptor, we programmed cntrl with the (non-zero)
|
||
|
* descriptor size, after it had been successfully allocated.
|
||
|
* So a non-zero value in there means we need to unmap it.
|
||
|
*/
|
||
|
if (lp->rx_bd_v[i].cntrl) {
|
||
|
phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
|
||
|
dma_unmap_single(lp->dev, phys,
|
||
|
lp->max_frm_size, DMA_FROM_DEVICE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
dma_free_coherent(lp->dev,
|
||
|
sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
|
||
|
lp->rx_bd_v,
|
||
|
lp->rx_bd_p);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_usec_to_timer - Calculate IRQ delay timer value
|
||
|
* @lp: Pointer to the axienet_local structure
|
||
|
* @coalesce_usec: Microseconds to convert into timer value
|
||
|
*/
|
||
|
static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
|
||
|
{
|
||
|
u32 result;
|
||
|
u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
|
||
|
|
||
|
if (lp->axi_clk)
|
||
|
clk_rate = clk_get_rate(lp->axi_clk);
|
||
|
|
||
|
/* 1 Timeout Interval = 125 * (clock period of SG clock) */
|
||
|
result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
|
||
|
(u64)125000000);
|
||
|
if (result > 255)
|
||
|
result = 255;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_dma_start - Set up DMA registers and start DMA operation
|
||
|
* @lp: Pointer to the axienet_local structure
|
||
|
*/
|
||
|
static void axienet_dma_start(struct axienet_local *lp)
|
||
|
{
|
||
|
/* Start updating the Rx channel control register */
|
||
|
lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
|
||
|
XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
|
||
|
/* Only set interrupt delay timer if not generating an interrupt on
|
||
|
* the first RX packet. Otherwise leave at 0 to disable delay interrupt.
|
||
|
*/
|
||
|
if (lp->coalesce_count_rx > 1)
|
||
|
lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
|
||
|
<< XAXIDMA_DELAY_SHIFT) |
|
||
|
XAXIDMA_IRQ_DELAY_MASK;
|
||
|
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
|
||
|
|
||
|
/* Start updating the Tx channel control register */
|
||
|
lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
|
||
|
XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
|
||
|
/* Only set interrupt delay timer if not generating an interrupt on
|
||
|
* the first TX packet. Otherwise leave at 0 to disable delay interrupt.
|
||
|
*/
|
||
|
if (lp->coalesce_count_tx > 1)
|
||
|
lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
|
||
|
<< XAXIDMA_DELAY_SHIFT) |
|
||
|
XAXIDMA_IRQ_DELAY_MASK;
|
||
|
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
|
||
|
|
||
|
/* Populate the tail pointer and bring the Rx Axi DMA engine out of
|
||
|
* halted state. This will make the Rx side ready for reception.
|
||
|
*/
|
||
|
axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
|
||
|
lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
|
||
|
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
|
||
|
axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
|
||
|
(sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
|
||
|
|
||
|
/* Write to the RS (Run-stop) bit in the Tx channel control register.
|
||
|
* Tx channel is now ready to run. But only after we write to the
|
||
|
* tail pointer register that the Tx channel will start transmitting.
|
||
|
*/
|
||
|
axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
|
||
|
lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
|
||
|
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
|
||
|
* @ndev: Pointer to the net_device structure
|
||
|
*
|
||
|
* Return: 0, on success -ENOMEM, on failure
|
||
|
*
|
||
|
* This function is called to initialize the Rx and Tx DMA descriptor
|
||
|
* rings. This initializes the descriptors with required default values
|
||
|
* and is called when Axi Ethernet driver reset is called.
|
||
|
*/
|
||
|
static int axienet_dma_bd_init(struct net_device *ndev)
|
||
|
{
|
||
|
int i;
|
||
|
struct sk_buff *skb;
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
/* Reset the indexes which are used for accessing the BDs */
|
||
|
lp->tx_bd_ci = 0;
|
||
|
lp->tx_bd_tail = 0;
|
||
|
lp->rx_bd_ci = 0;
|
||
|
|
||
|
/* Allocate the Tx and Rx buffer descriptors. */
|
||
|
lp->tx_bd_v = dma_alloc_coherent(lp->dev,
|
||
|
sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
|
||
|
&lp->tx_bd_p, GFP_KERNEL);
|
||
|
if (!lp->tx_bd_v)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
lp->rx_bd_v = dma_alloc_coherent(lp->dev,
|
||
|
sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
|
||
|
&lp->rx_bd_p, GFP_KERNEL);
|
||
|
if (!lp->rx_bd_v)
|
||
|
goto out;
|
||
|
|
||
|
for (i = 0; i < lp->tx_bd_num; i++) {
|
||
|
dma_addr_t addr = lp->tx_bd_p +
|
||
|
sizeof(*lp->tx_bd_v) *
|
||
|
((i + 1) % lp->tx_bd_num);
|
||
|
|
||
|
lp->tx_bd_v[i].next = lower_32_bits(addr);
|
||
|
if (lp->features & XAE_FEATURE_DMA_64BIT)
|
||
|
lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < lp->rx_bd_num; i++) {
|
||
|
dma_addr_t addr;
|
||
|
|
||
|
addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
|
||
|
((i + 1) % lp->rx_bd_num);
|
||
|
lp->rx_bd_v[i].next = lower_32_bits(addr);
|
||
|
if (lp->features & XAE_FEATURE_DMA_64BIT)
|
||
|
lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
|
||
|
|
||
|
skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
|
||
|
if (!skb)
|
||
|
goto out;
|
||
|
|
||
|
lp->rx_bd_v[i].skb = skb;
|
||
|
addr = dma_map_single(lp->dev, skb->data,
|
||
|
lp->max_frm_size, DMA_FROM_DEVICE);
|
||
|
if (dma_mapping_error(lp->dev, addr)) {
|
||
|
netdev_err(ndev, "DMA mapping error\n");
|
||
|
goto out;
|
||
|
}
|
||
|
desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
|
||
|
|
||
|
lp->rx_bd_v[i].cntrl = lp->max_frm_size;
|
||
|
}
|
||
|
|
||
|
axienet_dma_start(lp);
|
||
|
|
||
|
return 0;
|
||
|
out:
|
||
|
axienet_dma_bd_release(ndev);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_set_mac_address - Write the MAC address
|
||
|
* @ndev: Pointer to the net_device structure
|
||
|
* @address: 6 byte Address to be written as MAC address
|
||
|
*
|
||
|
* This function is called to initialize the MAC address of the Axi Ethernet
|
||
|
* core. It writes to the UAW0 and UAW1 registers of the core.
|
||
|
*/
|
||
|
static void axienet_set_mac_address(struct net_device *ndev,
|
||
|
const void *address)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
if (address)
|
||
|
eth_hw_addr_set(ndev, address);
|
||
|
if (!is_valid_ether_addr(ndev->dev_addr))
|
||
|
eth_hw_addr_random(ndev);
|
||
|
|
||
|
/* Set up unicast MAC address filter set its mac address */
|
||
|
axienet_iow(lp, XAE_UAW0_OFFSET,
|
||
|
(ndev->dev_addr[0]) |
|
||
|
(ndev->dev_addr[1] << 8) |
|
||
|
(ndev->dev_addr[2] << 16) |
|
||
|
(ndev->dev_addr[3] << 24));
|
||
|
axienet_iow(lp, XAE_UAW1_OFFSET,
|
||
|
(((axienet_ior(lp, XAE_UAW1_OFFSET)) &
|
||
|
~XAE_UAW1_UNICASTADDR_MASK) |
|
||
|
(ndev->dev_addr[4] |
|
||
|
(ndev->dev_addr[5] << 8))));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* netdev_set_mac_address - Write the MAC address (from outside the driver)
|
||
|
* @ndev: Pointer to the net_device structure
|
||
|
* @p: 6 byte Address to be written as MAC address
|
||
|
*
|
||
|
* Return: 0 for all conditions. Presently, there is no failure case.
|
||
|
*
|
||
|
* This function is called to initialize the MAC address of the Axi Ethernet
|
||
|
* core. It calls the core specific axienet_set_mac_address. This is the
|
||
|
* function that goes into net_device_ops structure entry ndo_set_mac_address.
|
||
|
*/
|
||
|
static int netdev_set_mac_address(struct net_device *ndev, void *p)
|
||
|
{
|
||
|
struct sockaddr *addr = p;
|
||
|
axienet_set_mac_address(ndev, addr->sa_data);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_set_multicast_list - Prepare the multicast table
|
||
|
* @ndev: Pointer to the net_device structure
|
||
|
*
|
||
|
* This function is called to initialize the multicast table during
|
||
|
* initialization. The Axi Ethernet basic multicast support has a four-entry
|
||
|
* multicast table which is initialized here. Additionally this function
|
||
|
* goes into the net_device_ops structure entry ndo_set_multicast_list. This
|
||
|
* means whenever the multicast table entries need to be updated this
|
||
|
* function gets called.
|
||
|
*/
|
||
|
static void axienet_set_multicast_list(struct net_device *ndev)
|
||
|
{
|
||
|
int i;
|
||
|
u32 reg, af0reg, af1reg;
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
|
||
|
netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
|
||
|
/* We must make the kernel realize we had to move into
|
||
|
* promiscuous mode. If it was a promiscuous mode request
|
||
|
* the flag is already set. If not we set it.
|
||
|
*/
|
||
|
ndev->flags |= IFF_PROMISC;
|
||
|
reg = axienet_ior(lp, XAE_FMI_OFFSET);
|
||
|
reg |= XAE_FMI_PM_MASK;
|
||
|
axienet_iow(lp, XAE_FMI_OFFSET, reg);
|
||
|
dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
|
||
|
} else if (!netdev_mc_empty(ndev)) {
|
||
|
struct netdev_hw_addr *ha;
|
||
|
|
||
|
i = 0;
|
||
|
netdev_for_each_mc_addr(ha, ndev) {
|
||
|
if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
|
||
|
break;
|
||
|
|
||
|
af0reg = (ha->addr[0]);
|
||
|
af0reg |= (ha->addr[1] << 8);
|
||
|
af0reg |= (ha->addr[2] << 16);
|
||
|
af0reg |= (ha->addr[3] << 24);
|
||
|
|
||
|
af1reg = (ha->addr[4]);
|
||
|
af1reg |= (ha->addr[5] << 8);
|
||
|
|
||
|
reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
|
||
|
reg |= i;
|
||
|
|
||
|
axienet_iow(lp, XAE_FMI_OFFSET, reg);
|
||
|
axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
|
||
|
axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
|
||
|
i++;
|
||
|
}
|
||
|
} else {
|
||
|
reg = axienet_ior(lp, XAE_FMI_OFFSET);
|
||
|
reg &= ~XAE_FMI_PM_MASK;
|
||
|
|
||
|
axienet_iow(lp, XAE_FMI_OFFSET, reg);
|
||
|
|
||
|
for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
|
||
|
reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
|
||
|
reg |= i;
|
||
|
|
||
|
axienet_iow(lp, XAE_FMI_OFFSET, reg);
|
||
|
axienet_iow(lp, XAE_AF0_OFFSET, 0);
|
||
|
axienet_iow(lp, XAE_AF1_OFFSET, 0);
|
||
|
}
|
||
|
|
||
|
dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_setoptions - Set an Axi Ethernet option
|
||
|
* @ndev: Pointer to the net_device structure
|
||
|
* @options: Option to be enabled/disabled
|
||
|
*
|
||
|
* The Axi Ethernet core has multiple features which can be selectively turned
|
||
|
* on or off. The typical options could be jumbo frame option, basic VLAN
|
||
|
* option, promiscuous mode option etc. This function is used to set or clear
|
||
|
* these options in the Axi Ethernet hardware. This is done through
|
||
|
* axienet_option structure .
|
||
|
*/
|
||
|
static void axienet_setoptions(struct net_device *ndev, u32 options)
|
||
|
{
|
||
|
int reg;
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
struct axienet_option *tp = &axienet_options[0];
|
||
|
|
||
|
while (tp->opt) {
|
||
|
reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
|
||
|
if (options & tp->opt)
|
||
|
reg |= tp->m_or;
|
||
|
axienet_iow(lp, tp->reg, reg);
|
||
|
tp++;
|
||
|
}
|
||
|
|
||
|
lp->options |= options;
|
||
|
}
|
||
|
|
||
|
static int __axienet_device_reset(struct axienet_local *lp)
|
||
|
{
|
||
|
u32 value;
|
||
|
int ret;
|
||
|
|
||
|
/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
|
||
|
* process of Axi DMA takes a while to complete as all pending
|
||
|
* commands/transfers will be flushed or completed during this
|
||
|
* reset process.
|
||
|
* Note that even though both TX and RX have their own reset register,
|
||
|
* they both reset the entire DMA core, so only one needs to be used.
|
||
|
*/
|
||
|
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
|
||
|
ret = read_poll_timeout(axienet_dma_in32, value,
|
||
|
!(value & XAXIDMA_CR_RESET_MASK),
|
||
|
DELAY_OF_ONE_MILLISEC, 50000, false, lp,
|
||
|
XAXIDMA_TX_CR_OFFSET);
|
||
|
if (ret) {
|
||
|
dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
|
||
|
ret = read_poll_timeout(axienet_ior, value,
|
||
|
value & XAE_INT_PHYRSTCMPLT_MASK,
|
||
|
DELAY_OF_ONE_MILLISEC, 50000, false, lp,
|
||
|
XAE_IS_OFFSET);
|
||
|
if (ret) {
|
||
|
dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_dma_stop - Stop DMA operation
|
||
|
* @lp: Pointer to the axienet_local structure
|
||
|
*/
|
||
|
static void axienet_dma_stop(struct axienet_local *lp)
|
||
|
{
|
||
|
int count;
|
||
|
u32 cr, sr;
|
||
|
|
||
|
cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
|
||
|
cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
|
||
|
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
|
||
|
synchronize_irq(lp->rx_irq);
|
||
|
|
||
|
cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
|
||
|
cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
|
||
|
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
|
||
|
synchronize_irq(lp->tx_irq);
|
||
|
|
||
|
/* Give DMAs a chance to halt gracefully */
|
||
|
sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
|
||
|
for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
|
||
|
msleep(20);
|
||
|
sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
|
||
|
}
|
||
|
|
||
|
sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
|
||
|
for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
|
||
|
msleep(20);
|
||
|
sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
|
||
|
}
|
||
|
|
||
|
/* Do a reset to ensure DMA is really stopped */
|
||
|
axienet_lock_mii(lp);
|
||
|
__axienet_device_reset(lp);
|
||
|
axienet_unlock_mii(lp);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
|
||
|
* @ndev: Pointer to the net_device structure
|
||
|
*
|
||
|
* This function is called to reset and initialize the Axi Ethernet core. This
|
||
|
* is typically called during initialization. It does a reset of the Axi DMA
|
||
|
* Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
|
||
|
* are connected to Axi Ethernet reset lines, this in turn resets the Axi
|
||
|
* Ethernet core. No separate hardware reset is done for the Axi Ethernet
|
||
|
* core.
|
||
|
* Returns 0 on success or a negative error number otherwise.
|
||
|
*/
|
||
|
static int axienet_device_reset(struct net_device *ndev)
|
||
|
{
|
||
|
u32 axienet_status;
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
int ret;
|
||
|
|
||
|
ret = __axienet_device_reset(lp);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
|
||
|
lp->options |= XAE_OPTION_VLAN;
|
||
|
lp->options &= (~XAE_OPTION_JUMBO);
|
||
|
|
||
|
if ((ndev->mtu > XAE_MTU) &&
|
||
|
(ndev->mtu <= XAE_JUMBO_MTU)) {
|
||
|
lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
|
||
|
XAE_TRL_SIZE;
|
||
|
|
||
|
if (lp->max_frm_size <= lp->rxmem)
|
||
|
lp->options |= XAE_OPTION_JUMBO;
|
||
|
}
|
||
|
|
||
|
ret = axienet_dma_bd_init(ndev);
|
||
|
if (ret) {
|
||
|
netdev_err(ndev, "%s: descriptor allocation failed\n",
|
||
|
__func__);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
|
||
|
axienet_status &= ~XAE_RCW1_RX_MASK;
|
||
|
axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
|
||
|
|
||
|
axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
|
||
|
if (axienet_status & XAE_INT_RXRJECT_MASK)
|
||
|
axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
|
||
|
axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
|
||
|
XAE_INT_RECV_ERROR_MASK : 0);
|
||
|
|
||
|
axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
|
||
|
|
||
|
/* Sync default options with HW but leave receiver and
|
||
|
* transmitter disabled.
|
||
|
*/
|
||
|
axienet_setoptions(ndev, lp->options &
|
||
|
~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
|
||
|
axienet_set_mac_address(ndev, NULL);
|
||
|
axienet_set_multicast_list(ndev);
|
||
|
axienet_setoptions(ndev, lp->options);
|
||
|
|
||
|
netif_trans_update(ndev);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_free_tx_chain - Clean up a series of linked TX descriptors.
|
||
|
* @lp: Pointer to the axienet_local structure
|
||
|
* @first_bd: Index of first descriptor to clean up
|
||
|
* @nr_bds: Max number of descriptors to clean up
|
||
|
* @force: Whether to clean descriptors even if not complete
|
||
|
* @sizep: Pointer to a u32 filled with the total sum of all bytes
|
||
|
* in all cleaned-up descriptors. Ignored if NULL.
|
||
|
* @budget: NAPI budget (use 0 when not called from NAPI poll)
|
||
|
*
|
||
|
* Would either be called after a successful transmit operation, or after
|
||
|
* there was an error when setting up the chain.
|
||
|
* Returns the number of descriptors handled.
|
||
|
*/
|
||
|
static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
|
||
|
int nr_bds, bool force, u32 *sizep, int budget)
|
||
|
{
|
||
|
struct axidma_bd *cur_p;
|
||
|
unsigned int status;
|
||
|
dma_addr_t phys;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < nr_bds; i++) {
|
||
|
cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
|
||
|
status = cur_p->status;
|
||
|
|
||
|
/* If force is not specified, clean up only descriptors
|
||
|
* that have been completed by the MAC.
|
||
|
*/
|
||
|
if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
|
||
|
break;
|
||
|
|
||
|
/* Ensure we see complete descriptor update */
|
||
|
dma_rmb();
|
||
|
phys = desc_get_phys_addr(lp, cur_p);
|
||
|
dma_unmap_single(lp->dev, phys,
|
||
|
(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
|
||
|
DMA_TO_DEVICE);
|
||
|
|
||
|
if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
|
||
|
napi_consume_skb(cur_p->skb, budget);
|
||
|
|
||
|
cur_p->app0 = 0;
|
||
|
cur_p->app1 = 0;
|
||
|
cur_p->app2 = 0;
|
||
|
cur_p->app4 = 0;
|
||
|
cur_p->skb = NULL;
|
||
|
/* ensure our transmit path and device don't prematurely see status cleared */
|
||
|
wmb();
|
||
|
cur_p->cntrl = 0;
|
||
|
cur_p->status = 0;
|
||
|
|
||
|
if (sizep)
|
||
|
*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
|
||
|
}
|
||
|
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
|
||
|
* @lp: Pointer to the axienet_local structure
|
||
|
* @num_frag: The number of BDs to check for
|
||
|
*
|
||
|
* Return: 0, on success
|
||
|
* NETDEV_TX_BUSY, if any of the descriptors are not free
|
||
|
*
|
||
|
* This function is invoked before BDs are allocated and transmission starts.
|
||
|
* This function returns 0 if a BD or group of BDs can be allocated for
|
||
|
* transmission. If the BD or any of the BDs are not free the function
|
||
|
* returns a busy status.
|
||
|
*/
|
||
|
static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
|
||
|
int num_frag)
|
||
|
{
|
||
|
struct axidma_bd *cur_p;
|
||
|
|
||
|
/* Ensure we see all descriptor updates from device or TX polling */
|
||
|
rmb();
|
||
|
cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
|
||
|
lp->tx_bd_num];
|
||
|
if (cur_p->cntrl)
|
||
|
return NETDEV_TX_BUSY;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_tx_poll - Invoked once a transmit is completed by the
|
||
|
* Axi DMA Tx channel.
|
||
|
* @napi: Pointer to NAPI structure.
|
||
|
* @budget: Max number of TX packets to process.
|
||
|
*
|
||
|
* Return: Number of TX packets processed.
|
||
|
*
|
||
|
* This function is invoked from the NAPI processing to notify the completion
|
||
|
* of transmit operation. It clears fields in the corresponding Tx BDs and
|
||
|
* unmaps the corresponding buffer so that CPU can regain ownership of the
|
||
|
* buffer. It finally invokes "netif_wake_queue" to restart transmission if
|
||
|
* required.
|
||
|
*/
|
||
|
static int axienet_tx_poll(struct napi_struct *napi, int budget)
|
||
|
{
|
||
|
struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
|
||
|
struct net_device *ndev = lp->ndev;
|
||
|
u32 size = 0;
|
||
|
int packets;
|
||
|
|
||
|
packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
|
||
|
|
||
|
if (packets) {
|
||
|
lp->tx_bd_ci += packets;
|
||
|
if (lp->tx_bd_ci >= lp->tx_bd_num)
|
||
|
lp->tx_bd_ci %= lp->tx_bd_num;
|
||
|
|
||
|
u64_stats_update_begin(&lp->tx_stat_sync);
|
||
|
u64_stats_add(&lp->tx_packets, packets);
|
||
|
u64_stats_add(&lp->tx_bytes, size);
|
||
|
u64_stats_update_end(&lp->tx_stat_sync);
|
||
|
|
||
|
/* Matches barrier in axienet_start_xmit */
|
||
|
smp_mb();
|
||
|
|
||
|
if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
|
||
|
netif_wake_queue(ndev);
|
||
|
}
|
||
|
|
||
|
if (packets < budget && napi_complete_done(napi, packets)) {
|
||
|
/* Re-enable TX completion interrupts. This should
|
||
|
* cause an immediate interrupt if any TX packets are
|
||
|
* already pending.
|
||
|
*/
|
||
|
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
|
||
|
}
|
||
|
return packets;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_start_xmit - Starts the transmission.
|
||
|
* @skb: sk_buff pointer that contains data to be Txed.
|
||
|
* @ndev: Pointer to net_device structure.
|
||
|
*
|
||
|
* Return: NETDEV_TX_OK, on success
|
||
|
* NETDEV_TX_BUSY, if any of the descriptors are not free
|
||
|
*
|
||
|
* This function is invoked from upper layers to initiate transmission. The
|
||
|
* function uses the next available free BDs and populates their fields to
|
||
|
* start the transmission. Additionally if checksum offloading is supported,
|
||
|
* it populates AXI Stream Control fields with appropriate values.
|
||
|
*/
|
||
|
static netdev_tx_t
|
||
|
axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
|
||
|
{
|
||
|
u32 ii;
|
||
|
u32 num_frag;
|
||
|
u32 csum_start_off;
|
||
|
u32 csum_index_off;
|
||
|
skb_frag_t *frag;
|
||
|
dma_addr_t tail_p, phys;
|
||
|
u32 orig_tail_ptr, new_tail_ptr;
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
struct axidma_bd *cur_p;
|
||
|
|
||
|
orig_tail_ptr = lp->tx_bd_tail;
|
||
|
new_tail_ptr = orig_tail_ptr;
|
||
|
|
||
|
num_frag = skb_shinfo(skb)->nr_frags;
|
||
|
cur_p = &lp->tx_bd_v[orig_tail_ptr];
|
||
|
|
||
|
if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
|
||
|
/* Should not happen as last start_xmit call should have
|
||
|
* checked for sufficient space and queue should only be
|
||
|
* woken when sufficient space is available.
|
||
|
*/
|
||
|
netif_stop_queue(ndev);
|
||
|
if (net_ratelimit())
|
||
|
netdev_warn(ndev, "TX ring unexpectedly full\n");
|
||
|
return NETDEV_TX_BUSY;
|
||
|
}
|
||
|
|
||
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
||
|
if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
|
||
|
/* Tx Full Checksum Offload Enabled */
|
||
|
cur_p->app0 |= 2;
|
||
|
} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
|
||
|
csum_start_off = skb_transport_offset(skb);
|
||
|
csum_index_off = csum_start_off + skb->csum_offset;
|
||
|
/* Tx Partial Checksum Offload Enabled */
|
||
|
cur_p->app0 |= 1;
|
||
|
cur_p->app1 = (csum_start_off << 16) | csum_index_off;
|
||
|
}
|
||
|
} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
|
||
|
cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
|
||
|
}
|
||
|
|
||
|
phys = dma_map_single(lp->dev, skb->data,
|
||
|
skb_headlen(skb), DMA_TO_DEVICE);
|
||
|
if (unlikely(dma_mapping_error(lp->dev, phys))) {
|
||
|
if (net_ratelimit())
|
||
|
netdev_err(ndev, "TX DMA mapping error\n");
|
||
|
ndev->stats.tx_dropped++;
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
desc_set_phys_addr(lp, phys, cur_p);
|
||
|
cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
|
||
|
|
||
|
for (ii = 0; ii < num_frag; ii++) {
|
||
|
if (++new_tail_ptr >= lp->tx_bd_num)
|
||
|
new_tail_ptr = 0;
|
||
|
cur_p = &lp->tx_bd_v[new_tail_ptr];
|
||
|
frag = &skb_shinfo(skb)->frags[ii];
|
||
|
phys = dma_map_single(lp->dev,
|
||
|
skb_frag_address(frag),
|
||
|
skb_frag_size(frag),
|
||
|
DMA_TO_DEVICE);
|
||
|
if (unlikely(dma_mapping_error(lp->dev, phys))) {
|
||
|
if (net_ratelimit())
|
||
|
netdev_err(ndev, "TX DMA mapping error\n");
|
||
|
ndev->stats.tx_dropped++;
|
||
|
axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
|
||
|
true, NULL, 0);
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
desc_set_phys_addr(lp, phys, cur_p);
|
||
|
cur_p->cntrl = skb_frag_size(frag);
|
||
|
}
|
||
|
|
||
|
cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
|
||
|
cur_p->skb = skb;
|
||
|
|
||
|
tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
|
||
|
if (++new_tail_ptr >= lp->tx_bd_num)
|
||
|
new_tail_ptr = 0;
|
||
|
WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
|
||
|
|
||
|
/* Start the transfer */
|
||
|
axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
|
||
|
|
||
|
/* Stop queue if next transmit may not have space */
|
||
|
if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
|
||
|
netif_stop_queue(ndev);
|
||
|
|
||
|
/* Matches barrier in axienet_tx_poll */
|
||
|
smp_mb();
|
||
|
|
||
|
/* Space might have just been freed - check again */
|
||
|
if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
|
||
|
netif_wake_queue(ndev);
|
||
|
}
|
||
|
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
|
||
|
* @napi: Pointer to NAPI structure.
|
||
|
* @budget: Max number of RX packets to process.
|
||
|
*
|
||
|
* Return: Number of RX packets processed.
|
||
|
*/
|
||
|
static int axienet_rx_poll(struct napi_struct *napi, int budget)
|
||
|
{
|
||
|
u32 length;
|
||
|
u32 csumstatus;
|
||
|
u32 size = 0;
|
||
|
int packets = 0;
|
||
|
dma_addr_t tail_p = 0;
|
||
|
struct axidma_bd *cur_p;
|
||
|
struct sk_buff *skb, *new_skb;
|
||
|
struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
|
||
|
|
||
|
cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
|
||
|
|
||
|
while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
|
||
|
dma_addr_t phys;
|
||
|
|
||
|
/* Ensure we see complete descriptor update */
|
||
|
dma_rmb();
|
||
|
|
||
|
skb = cur_p->skb;
|
||
|
cur_p->skb = NULL;
|
||
|
|
||
|
/* skb could be NULL if a previous pass already received the
|
||
|
* packet for this slot in the ring, but failed to refill it
|
||
|
* with a newly allocated buffer. In this case, don't try to
|
||
|
* receive it again.
|
||
|
*/
|
||
|
if (likely(skb)) {
|
||
|
length = cur_p->app4 & 0x0000FFFF;
|
||
|
|
||
|
phys = desc_get_phys_addr(lp, cur_p);
|
||
|
dma_unmap_single(lp->dev, phys, lp->max_frm_size,
|
||
|
DMA_FROM_DEVICE);
|
||
|
|
||
|
skb_put(skb, length);
|
||
|
skb->protocol = eth_type_trans(skb, lp->ndev);
|
||
|
/*skb_checksum_none_assert(skb);*/
|
||
|
skb->ip_summed = CHECKSUM_NONE;
|
||
|
|
||
|
/* if we're doing Rx csum offload, set it up */
|
||
|
if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
|
||
|
csumstatus = (cur_p->app2 &
|
||
|
XAE_FULL_CSUM_STATUS_MASK) >> 3;
|
||
|
if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
|
||
|
csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
|
||
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
||
|
}
|
||
|
} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
|
||
|
skb->protocol == htons(ETH_P_IP) &&
|
||
|
skb->len > 64) {
|
||
|
skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
|
||
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
||
|
}
|
||
|
|
||
|
napi_gro_receive(napi, skb);
|
||
|
|
||
|
size += length;
|
||
|
packets++;
|
||
|
}
|
||
|
|
||
|
new_skb = napi_alloc_skb(napi, lp->max_frm_size);
|
||
|
if (!new_skb)
|
||
|
break;
|
||
|
|
||
|
phys = dma_map_single(lp->dev, new_skb->data,
|
||
|
lp->max_frm_size,
|
||
|
DMA_FROM_DEVICE);
|
||
|
if (unlikely(dma_mapping_error(lp->dev, phys))) {
|
||
|
if (net_ratelimit())
|
||
|
netdev_err(lp->ndev, "RX DMA mapping error\n");
|
||
|
dev_kfree_skb(new_skb);
|
||
|
break;
|
||
|
}
|
||
|
desc_set_phys_addr(lp, phys, cur_p);
|
||
|
|
||
|
cur_p->cntrl = lp->max_frm_size;
|
||
|
cur_p->status = 0;
|
||
|
cur_p->skb = new_skb;
|
||
|
|
||
|
/* Only update tail_p to mark this slot as usable after it has
|
||
|
* been successfully refilled.
|
||
|
*/
|
||
|
tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
|
||
|
|
||
|
if (++lp->rx_bd_ci >= lp->rx_bd_num)
|
||
|
lp->rx_bd_ci = 0;
|
||
|
cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
|
||
|
}
|
||
|
|
||
|
u64_stats_update_begin(&lp->rx_stat_sync);
|
||
|
u64_stats_add(&lp->rx_packets, packets);
|
||
|
u64_stats_add(&lp->rx_bytes, size);
|
||
|
u64_stats_update_end(&lp->rx_stat_sync);
|
||
|
|
||
|
if (tail_p)
|
||
|
axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
|
||
|
|
||
|
if (packets < budget && napi_complete_done(napi, packets)) {
|
||
|
/* Re-enable RX completion interrupts. This should
|
||
|
* cause an immediate interrupt if any RX packets are
|
||
|
* already pending.
|
||
|
*/
|
||
|
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
|
||
|
}
|
||
|
return packets;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_tx_irq - Tx Done Isr.
|
||
|
* @irq: irq number
|
||
|
* @_ndev: net_device pointer
|
||
|
*
|
||
|
* Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
|
||
|
*
|
||
|
* This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
|
||
|
* TX BD processing.
|
||
|
*/
|
||
|
static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
|
||
|
{
|
||
|
unsigned int status;
|
||
|
struct net_device *ndev = _ndev;
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
|
||
|
|
||
|
if (!(status & XAXIDMA_IRQ_ALL_MASK))
|
||
|
return IRQ_NONE;
|
||
|
|
||
|
axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
|
||
|
|
||
|
if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
|
||
|
netdev_err(ndev, "DMA Tx error 0x%x\n", status);
|
||
|
netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
|
||
|
(lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
|
||
|
(lp->tx_bd_v[lp->tx_bd_ci]).phys);
|
||
|
schedule_work(&lp->dma_err_task);
|
||
|
} else {
|
||
|
/* Disable further TX completion interrupts and schedule
|
||
|
* NAPI to handle the completions.
|
||
|
*/
|
||
|
u32 cr = lp->tx_dma_cr;
|
||
|
|
||
|
cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
|
||
|
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
|
||
|
|
||
|
napi_schedule(&lp->napi_tx);
|
||
|
}
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_rx_irq - Rx Isr.
|
||
|
* @irq: irq number
|
||
|
* @_ndev: net_device pointer
|
||
|
*
|
||
|
* Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
|
||
|
*
|
||
|
* This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
|
||
|
* processing.
|
||
|
*/
|
||
|
static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
|
||
|
{
|
||
|
unsigned int status;
|
||
|
struct net_device *ndev = _ndev;
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
|
||
|
|
||
|
if (!(status & XAXIDMA_IRQ_ALL_MASK))
|
||
|
return IRQ_NONE;
|
||
|
|
||
|
axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
|
||
|
|
||
|
if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
|
||
|
netdev_err(ndev, "DMA Rx error 0x%x\n", status);
|
||
|
netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
|
||
|
(lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
|
||
|
(lp->rx_bd_v[lp->rx_bd_ci]).phys);
|
||
|
schedule_work(&lp->dma_err_task);
|
||
|
} else {
|
||
|
/* Disable further RX completion interrupts and schedule
|
||
|
* NAPI receive.
|
||
|
*/
|
||
|
u32 cr = lp->rx_dma_cr;
|
||
|
|
||
|
cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
|
||
|
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
|
||
|
|
||
|
napi_schedule(&lp->napi_rx);
|
||
|
}
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_eth_irq - Ethernet core Isr.
|
||
|
* @irq: irq number
|
||
|
* @_ndev: net_device pointer
|
||
|
*
|
||
|
* Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
|
||
|
*
|
||
|
* Handle miscellaneous conditions indicated by Ethernet core IRQ.
|
||
|
*/
|
||
|
static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
|
||
|
{
|
||
|
struct net_device *ndev = _ndev;
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
unsigned int pending;
|
||
|
|
||
|
pending = axienet_ior(lp, XAE_IP_OFFSET);
|
||
|
if (!pending)
|
||
|
return IRQ_NONE;
|
||
|
|
||
|
if (pending & XAE_INT_RXFIFOOVR_MASK)
|
||
|
ndev->stats.rx_missed_errors++;
|
||
|
|
||
|
if (pending & XAE_INT_RXRJECT_MASK)
|
||
|
ndev->stats.rx_frame_errors++;
|
||
|
|
||
|
axienet_iow(lp, XAE_IS_OFFSET, pending);
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static void axienet_dma_err_handler(struct work_struct *work);
|
||
|
|
||
|
/**
|
||
|
* axienet_open - Driver open routine.
|
||
|
* @ndev: Pointer to net_device structure
|
||
|
*
|
||
|
* Return: 0, on success.
|
||
|
* non-zero error value on failure
|
||
|
*
|
||
|
* This is the driver open routine. It calls phylink_start to start the
|
||
|
* PHY device.
|
||
|
* It also allocates interrupt service routines, enables the interrupt lines
|
||
|
* and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
|
||
|
* descriptors are initialized.
|
||
|
*/
|
||
|
static int axienet_open(struct net_device *ndev)
|
||
|
{
|
||
|
int ret;
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
dev_dbg(&ndev->dev, "axienet_open()\n");
|
||
|
|
||
|
/* When we do an Axi Ethernet reset, it resets the complete core
|
||
|
* including the MDIO. MDIO must be disabled before resetting.
|
||
|
* Hold MDIO bus lock to avoid MDIO accesses during the reset.
|
||
|
*/
|
||
|
axienet_lock_mii(lp);
|
||
|
ret = axienet_device_reset(ndev);
|
||
|
axienet_unlock_mii(lp);
|
||
|
|
||
|
ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
|
||
|
if (ret) {
|
||
|
dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
phylink_start(lp->phylink);
|
||
|
|
||
|
/* Enable worker thread for Axi DMA error handling */
|
||
|
INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
|
||
|
|
||
|
napi_enable(&lp->napi_rx);
|
||
|
napi_enable(&lp->napi_tx);
|
||
|
|
||
|
/* Enable interrupts for Axi DMA Tx */
|
||
|
ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
|
||
|
ndev->name, ndev);
|
||
|
if (ret)
|
||
|
goto err_tx_irq;
|
||
|
/* Enable interrupts for Axi DMA Rx */
|
||
|
ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
|
||
|
ndev->name, ndev);
|
||
|
if (ret)
|
||
|
goto err_rx_irq;
|
||
|
/* Enable interrupts for Axi Ethernet core (if defined) */
|
||
|
if (lp->eth_irq > 0) {
|
||
|
ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
|
||
|
ndev->name, ndev);
|
||
|
if (ret)
|
||
|
goto err_eth_irq;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err_eth_irq:
|
||
|
free_irq(lp->rx_irq, ndev);
|
||
|
err_rx_irq:
|
||
|
free_irq(lp->tx_irq, ndev);
|
||
|
err_tx_irq:
|
||
|
napi_disable(&lp->napi_tx);
|
||
|
napi_disable(&lp->napi_rx);
|
||
|
phylink_stop(lp->phylink);
|
||
|
phylink_disconnect_phy(lp->phylink);
|
||
|
cancel_work_sync(&lp->dma_err_task);
|
||
|
dev_err(lp->dev, "request_irq() failed\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_stop - Driver stop routine.
|
||
|
* @ndev: Pointer to net_device structure
|
||
|
*
|
||
|
* Return: 0, on success.
|
||
|
*
|
||
|
* This is the driver stop routine. It calls phylink_disconnect to stop the PHY
|
||
|
* device. It also removes the interrupt handlers and disables the interrupts.
|
||
|
* The Axi DMA Tx/Rx BDs are released.
|
||
|
*/
|
||
|
static int axienet_stop(struct net_device *ndev)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
dev_dbg(&ndev->dev, "axienet_close()\n");
|
||
|
|
||
|
napi_disable(&lp->napi_tx);
|
||
|
napi_disable(&lp->napi_rx);
|
||
|
|
||
|
phylink_stop(lp->phylink);
|
||
|
phylink_disconnect_phy(lp->phylink);
|
||
|
|
||
|
axienet_setoptions(ndev, lp->options &
|
||
|
~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
|
||
|
|
||
|
axienet_dma_stop(lp);
|
||
|
|
||
|
axienet_iow(lp, XAE_IE_OFFSET, 0);
|
||
|
|
||
|
cancel_work_sync(&lp->dma_err_task);
|
||
|
|
||
|
if (lp->eth_irq > 0)
|
||
|
free_irq(lp->eth_irq, ndev);
|
||
|
free_irq(lp->tx_irq, ndev);
|
||
|
free_irq(lp->rx_irq, ndev);
|
||
|
|
||
|
axienet_dma_bd_release(ndev);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_change_mtu - Driver change mtu routine.
|
||
|
* @ndev: Pointer to net_device structure
|
||
|
* @new_mtu: New mtu value to be applied
|
||
|
*
|
||
|
* Return: Always returns 0 (success).
|
||
|
*
|
||
|
* This is the change mtu driver routine. It checks if the Axi Ethernet
|
||
|
* hardware supports jumbo frames before changing the mtu. This can be
|
||
|
* called only when the device is not up.
|
||
|
*/
|
||
|
static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
if (netif_running(ndev))
|
||
|
return -EBUSY;
|
||
|
|
||
|
if ((new_mtu + VLAN_ETH_HLEN +
|
||
|
XAE_TRL_SIZE) > lp->rxmem)
|
||
|
return -EINVAL;
|
||
|
|
||
|
ndev->mtu = new_mtu;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
||
|
/**
|
||
|
* axienet_poll_controller - Axi Ethernet poll mechanism.
|
||
|
* @ndev: Pointer to net_device structure
|
||
|
*
|
||
|
* This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
|
||
|
* to polling the ISRs and are enabled back after the polling is done.
|
||
|
*/
|
||
|
static void axienet_poll_controller(struct net_device *ndev)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
disable_irq(lp->tx_irq);
|
||
|
disable_irq(lp->rx_irq);
|
||
|
axienet_rx_irq(lp->tx_irq, ndev);
|
||
|
axienet_tx_irq(lp->rx_irq, ndev);
|
||
|
enable_irq(lp->tx_irq);
|
||
|
enable_irq(lp->rx_irq);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(dev);
|
||
|
|
||
|
if (!netif_running(dev))
|
||
|
return -EINVAL;
|
||
|
|
||
|
return phylink_mii_ioctl(lp->phylink, rq, cmd);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(dev);
|
||
|
unsigned int start;
|
||
|
|
||
|
netdev_stats_to_stats64(stats, &dev->stats);
|
||
|
|
||
|
do {
|
||
|
start = u64_stats_fetch_begin_irq(&lp->rx_stat_sync);
|
||
|
stats->rx_packets = u64_stats_read(&lp->rx_packets);
|
||
|
stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
|
||
|
} while (u64_stats_fetch_retry_irq(&lp->rx_stat_sync, start));
|
||
|
|
||
|
do {
|
||
|
start = u64_stats_fetch_begin_irq(&lp->tx_stat_sync);
|
||
|
stats->tx_packets = u64_stats_read(&lp->tx_packets);
|
||
|
stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
|
||
|
} while (u64_stats_fetch_retry_irq(&lp->tx_stat_sync, start));
|
||
|
}
|
||
|
|
||
|
static const struct net_device_ops axienet_netdev_ops = {
|
||
|
.ndo_open = axienet_open,
|
||
|
.ndo_stop = axienet_stop,
|
||
|
.ndo_start_xmit = axienet_start_xmit,
|
||
|
.ndo_get_stats64 = axienet_get_stats64,
|
||
|
.ndo_change_mtu = axienet_change_mtu,
|
||
|
.ndo_set_mac_address = netdev_set_mac_address,
|
||
|
.ndo_validate_addr = eth_validate_addr,
|
||
|
.ndo_eth_ioctl = axienet_ioctl,
|
||
|
.ndo_set_rx_mode = axienet_set_multicast_list,
|
||
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
||
|
.ndo_poll_controller = axienet_poll_controller,
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
|
||
|
* @ndev: Pointer to net_device structure
|
||
|
* @ed: Pointer to ethtool_drvinfo structure
|
||
|
*
|
||
|
* This implements ethtool command for getting the driver information.
|
||
|
* Issue "ethtool -i ethX" under linux prompt to execute this function.
|
||
|
*/
|
||
|
static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
|
||
|
struct ethtool_drvinfo *ed)
|
||
|
{
|
||
|
strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
|
||
|
strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_ethtools_get_regs_len - Get the total regs length present in the
|
||
|
* AxiEthernet core.
|
||
|
* @ndev: Pointer to net_device structure
|
||
|
*
|
||
|
* This implements ethtool command for getting the total register length
|
||
|
* information.
|
||
|
*
|
||
|
* Return: the total regs length
|
||
|
*/
|
||
|
static int axienet_ethtools_get_regs_len(struct net_device *ndev)
|
||
|
{
|
||
|
return sizeof(u32) * AXIENET_REGS_N;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_ethtools_get_regs - Dump the contents of all registers present
|
||
|
* in AxiEthernet core.
|
||
|
* @ndev: Pointer to net_device structure
|
||
|
* @regs: Pointer to ethtool_regs structure
|
||
|
* @ret: Void pointer used to return the contents of the registers.
|
||
|
*
|
||
|
* This implements ethtool command for getting the Axi Ethernet register dump.
|
||
|
* Issue "ethtool -d ethX" to execute this function.
|
||
|
*/
|
||
|
static void axienet_ethtools_get_regs(struct net_device *ndev,
|
||
|
struct ethtool_regs *regs, void *ret)
|
||
|
{
|
||
|
u32 *data = (u32 *)ret;
|
||
|
size_t len = sizeof(u32) * AXIENET_REGS_N;
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
regs->version = 0;
|
||
|
regs->len = len;
|
||
|
|
||
|
memset(data, 0, len);
|
||
|
data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
|
||
|
data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
|
||
|
data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
|
||
|
data[3] = axienet_ior(lp, XAE_IS_OFFSET);
|
||
|
data[4] = axienet_ior(lp, XAE_IP_OFFSET);
|
||
|
data[5] = axienet_ior(lp, XAE_IE_OFFSET);
|
||
|
data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
|
||
|
data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
|
||
|
data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
|
||
|
data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
|
||
|
data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
|
||
|
data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
|
||
|
data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
|
||
|
data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
|
||
|
data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
|
||
|
data[15] = axienet_ior(lp, XAE_TC_OFFSET);
|
||
|
data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
|
||
|
data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
|
||
|
data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
|
||
|
data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
|
||
|
data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
|
||
|
data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
|
||
|
data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
|
||
|
data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
|
||
|
data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
|
||
|
data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
|
||
|
data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
|
||
|
data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
|
||
|
data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
|
||
|
data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
|
||
|
data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
|
||
|
data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
|
||
|
data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
|
||
|
data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
|
||
|
data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
|
||
|
data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
axienet_ethtools_get_ringparam(struct net_device *ndev,
|
||
|
struct ethtool_ringparam *ering,
|
||
|
struct kernel_ethtool_ringparam *kernel_ering,
|
||
|
struct netlink_ext_ack *extack)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
ering->rx_max_pending = RX_BD_NUM_MAX;
|
||
|
ering->rx_mini_max_pending = 0;
|
||
|
ering->rx_jumbo_max_pending = 0;
|
||
|
ering->tx_max_pending = TX_BD_NUM_MAX;
|
||
|
ering->rx_pending = lp->rx_bd_num;
|
||
|
ering->rx_mini_pending = 0;
|
||
|
ering->rx_jumbo_pending = 0;
|
||
|
ering->tx_pending = lp->tx_bd_num;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
axienet_ethtools_set_ringparam(struct net_device *ndev,
|
||
|
struct ethtool_ringparam *ering,
|
||
|
struct kernel_ethtool_ringparam *kernel_ering,
|
||
|
struct netlink_ext_ack *extack)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
if (ering->rx_pending > RX_BD_NUM_MAX ||
|
||
|
ering->rx_mini_pending ||
|
||
|
ering->rx_jumbo_pending ||
|
||
|
ering->tx_pending < TX_BD_NUM_MIN ||
|
||
|
ering->tx_pending > TX_BD_NUM_MAX)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (netif_running(ndev))
|
||
|
return -EBUSY;
|
||
|
|
||
|
lp->rx_bd_num = ering->rx_pending;
|
||
|
lp->tx_bd_num = ering->tx_pending;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_ethtools_get_pauseparam - Get the pause parameter setting for
|
||
|
* Tx and Rx paths.
|
||
|
* @ndev: Pointer to net_device structure
|
||
|
* @epauseparm: Pointer to ethtool_pauseparam structure.
|
||
|
*
|
||
|
* This implements ethtool command for getting axi ethernet pause frame
|
||
|
* setting. Issue "ethtool -a ethX" to execute this function.
|
||
|
*/
|
||
|
static void
|
||
|
axienet_ethtools_get_pauseparam(struct net_device *ndev,
|
||
|
struct ethtool_pauseparam *epauseparm)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
|
||
|
* settings.
|
||
|
* @ndev: Pointer to net_device structure
|
||
|
* @epauseparm:Pointer to ethtool_pauseparam structure
|
||
|
*
|
||
|
* This implements ethtool command for enabling flow control on Rx and Tx
|
||
|
* paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
|
||
|
* function.
|
||
|
*
|
||
|
* Return: 0 on success, -EFAULT if device is running
|
||
|
*/
|
||
|
static int
|
||
|
axienet_ethtools_set_pauseparam(struct net_device *ndev,
|
||
|
struct ethtool_pauseparam *epauseparm)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
|
||
|
* @ndev: Pointer to net_device structure
|
||
|
* @ecoalesce: Pointer to ethtool_coalesce structure
|
||
|
* @kernel_coal: ethtool CQE mode setting structure
|
||
|
* @extack: extack for reporting error messages
|
||
|
*
|
||
|
* This implements ethtool command for getting the DMA interrupt coalescing
|
||
|
* count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
|
||
|
* execute this function.
|
||
|
*
|
||
|
* Return: 0 always
|
||
|
*/
|
||
|
static int
|
||
|
axienet_ethtools_get_coalesce(struct net_device *ndev,
|
||
|
struct ethtool_coalesce *ecoalesce,
|
||
|
struct kernel_ethtool_coalesce *kernel_coal,
|
||
|
struct netlink_ext_ack *extack)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
|
||
|
ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
|
||
|
ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
|
||
|
ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
|
||
|
* @ndev: Pointer to net_device structure
|
||
|
* @ecoalesce: Pointer to ethtool_coalesce structure
|
||
|
* @kernel_coal: ethtool CQE mode setting structure
|
||
|
* @extack: extack for reporting error messages
|
||
|
*
|
||
|
* This implements ethtool command for setting the DMA interrupt coalescing
|
||
|
* count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
|
||
|
* prompt to execute this function.
|
||
|
*
|
||
|
* Return: 0, on success, Non-zero error value on failure.
|
||
|
*/
|
||
|
static int
|
||
|
axienet_ethtools_set_coalesce(struct net_device *ndev,
|
||
|
struct ethtool_coalesce *ecoalesce,
|
||
|
struct kernel_ethtool_coalesce *kernel_coal,
|
||
|
struct netlink_ext_ack *extack)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
if (netif_running(ndev)) {
|
||
|
netdev_err(ndev,
|
||
|
"Please stop netif before applying configuration\n");
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
|
||
|
if (ecoalesce->rx_max_coalesced_frames)
|
||
|
lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
|
||
|
if (ecoalesce->rx_coalesce_usecs)
|
||
|
lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
|
||
|
if (ecoalesce->tx_max_coalesced_frames)
|
||
|
lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
|
||
|
if (ecoalesce->tx_coalesce_usecs)
|
||
|
lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
axienet_ethtools_get_link_ksettings(struct net_device *ndev,
|
||
|
struct ethtool_link_ksettings *cmd)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
return phylink_ethtool_ksettings_get(lp->phylink, cmd);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
axienet_ethtools_set_link_ksettings(struct net_device *ndev,
|
||
|
const struct ethtool_link_ksettings *cmd)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
return phylink_ethtool_ksettings_set(lp->phylink, cmd);
|
||
|
}
|
||
|
|
||
|
static int axienet_ethtools_nway_reset(struct net_device *dev)
|
||
|
{
|
||
|
struct axienet_local *lp = netdev_priv(dev);
|
||
|
|
||
|
return phylink_ethtool_nway_reset(lp->phylink);
|
||
|
}
|
||
|
|
||
|
static const struct ethtool_ops axienet_ethtool_ops = {
|
||
|
.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
|
||
|
ETHTOOL_COALESCE_USECS,
|
||
|
.get_drvinfo = axienet_ethtools_get_drvinfo,
|
||
|
.get_regs_len = axienet_ethtools_get_regs_len,
|
||
|
.get_regs = axienet_ethtools_get_regs,
|
||
|
.get_link = ethtool_op_get_link,
|
||
|
.get_ringparam = axienet_ethtools_get_ringparam,
|
||
|
.set_ringparam = axienet_ethtools_set_ringparam,
|
||
|
.get_pauseparam = axienet_ethtools_get_pauseparam,
|
||
|
.set_pauseparam = axienet_ethtools_set_pauseparam,
|
||
|
.get_coalesce = axienet_ethtools_get_coalesce,
|
||
|
.set_coalesce = axienet_ethtools_set_coalesce,
|
||
|
.get_link_ksettings = axienet_ethtools_get_link_ksettings,
|
||
|
.set_link_ksettings = axienet_ethtools_set_link_ksettings,
|
||
|
.nway_reset = axienet_ethtools_nway_reset,
|
||
|
};
|
||
|
|
||
|
static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
|
||
|
{
|
||
|
return container_of(pcs, struct axienet_local, pcs);
|
||
|
}
|
||
|
|
||
|
static void axienet_pcs_get_state(struct phylink_pcs *pcs,
|
||
|
struct phylink_link_state *state)
|
||
|
{
|
||
|
struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
|
||
|
|
||
|
phylink_mii_c22_pcs_get_state(pcs_phy, state);
|
||
|
}
|
||
|
|
||
|
static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
|
||
|
{
|
||
|
struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
|
||
|
|
||
|
phylink_mii_c22_pcs_an_restart(pcs_phy);
|
||
|
}
|
||
|
|
||
|
static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
|
||
|
phy_interface_t interface,
|
||
|
const unsigned long *advertising,
|
||
|
bool permit_pause_to_mac)
|
||
|
{
|
||
|
struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
|
||
|
struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
int ret;
|
||
|
|
||
|
if (lp->switch_x_sgmii) {
|
||
|
ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
|
||
|
interface == PHY_INTERFACE_MODE_SGMII ?
|
||
|
XLNX_MII_STD_SELECT_SGMII : 0);
|
||
|
if (ret < 0) {
|
||
|
netdev_warn(ndev,
|
||
|
"Failed to switch PHY interface: %d\n",
|
||
|
ret);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ret = phylink_mii_c22_pcs_config(pcs_phy, mode, interface, advertising);
|
||
|
if (ret < 0)
|
||
|
netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static const struct phylink_pcs_ops axienet_pcs_ops = {
|
||
|
.pcs_get_state = axienet_pcs_get_state,
|
||
|
.pcs_config = axienet_pcs_config,
|
||
|
.pcs_an_restart = axienet_pcs_an_restart,
|
||
|
};
|
||
|
|
||
|
static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
|
||
|
phy_interface_t interface)
|
||
|
{
|
||
|
struct net_device *ndev = to_net_dev(config->dev);
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
if (interface == PHY_INTERFACE_MODE_1000BASEX ||
|
||
|
interface == PHY_INTERFACE_MODE_SGMII)
|
||
|
return &lp->pcs;
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
|
||
|
const struct phylink_link_state *state)
|
||
|
{
|
||
|
/* nothing meaningful to do */
|
||
|
}
|
||
|
|
||
|
static void axienet_mac_link_down(struct phylink_config *config,
|
||
|
unsigned int mode,
|
||
|
phy_interface_t interface)
|
||
|
{
|
||
|
/* nothing meaningful to do */
|
||
|
}
|
||
|
|
||
|
static void axienet_mac_link_up(struct phylink_config *config,
|
||
|
struct phy_device *phy,
|
||
|
unsigned int mode, phy_interface_t interface,
|
||
|
int speed, int duplex,
|
||
|
bool tx_pause, bool rx_pause)
|
||
|
{
|
||
|
struct net_device *ndev = to_net_dev(config->dev);
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
u32 emmc_reg, fcc_reg;
|
||
|
|
||
|
emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
|
||
|
emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
|
||
|
|
||
|
switch (speed) {
|
||
|
case SPEED_1000:
|
||
|
emmc_reg |= XAE_EMMC_LINKSPD_1000;
|
||
|
break;
|
||
|
case SPEED_100:
|
||
|
emmc_reg |= XAE_EMMC_LINKSPD_100;
|
||
|
break;
|
||
|
case SPEED_10:
|
||
|
emmc_reg |= XAE_EMMC_LINKSPD_10;
|
||
|
break;
|
||
|
default:
|
||
|
dev_err(&ndev->dev,
|
||
|
"Speed other than 10, 100 or 1Gbps is not supported\n");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
|
||
|
|
||
|
fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
|
||
|
if (tx_pause)
|
||
|
fcc_reg |= XAE_FCC_FCTX_MASK;
|
||
|
else
|
||
|
fcc_reg &= ~XAE_FCC_FCTX_MASK;
|
||
|
if (rx_pause)
|
||
|
fcc_reg |= XAE_FCC_FCRX_MASK;
|
||
|
else
|
||
|
fcc_reg &= ~XAE_FCC_FCRX_MASK;
|
||
|
axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
|
||
|
}
|
||
|
|
||
|
static const struct phylink_mac_ops axienet_phylink_ops = {
|
||
|
.validate = phylink_generic_validate,
|
||
|
.mac_select_pcs = axienet_mac_select_pcs,
|
||
|
.mac_config = axienet_mac_config,
|
||
|
.mac_link_down = axienet_mac_link_down,
|
||
|
.mac_link_up = axienet_mac_link_up,
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* axienet_dma_err_handler - Work queue task for Axi DMA Error
|
||
|
* @work: pointer to work_struct
|
||
|
*
|
||
|
* Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
|
||
|
* Tx/Rx BDs.
|
||
|
*/
|
||
|
static void axienet_dma_err_handler(struct work_struct *work)
|
||
|
{
|
||
|
u32 i;
|
||
|
u32 axienet_status;
|
||
|
struct axidma_bd *cur_p;
|
||
|
struct axienet_local *lp = container_of(work, struct axienet_local,
|
||
|
dma_err_task);
|
||
|
struct net_device *ndev = lp->ndev;
|
||
|
|
||
|
napi_disable(&lp->napi_tx);
|
||
|
napi_disable(&lp->napi_rx);
|
||
|
|
||
|
axienet_setoptions(ndev, lp->options &
|
||
|
~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
|
||
|
|
||
|
axienet_dma_stop(lp);
|
||
|
|
||
|
for (i = 0; i < lp->tx_bd_num; i++) {
|
||
|
cur_p = &lp->tx_bd_v[i];
|
||
|
if (cur_p->cntrl) {
|
||
|
dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
|
||
|
|
||
|
dma_unmap_single(lp->dev, addr,
|
||
|
(cur_p->cntrl &
|
||
|
XAXIDMA_BD_CTRL_LENGTH_MASK),
|
||
|
DMA_TO_DEVICE);
|
||
|
}
|
||
|
if (cur_p->skb)
|
||
|
dev_kfree_skb_irq(cur_p->skb);
|
||
|
cur_p->phys = 0;
|
||
|
cur_p->phys_msb = 0;
|
||
|
cur_p->cntrl = 0;
|
||
|
cur_p->status = 0;
|
||
|
cur_p->app0 = 0;
|
||
|
cur_p->app1 = 0;
|
||
|
cur_p->app2 = 0;
|
||
|
cur_p->app3 = 0;
|
||
|
cur_p->app4 = 0;
|
||
|
cur_p->skb = NULL;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < lp->rx_bd_num; i++) {
|
||
|
cur_p = &lp->rx_bd_v[i];
|
||
|
cur_p->status = 0;
|
||
|
cur_p->app0 = 0;
|
||
|
cur_p->app1 = 0;
|
||
|
cur_p->app2 = 0;
|
||
|
cur_p->app3 = 0;
|
||
|
cur_p->app4 = 0;
|
||
|
}
|
||
|
|
||
|
lp->tx_bd_ci = 0;
|
||
|
lp->tx_bd_tail = 0;
|
||
|
lp->rx_bd_ci = 0;
|
||
|
|
||
|
axienet_dma_start(lp);
|
||
|
|
||
|
axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
|
||
|
axienet_status &= ~XAE_RCW1_RX_MASK;
|
||
|
axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
|
||
|
|
||
|
axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
|
||
|
if (axienet_status & XAE_INT_RXRJECT_MASK)
|
||
|
axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
|
||
|
axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
|
||
|
XAE_INT_RECV_ERROR_MASK : 0);
|
||
|
axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
|
||
|
|
||
|
/* Sync default options with HW but leave receiver and
|
||
|
* transmitter disabled.
|
||
|
*/
|
||
|
axienet_setoptions(ndev, lp->options &
|
||
|
~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
|
||
|
axienet_set_mac_address(ndev, NULL);
|
||
|
axienet_set_multicast_list(ndev);
|
||
|
axienet_setoptions(ndev, lp->options);
|
||
|
napi_enable(&lp->napi_rx);
|
||
|
napi_enable(&lp->napi_tx);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* axienet_probe - Axi Ethernet probe function.
|
||
|
* @pdev: Pointer to platform device structure.
|
||
|
*
|
||
|
* Return: 0, on success
|
||
|
* Non-zero error value on failure.
|
||
|
*
|
||
|
* This is the probe routine for Axi Ethernet driver. This is called before
|
||
|
* any other driver routines are invoked. It allocates and sets up the Ethernet
|
||
|
* device. Parses through device tree and populates fields of
|
||
|
* axienet_local. It registers the Ethernet device.
|
||
|
*/
|
||
|
static int axienet_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
int ret;
|
||
|
struct device_node *np;
|
||
|
struct axienet_local *lp;
|
||
|
struct net_device *ndev;
|
||
|
struct resource *ethres;
|
||
|
u8 mac_addr[ETH_ALEN];
|
||
|
int addr_width = 32;
|
||
|
u32 value;
|
||
|
|
||
|
ndev = alloc_etherdev(sizeof(*lp));
|
||
|
if (!ndev)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
platform_set_drvdata(pdev, ndev);
|
||
|
|
||
|
SET_NETDEV_DEV(ndev, &pdev->dev);
|
||
|
ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
|
||
|
ndev->features = NETIF_F_SG;
|
||
|
ndev->netdev_ops = &axienet_netdev_ops;
|
||
|
ndev->ethtool_ops = &axienet_ethtool_ops;
|
||
|
|
||
|
/* MTU range: 64 - 9000 */
|
||
|
ndev->min_mtu = 64;
|
||
|
ndev->max_mtu = XAE_JUMBO_MTU;
|
||
|
|
||
|
lp = netdev_priv(ndev);
|
||
|
lp->ndev = ndev;
|
||
|
lp->dev = &pdev->dev;
|
||
|
lp->options = XAE_OPTION_DEFAULTS;
|
||
|
lp->rx_bd_num = RX_BD_NUM_DEFAULT;
|
||
|
lp->tx_bd_num = TX_BD_NUM_DEFAULT;
|
||
|
|
||
|
u64_stats_init(&lp->rx_stat_sync);
|
||
|
u64_stats_init(&lp->tx_stat_sync);
|
||
|
|
||
|
netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
|
||
|
netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
|
||
|
|
||
|
lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
|
||
|
if (!lp->axi_clk) {
|
||
|
/* For backward compatibility, if named AXI clock is not present,
|
||
|
* treat the first clock specified as the AXI clock.
|
||
|
*/
|
||
|
lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
|
||
|
}
|
||
|
if (IS_ERR(lp->axi_clk)) {
|
||
|
ret = PTR_ERR(lp->axi_clk);
|
||
|
goto free_netdev;
|
||
|
}
|
||
|
ret = clk_prepare_enable(lp->axi_clk);
|
||
|
if (ret) {
|
||
|
dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
|
||
|
goto free_netdev;
|
||
|
}
|
||
|
|
||
|
lp->misc_clks[0].id = "axis_clk";
|
||
|
lp->misc_clks[1].id = "ref_clk";
|
||
|
lp->misc_clks[2].id = "mgt_clk";
|
||
|
|
||
|
ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
|
||
|
if (ret)
|
||
|
goto cleanup_clk;
|
||
|
|
||
|
ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
|
||
|
if (ret)
|
||
|
goto cleanup_clk;
|
||
|
|
||
|
/* Map device registers */
|
||
|
lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ðres);
|
||
|
if (IS_ERR(lp->regs)) {
|
||
|
ret = PTR_ERR(lp->regs);
|
||
|
goto cleanup_clk;
|
||
|
}
|
||
|
lp->regs_start = ethres->start;
|
||
|
|
||
|
/* Setup checksum offload, but default to off if not specified */
|
||
|
lp->features = 0;
|
||
|
|
||
|
ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
|
||
|
if (!ret) {
|
||
|
switch (value) {
|
||
|
case 1:
|
||
|
lp->csum_offload_on_tx_path =
|
||
|
XAE_FEATURE_PARTIAL_TX_CSUM;
|
||
|
lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
|
||
|
/* Can checksum TCP/UDP over IPv4. */
|
||
|
ndev->features |= NETIF_F_IP_CSUM;
|
||
|
break;
|
||
|
case 2:
|
||
|
lp->csum_offload_on_tx_path =
|
||
|
XAE_FEATURE_FULL_TX_CSUM;
|
||
|
lp->features |= XAE_FEATURE_FULL_TX_CSUM;
|
||
|
/* Can checksum TCP/UDP over IPv4. */
|
||
|
ndev->features |= NETIF_F_IP_CSUM;
|
||
|
break;
|
||
|
default:
|
||
|
lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
|
||
|
}
|
||
|
}
|
||
|
ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
|
||
|
if (!ret) {
|
||
|
switch (value) {
|
||
|
case 1:
|
||
|
lp->csum_offload_on_rx_path =
|
||
|
XAE_FEATURE_PARTIAL_RX_CSUM;
|
||
|
lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
|
||
|
break;
|
||
|
case 2:
|
||
|
lp->csum_offload_on_rx_path =
|
||
|
XAE_FEATURE_FULL_RX_CSUM;
|
||
|
lp->features |= XAE_FEATURE_FULL_RX_CSUM;
|
||
|
break;
|
||
|
default:
|
||
|
lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
|
||
|
}
|
||
|
}
|
||
|
/* For supporting jumbo frames, the Axi Ethernet hardware must have
|
||
|
* a larger Rx/Tx Memory. Typically, the size must be large so that
|
||
|
* we can enable jumbo option and start supporting jumbo frames.
|
||
|
* Here we check for memory allocated for Rx/Tx in the hardware from
|
||
|
* the device-tree and accordingly set flags.
|
||
|
*/
|
||
|
of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
|
||
|
|
||
|
lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
|
||
|
"xlnx,switch-x-sgmii");
|
||
|
|
||
|
/* Start with the proprietary, and broken phy_type */
|
||
|
ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
|
||
|
if (!ret) {
|
||
|
netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
|
||
|
switch (value) {
|
||
|
case XAE_PHY_TYPE_MII:
|
||
|
lp->phy_mode = PHY_INTERFACE_MODE_MII;
|
||
|
break;
|
||
|
case XAE_PHY_TYPE_GMII:
|
||
|
lp->phy_mode = PHY_INTERFACE_MODE_GMII;
|
||
|
break;
|
||
|
case XAE_PHY_TYPE_RGMII_2_0:
|
||
|
lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
|
||
|
break;
|
||
|
case XAE_PHY_TYPE_SGMII:
|
||
|
lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
|
||
|
break;
|
||
|
case XAE_PHY_TYPE_1000BASE_X:
|
||
|
lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
|
||
|
break;
|
||
|
default:
|
||
|
ret = -EINVAL;
|
||
|
goto cleanup_clk;
|
||
|
}
|
||
|
} else {
|
||
|
ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
|
||
|
if (ret)
|
||
|
goto cleanup_clk;
|
||
|
}
|
||
|
if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
|
||
|
lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
|
||
|
dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
|
||
|
ret = -EINVAL;
|
||
|
goto cleanup_clk;
|
||
|
}
|
||
|
|
||
|
/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
|
||
|
np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
|
||
|
if (np) {
|
||
|
struct resource dmares;
|
||
|
|
||
|
ret = of_address_to_resource(np, 0, &dmares);
|
||
|
if (ret) {
|
||
|
dev_err(&pdev->dev,
|
||
|
"unable to get DMA resource\n");
|
||
|
of_node_put(np);
|
||
|
goto cleanup_clk;
|
||
|
}
|
||
|
lp->dma_regs = devm_ioremap_resource(&pdev->dev,
|
||
|
&dmares);
|
||
|
lp->rx_irq = irq_of_parse_and_map(np, 1);
|
||
|
lp->tx_irq = irq_of_parse_and_map(np, 0);
|
||
|
of_node_put(np);
|
||
|
lp->eth_irq = platform_get_irq_optional(pdev, 0);
|
||
|
} else {
|
||
|
/* Check for these resources directly on the Ethernet node. */
|
||
|
lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
|
||
|
lp->rx_irq = platform_get_irq(pdev, 1);
|
||
|
lp->tx_irq = platform_get_irq(pdev, 0);
|
||
|
lp->eth_irq = platform_get_irq_optional(pdev, 2);
|
||
|
}
|
||
|
if (IS_ERR(lp->dma_regs)) {
|
||
|
dev_err(&pdev->dev, "could not map DMA regs\n");
|
||
|
ret = PTR_ERR(lp->dma_regs);
|
||
|
goto cleanup_clk;
|
||
|
}
|
||
|
if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
|
||
|
dev_err(&pdev->dev, "could not determine irqs\n");
|
||
|
ret = -ENOMEM;
|
||
|
goto cleanup_clk;
|
||
|
}
|
||
|
|
||
|
/* Reset core now that clocks are enabled, prior to accessing MDIO */
|
||
|
ret = __axienet_device_reset(lp);
|
||
|
if (ret)
|
||
|
goto cleanup_clk;
|
||
|
|
||
|
/* Autodetect the need for 64-bit DMA pointers.
|
||
|
* When the IP is configured for a bus width bigger than 32 bits,
|
||
|
* writing the MSB registers is mandatory, even if they are all 0.
|
||
|
* We can detect this case by writing all 1's to one such register
|
||
|
* and see if that sticks: when the IP is configured for 32 bits
|
||
|
* only, those registers are RES0.
|
||
|
* Those MSB registers were introduced in IP v7.1, which we check first.
|
||
|
*/
|
||
|
if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
|
||
|
void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
|
||
|
|
||
|
iowrite32(0x0, desc);
|
||
|
if (ioread32(desc) == 0) { /* sanity check */
|
||
|
iowrite32(0xffffffff, desc);
|
||
|
if (ioread32(desc) > 0) {
|
||
|
lp->features |= XAE_FEATURE_DMA_64BIT;
|
||
|
addr_width = 64;
|
||
|
dev_info(&pdev->dev,
|
||
|
"autodetected 64-bit DMA range\n");
|
||
|
}
|
||
|
iowrite32(0x0, desc);
|
||
|
}
|
||
|
}
|
||
|
if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
|
||
|
dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
|
||
|
ret = -EINVAL;
|
||
|
goto cleanup_clk;
|
||
|
}
|
||
|
|
||
|
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
|
||
|
if (ret) {
|
||
|
dev_err(&pdev->dev, "No suitable DMA available\n");
|
||
|
goto cleanup_clk;
|
||
|
}
|
||
|
|
||
|
/* Check for Ethernet core IRQ (optional) */
|
||
|
if (lp->eth_irq <= 0)
|
||
|
dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
|
||
|
|
||
|
/* Retrieve the MAC address */
|
||
|
ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
|
||
|
if (!ret) {
|
||
|
axienet_set_mac_address(ndev, mac_addr);
|
||
|
} else {
|
||
|
dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
|
||
|
ret);
|
||
|
axienet_set_mac_address(ndev, NULL);
|
||
|
}
|
||
|
|
||
|
lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
|
||
|
lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
|
||
|
lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
|
||
|
lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
|
||
|
|
||
|
ret = axienet_mdio_setup(lp);
|
||
|
if (ret)
|
||
|
dev_warn(&pdev->dev,
|
||
|
"error registering MDIO bus: %d\n", ret);
|
||
|
|
||
|
if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
|
||
|
lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
|
||
|
np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
|
||
|
if (!np) {
|
||
|
/* Deprecated: Always use "pcs-handle" for pcs_phy.
|
||
|
* Falling back to "phy-handle" here is only for
|
||
|
* backward compatibility with old device trees.
|
||
|
*/
|
||
|
np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
|
||
|
}
|
||
|
if (!np) {
|
||
|
dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
|
||
|
ret = -EINVAL;
|
||
|
goto cleanup_mdio;
|
||
|
}
|
||
|
lp->pcs_phy = of_mdio_find_device(np);
|
||
|
if (!lp->pcs_phy) {
|
||
|
ret = -EPROBE_DEFER;
|
||
|
of_node_put(np);
|
||
|
goto cleanup_mdio;
|
||
|
}
|
||
|
of_node_put(np);
|
||
|
lp->pcs.ops = &axienet_pcs_ops;
|
||
|
lp->pcs.poll = true;
|
||
|
}
|
||
|
|
||
|
lp->phylink_config.dev = &ndev->dev;
|
||
|
lp->phylink_config.type = PHYLINK_NETDEV;
|
||
|
lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
|
||
|
MAC_10FD | MAC_100FD | MAC_1000FD;
|
||
|
|
||
|
__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
|
||
|
if (lp->switch_x_sgmii) {
|
||
|
__set_bit(PHY_INTERFACE_MODE_1000BASEX,
|
||
|
lp->phylink_config.supported_interfaces);
|
||
|
__set_bit(PHY_INTERFACE_MODE_SGMII,
|
||
|
lp->phylink_config.supported_interfaces);
|
||
|
}
|
||
|
|
||
|
lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
|
||
|
lp->phy_mode,
|
||
|
&axienet_phylink_ops);
|
||
|
if (IS_ERR(lp->phylink)) {
|
||
|
ret = PTR_ERR(lp->phylink);
|
||
|
dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
|
||
|
goto cleanup_mdio;
|
||
|
}
|
||
|
|
||
|
ret = register_netdev(lp->ndev);
|
||
|
if (ret) {
|
||
|
dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
|
||
|
goto cleanup_phylink;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
cleanup_phylink:
|
||
|
phylink_destroy(lp->phylink);
|
||
|
|
||
|
cleanup_mdio:
|
||
|
if (lp->pcs_phy)
|
||
|
put_device(&lp->pcs_phy->dev);
|
||
|
if (lp->mii_bus)
|
||
|
axienet_mdio_teardown(lp);
|
||
|
cleanup_clk:
|
||
|
clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
|
||
|
clk_disable_unprepare(lp->axi_clk);
|
||
|
|
||
|
free_netdev:
|
||
|
free_netdev(ndev);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int axienet_remove(struct platform_device *pdev)
|
||
|
{
|
||
|
struct net_device *ndev = platform_get_drvdata(pdev);
|
||
|
struct axienet_local *lp = netdev_priv(ndev);
|
||
|
|
||
|
unregister_netdev(ndev);
|
||
|
|
||
|
if (lp->phylink)
|
||
|
phylink_destroy(lp->phylink);
|
||
|
|
||
|
if (lp->pcs_phy)
|
||
|
put_device(&lp->pcs_phy->dev);
|
||
|
|
||
|
axienet_mdio_teardown(lp);
|
||
|
|
||
|
clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
|
||
|
clk_disable_unprepare(lp->axi_clk);
|
||
|
|
||
|
free_netdev(ndev);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void axienet_shutdown(struct platform_device *pdev)
|
||
|
{
|
||
|
struct net_device *ndev = platform_get_drvdata(pdev);
|
||
|
|
||
|
rtnl_lock();
|
||
|
netif_device_detach(ndev);
|
||
|
|
||
|
if (netif_running(ndev))
|
||
|
dev_close(ndev);
|
||
|
|
||
|
rtnl_unlock();
|
||
|
}
|
||
|
|
||
|
static struct platform_driver axienet_driver = {
|
||
|
.probe = axienet_probe,
|
||
|
.remove = axienet_remove,
|
||
|
.shutdown = axienet_shutdown,
|
||
|
.driver = {
|
||
|
.name = "xilinx_axienet",
|
||
|
.of_match_table = axienet_of_match,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
module_platform_driver(axienet_driver);
|
||
|
|
||
|
MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
|
||
|
MODULE_AUTHOR("Xilinx");
|
||
|
MODULE_LICENSE("GPL");
|