4264 lines
118 KiB
C
4264 lines
118 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/* Copyright (c) 2018, Intel Corporation. */
|
||
|
|
||
|
#include "ice_sched.h"
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
|
||
|
* @pi: port information structure
|
||
|
* @info: Scheduler element information from firmware
|
||
|
*
|
||
|
* This function inserts the root node of the scheduling tree topology
|
||
|
* to the SW DB.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_add_root_node(struct ice_port_info *pi,
|
||
|
struct ice_aqc_txsched_elem_data *info)
|
||
|
{
|
||
|
struct ice_sched_node *root;
|
||
|
struct ice_hw *hw;
|
||
|
|
||
|
if (!pi)
|
||
|
return -EINVAL;
|
||
|
|
||
|
hw = pi->hw;
|
||
|
|
||
|
root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
|
||
|
if (!root)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* coverity[suspicious_sizeof] */
|
||
|
root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
|
||
|
sizeof(*root), GFP_KERNEL);
|
||
|
if (!root->children) {
|
||
|
devm_kfree(ice_hw_to_dev(hw), root);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
memcpy(&root->info, info, sizeof(*info));
|
||
|
pi->root = root;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
|
||
|
* @start_node: pointer to the starting ice_sched_node struct in a sub-tree
|
||
|
* @teid: node TEID to search
|
||
|
*
|
||
|
* This function searches for a node matching the TEID in the scheduling tree
|
||
|
* from the SW DB. The search is recursive and is restricted by the number of
|
||
|
* layers it has searched through; stopping at the max supported layer.
|
||
|
*
|
||
|
* This function needs to be called when holding the port_info->sched_lock
|
||
|
*/
|
||
|
struct ice_sched_node *
|
||
|
ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
|
||
|
{
|
||
|
u16 i;
|
||
|
|
||
|
/* The TEID is same as that of the start_node */
|
||
|
if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
|
||
|
return start_node;
|
||
|
|
||
|
/* The node has no children or is at the max layer */
|
||
|
if (!start_node->num_children ||
|
||
|
start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
|
||
|
start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
|
||
|
return NULL;
|
||
|
|
||
|
/* Check if TEID matches to any of the children nodes */
|
||
|
for (i = 0; i < start_node->num_children; i++)
|
||
|
if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
|
||
|
return start_node->children[i];
|
||
|
|
||
|
/* Search within each child's sub-tree */
|
||
|
for (i = 0; i < start_node->num_children; i++) {
|
||
|
struct ice_sched_node *tmp;
|
||
|
|
||
|
tmp = ice_sched_find_node_by_teid(start_node->children[i],
|
||
|
teid);
|
||
|
if (tmp)
|
||
|
return tmp;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @cmd_opc: cmd opcode
|
||
|
* @elems_req: number of elements to request
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @elems_resp: returns total number of elements response
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* This function sends a scheduling elements cmd (cmd_opc)
|
||
|
*/
|
||
|
static int
|
||
|
ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
|
||
|
u16 elems_req, void *buf, u16 buf_size,
|
||
|
u16 *elems_resp, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
struct ice_aqc_sched_elem_cmd *cmd;
|
||
|
struct ice_aq_desc desc;
|
||
|
int status;
|
||
|
|
||
|
cmd = &desc.params.sched_elem_cmd;
|
||
|
ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
|
||
|
cmd->num_elem_req = cpu_to_le16(elems_req);
|
||
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
||
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
||
|
if (!status && elems_resp)
|
||
|
*elems_resp = le16_to_cpu(cmd->num_elem_resp);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_query_sched_elems - query scheduler elements
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @elems_req: number of elements to query
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @elems_ret: returns total number of elements returned
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Query scheduling elements (0x0404)
|
||
|
*/
|
||
|
int
|
||
|
ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
|
||
|
struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
|
||
|
u16 *elems_ret, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
|
||
|
elems_req, (void *)buf, buf_size,
|
||
|
elems_ret, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_node - Insert the Tx scheduler node in SW DB
|
||
|
* @pi: port information structure
|
||
|
* @layer: Scheduler layer of the node
|
||
|
* @info: Scheduler element information from firmware
|
||
|
*
|
||
|
* This function inserts a scheduler node to the SW DB.
|
||
|
*/
|
||
|
int
|
||
|
ice_sched_add_node(struct ice_port_info *pi, u8 layer,
|
||
|
struct ice_aqc_txsched_elem_data *info)
|
||
|
{
|
||
|
struct ice_aqc_txsched_elem_data elem;
|
||
|
struct ice_sched_node *parent;
|
||
|
struct ice_sched_node *node;
|
||
|
struct ice_hw *hw;
|
||
|
int status;
|
||
|
|
||
|
if (!pi)
|
||
|
return -EINVAL;
|
||
|
|
||
|
hw = pi->hw;
|
||
|
|
||
|
/* A valid parent node should be there */
|
||
|
parent = ice_sched_find_node_by_teid(pi->root,
|
||
|
le32_to_cpu(info->parent_teid));
|
||
|
if (!parent) {
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
|
||
|
le32_to_cpu(info->parent_teid));
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* query the current node information from FW before adding it
|
||
|
* to the SW DB
|
||
|
*/
|
||
|
status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
|
||
|
if (!node)
|
||
|
return -ENOMEM;
|
||
|
if (hw->max_children[layer]) {
|
||
|
/* coverity[suspicious_sizeof] */
|
||
|
node->children = devm_kcalloc(ice_hw_to_dev(hw),
|
||
|
hw->max_children[layer],
|
||
|
sizeof(*node), GFP_KERNEL);
|
||
|
if (!node->children) {
|
||
|
devm_kfree(ice_hw_to_dev(hw), node);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
node->in_use = true;
|
||
|
node->parent = parent;
|
||
|
node->tx_sched_layer = layer;
|
||
|
parent->children[parent->num_children++] = node;
|
||
|
node->info = elem;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_delete_sched_elems - delete scheduler elements
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @grps_req: number of groups to delete
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @grps_del: returns total number of elements deleted
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Delete scheduling elements (0x040F)
|
||
|
*/
|
||
|
static int
|
||
|
ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
|
||
|
struct ice_aqc_delete_elem *buf, u16 buf_size,
|
||
|
u16 *grps_del, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
|
||
|
grps_req, (void *)buf, buf_size,
|
||
|
grps_del, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_remove_elems - remove nodes from HW
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @parent: pointer to the parent node
|
||
|
* @num_nodes: number of nodes
|
||
|
* @node_teids: array of node teids to be deleted
|
||
|
*
|
||
|
* This function remove nodes from HW
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
|
||
|
u16 num_nodes, u32 *node_teids)
|
||
|
{
|
||
|
struct ice_aqc_delete_elem *buf;
|
||
|
u16 i, num_groups_removed = 0;
|
||
|
u16 buf_size;
|
||
|
int status;
|
||
|
|
||
|
buf_size = struct_size(buf, teid, num_nodes);
|
||
|
buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
buf->hdr.parent_teid = parent->info.node_teid;
|
||
|
buf->hdr.num_elems = cpu_to_le16(num_nodes);
|
||
|
for (i = 0; i < num_nodes; i++)
|
||
|
buf->teid[i] = cpu_to_le32(node_teids[i]);
|
||
|
|
||
|
status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
|
||
|
&num_groups_removed, NULL);
|
||
|
if (status || num_groups_removed != 1)
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
|
||
|
hw->adminq.sq_last_status);
|
||
|
|
||
|
devm_kfree(ice_hw_to_dev(hw), buf);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_first_node - get the first node of the given layer
|
||
|
* @pi: port information structure
|
||
|
* @parent: pointer the base node of the subtree
|
||
|
* @layer: layer number
|
||
|
*
|
||
|
* This function retrieves the first node of the given layer from the subtree
|
||
|
*/
|
||
|
static struct ice_sched_node *
|
||
|
ice_sched_get_first_node(struct ice_port_info *pi,
|
||
|
struct ice_sched_node *parent, u8 layer)
|
||
|
{
|
||
|
return pi->sib_head[parent->tc_num][layer];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_tc_node - get pointer to TC node
|
||
|
* @pi: port information structure
|
||
|
* @tc: TC number
|
||
|
*
|
||
|
* This function returns the TC node pointer
|
||
|
*/
|
||
|
struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
|
||
|
{
|
||
|
u8 i;
|
||
|
|
||
|
if (!pi || !pi->root)
|
||
|
return NULL;
|
||
|
for (i = 0; i < pi->root->num_children; i++)
|
||
|
if (pi->root->children[i]->tc_num == tc)
|
||
|
return pi->root->children[i];
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_free_sched_node - Free a Tx scheduler node from SW DB
|
||
|
* @pi: port information structure
|
||
|
* @node: pointer to the ice_sched_node struct
|
||
|
*
|
||
|
* This function frees up a node from SW DB as well as from HW
|
||
|
*
|
||
|
* This function needs to be called with the port_info->sched_lock held
|
||
|
*/
|
||
|
void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
|
||
|
{
|
||
|
struct ice_sched_node *parent;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
u8 i, j;
|
||
|
|
||
|
/* Free the children before freeing up the parent node
|
||
|
* The parent array is updated below and that shifts the nodes
|
||
|
* in the array. So always pick the first child if num children > 0
|
||
|
*/
|
||
|
while (node->num_children)
|
||
|
ice_free_sched_node(pi, node->children[0]);
|
||
|
|
||
|
/* Leaf, TC and root nodes can't be deleted by SW */
|
||
|
if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
|
||
|
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
|
||
|
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
|
||
|
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
|
||
|
u32 teid = le32_to_cpu(node->info.node_teid);
|
||
|
|
||
|
ice_sched_remove_elems(hw, node->parent, 1, &teid);
|
||
|
}
|
||
|
parent = node->parent;
|
||
|
/* root has no parent */
|
||
|
if (parent) {
|
||
|
struct ice_sched_node *p;
|
||
|
|
||
|
/* update the parent */
|
||
|
for (i = 0; i < parent->num_children; i++)
|
||
|
if (parent->children[i] == node) {
|
||
|
for (j = i + 1; j < parent->num_children; j++)
|
||
|
parent->children[j - 1] =
|
||
|
parent->children[j];
|
||
|
parent->num_children--;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
|
||
|
while (p) {
|
||
|
if (p->sibling == node) {
|
||
|
p->sibling = node->sibling;
|
||
|
break;
|
||
|
}
|
||
|
p = p->sibling;
|
||
|
}
|
||
|
|
||
|
/* update the sibling head if head is getting removed */
|
||
|
if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
|
||
|
pi->sib_head[node->tc_num][node->tx_sched_layer] =
|
||
|
node->sibling;
|
||
|
}
|
||
|
|
||
|
/* leaf nodes have no children */
|
||
|
if (node->children)
|
||
|
devm_kfree(ice_hw_to_dev(hw), node->children);
|
||
|
devm_kfree(ice_hw_to_dev(hw), node);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_get_dflt_topo - gets default scheduler topology
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @lport: logical port number
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @num_branches: returns total number of queue to port branches
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Get default scheduler topology (0x400)
|
||
|
*/
|
||
|
static int
|
||
|
ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
|
||
|
struct ice_aqc_get_topo_elem *buf, u16 buf_size,
|
||
|
u8 *num_branches, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
struct ice_aqc_get_topo *cmd;
|
||
|
struct ice_aq_desc desc;
|
||
|
int status;
|
||
|
|
||
|
cmd = &desc.params.get_topo;
|
||
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
|
||
|
cmd->port_num = lport;
|
||
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
||
|
if (!status && num_branches)
|
||
|
*num_branches = cmd->num_branches;
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_add_sched_elems - adds scheduling element
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @grps_req: the number of groups that are requested to be added
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @grps_added: returns total number of groups added
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Add scheduling elements (0x0401)
|
||
|
*/
|
||
|
static int
|
||
|
ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
|
||
|
struct ice_aqc_add_elem *buf, u16 buf_size,
|
||
|
u16 *grps_added, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
|
||
|
grps_req, (void *)buf, buf_size,
|
||
|
grps_added, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_cfg_sched_elems - configures scheduler elements
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @elems_req: number of elements to configure
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @elems_cfgd: returns total number of elements configured
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Configure scheduling elements (0x0403)
|
||
|
*/
|
||
|
static int
|
||
|
ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
|
||
|
struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
|
||
|
u16 *elems_cfgd, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
|
||
|
elems_req, (void *)buf, buf_size,
|
||
|
elems_cfgd, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_move_sched_elems - move scheduler elements
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @grps_req: number of groups to move
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @grps_movd: returns total number of groups moved
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Move scheduling elements (0x0408)
|
||
|
*/
|
||
|
static int
|
||
|
ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
|
||
|
struct ice_aqc_move_elem *buf, u16 buf_size,
|
||
|
u16 *grps_movd, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
|
||
|
grps_req, (void *)buf, buf_size,
|
||
|
grps_movd, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_suspend_sched_elems - suspend scheduler elements
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @elems_req: number of elements to suspend
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @elems_ret: returns total number of elements suspended
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Suspend scheduling elements (0x0409)
|
||
|
*/
|
||
|
static int
|
||
|
ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
|
||
|
u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
|
||
|
elems_req, (void *)buf, buf_size,
|
||
|
elems_ret, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_resume_sched_elems - resume scheduler elements
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @elems_req: number of elements to resume
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @elems_ret: returns total number of elements resumed
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* resume scheduling elements (0x040A)
|
||
|
*/
|
||
|
static int
|
||
|
ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
|
||
|
u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
|
||
|
elems_req, (void *)buf, buf_size,
|
||
|
elems_ret, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_query_sched_res - query scheduler resource
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @buf: pointer to buffer
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Query scheduler resource allocation (0x0412)
|
||
|
*/
|
||
|
static int
|
||
|
ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
|
||
|
struct ice_aqc_query_txsched_res_resp *buf,
|
||
|
struct ice_sq_cd *cd)
|
||
|
{
|
||
|
struct ice_aq_desc desc;
|
||
|
|
||
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
|
||
|
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_suspend_resume_elems - suspend or resume HW nodes
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @num_nodes: number of nodes
|
||
|
* @node_teids: array of node teids to be suspended or resumed
|
||
|
* @suspend: true means suspend / false means resume
|
||
|
*
|
||
|
* This function suspends or resumes HW nodes
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
|
||
|
bool suspend)
|
||
|
{
|
||
|
u16 i, buf_size, num_elem_ret = 0;
|
||
|
__le32 *buf;
|
||
|
int status;
|
||
|
|
||
|
buf_size = sizeof(*buf) * num_nodes;
|
||
|
buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
for (i = 0; i < num_nodes; i++)
|
||
|
buf[i] = cpu_to_le32(node_teids[i]);
|
||
|
|
||
|
if (suspend)
|
||
|
status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
|
||
|
buf_size, &num_elem_ret,
|
||
|
NULL);
|
||
|
else
|
||
|
status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
|
||
|
buf_size, &num_elem_ret,
|
||
|
NULL);
|
||
|
if (status || num_elem_ret != num_nodes)
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
|
||
|
|
||
|
devm_kfree(ice_hw_to_dev(hw), buf);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @vsi_handle: VSI handle
|
||
|
* @tc: TC number
|
||
|
* @new_numqs: number of queues
|
||
|
*/
|
||
|
static int
|
||
|
ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
|
||
|
{
|
||
|
struct ice_vsi_ctx *vsi_ctx;
|
||
|
struct ice_q_ctx *q_ctx;
|
||
|
|
||
|
vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
|
||
|
if (!vsi_ctx)
|
||
|
return -EINVAL;
|
||
|
/* allocate LAN queue contexts */
|
||
|
if (!vsi_ctx->lan_q_ctx[tc]) {
|
||
|
vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
|
||
|
new_numqs,
|
||
|
sizeof(*q_ctx),
|
||
|
GFP_KERNEL);
|
||
|
if (!vsi_ctx->lan_q_ctx[tc])
|
||
|
return -ENOMEM;
|
||
|
vsi_ctx->num_lan_q_entries[tc] = new_numqs;
|
||
|
return 0;
|
||
|
}
|
||
|
/* num queues are increased, update the queue contexts */
|
||
|
if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
|
||
|
u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
|
||
|
|
||
|
q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
|
||
|
sizeof(*q_ctx), GFP_KERNEL);
|
||
|
if (!q_ctx)
|
||
|
return -ENOMEM;
|
||
|
memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
|
||
|
prev_num * sizeof(*q_ctx));
|
||
|
devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
|
||
|
vsi_ctx->lan_q_ctx[tc] = q_ctx;
|
||
|
vsi_ctx->num_lan_q_entries[tc] = new_numqs;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @vsi_handle: VSI handle
|
||
|
* @tc: TC number
|
||
|
* @new_numqs: number of queues
|
||
|
*/
|
||
|
static int
|
||
|
ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
|
||
|
{
|
||
|
struct ice_vsi_ctx *vsi_ctx;
|
||
|
struct ice_q_ctx *q_ctx;
|
||
|
|
||
|
vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
|
||
|
if (!vsi_ctx)
|
||
|
return -EINVAL;
|
||
|
/* allocate RDMA queue contexts */
|
||
|
if (!vsi_ctx->rdma_q_ctx[tc]) {
|
||
|
vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
|
||
|
new_numqs,
|
||
|
sizeof(*q_ctx),
|
||
|
GFP_KERNEL);
|
||
|
if (!vsi_ctx->rdma_q_ctx[tc])
|
||
|
return -ENOMEM;
|
||
|
vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
|
||
|
return 0;
|
||
|
}
|
||
|
/* num queues are increased, update the queue contexts */
|
||
|
if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
|
||
|
u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
|
||
|
|
||
|
q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
|
||
|
sizeof(*q_ctx), GFP_KERNEL);
|
||
|
if (!q_ctx)
|
||
|
return -ENOMEM;
|
||
|
memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
|
||
|
prev_num * sizeof(*q_ctx));
|
||
|
devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
|
||
|
vsi_ctx->rdma_q_ctx[tc] = q_ctx;
|
||
|
vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_rl_profile - performs a rate limiting task
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @opcode: opcode for add, query, or remove profile(s)
|
||
|
* @num_profiles: the number of profiles
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @num_processed: number of processed add or remove profile(s) to return
|
||
|
* @cd: pointer to command details structure
|
||
|
*
|
||
|
* RL profile function to add, query, or remove profile(s)
|
||
|
*/
|
||
|
static int
|
||
|
ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
|
||
|
u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
|
||
|
u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
struct ice_aqc_rl_profile *cmd;
|
||
|
struct ice_aq_desc desc;
|
||
|
int status;
|
||
|
|
||
|
cmd = &desc.params.rl_profile;
|
||
|
|
||
|
ice_fill_dflt_direct_cmd_desc(&desc, opcode);
|
||
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
||
|
cmd->num_profiles = cpu_to_le16(num_profiles);
|
||
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
||
|
if (!status && num_processed)
|
||
|
*num_processed = le16_to_cpu(cmd->num_processed);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_add_rl_profile - adds rate limiting profile(s)
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @num_profiles: the number of profile(s) to be add
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @num_profiles_added: total number of profiles added to return
|
||
|
* @cd: pointer to command details structure
|
||
|
*
|
||
|
* Add RL profile (0x0410)
|
||
|
*/
|
||
|
static int
|
||
|
ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
|
||
|
struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
|
||
|
u16 *num_profiles_added, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
|
||
|
buf, buf_size, num_profiles_added, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_remove_rl_profile - removes RL profile(s)
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @num_profiles: the number of profile(s) to remove
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @num_profiles_removed: total number of profiles removed to return
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Remove RL profile (0x0415)
|
||
|
*/
|
||
|
static int
|
||
|
ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
|
||
|
struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
|
||
|
u16 *num_profiles_removed, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
|
||
|
num_profiles, buf, buf_size,
|
||
|
num_profiles_removed, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_del_rl_profile - remove RL profile
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @rl_info: rate limit profile information
|
||
|
*
|
||
|
* If the profile ID is not referenced anymore, it removes profile ID with
|
||
|
* its associated parameters from HW DB,and locally. The caller needs to
|
||
|
* hold scheduler lock.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_del_rl_profile(struct ice_hw *hw,
|
||
|
struct ice_aqc_rl_profile_info *rl_info)
|
||
|
{
|
||
|
struct ice_aqc_rl_profile_elem *buf;
|
||
|
u16 num_profiles_removed;
|
||
|
u16 num_profiles = 1;
|
||
|
int status;
|
||
|
|
||
|
if (rl_info->prof_id_ref != 0)
|
||
|
return -EBUSY;
|
||
|
|
||
|
/* Safe to remove profile ID */
|
||
|
buf = &rl_info->profile;
|
||
|
status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
|
||
|
&num_profiles_removed, NULL);
|
||
|
if (status || num_profiles_removed != num_profiles)
|
||
|
return -EIO;
|
||
|
|
||
|
/* Delete stale entry now */
|
||
|
list_del(&rl_info->list_entry);
|
||
|
devm_kfree(ice_hw_to_dev(hw), rl_info);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_clear_rl_prof - clears RL prof entries
|
||
|
* @pi: port information structure
|
||
|
*
|
||
|
* This function removes all RL profile from HW as well as from SW DB.
|
||
|
*/
|
||
|
static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
|
||
|
{
|
||
|
u16 ln;
|
||
|
|
||
|
for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
|
||
|
struct ice_aqc_rl_profile_info *rl_prof_elem;
|
||
|
struct ice_aqc_rl_profile_info *rl_prof_tmp;
|
||
|
|
||
|
list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
|
||
|
&pi->rl_prof_list[ln], list_entry) {
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
int status;
|
||
|
|
||
|
rl_prof_elem->prof_id_ref = 0;
|
||
|
status = ice_sched_del_rl_profile(hw, rl_prof_elem);
|
||
|
if (status) {
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
|
||
|
/* On error, free mem required */
|
||
|
list_del(&rl_prof_elem->list_entry);
|
||
|
devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_clear_agg - clears the aggregator related information
|
||
|
* @hw: pointer to the hardware structure
|
||
|
*
|
||
|
* This function removes aggregator list and free up aggregator related memory
|
||
|
* previously allocated.
|
||
|
*/
|
||
|
void ice_sched_clear_agg(struct ice_hw *hw)
|
||
|
{
|
||
|
struct ice_sched_agg_info *agg_info;
|
||
|
struct ice_sched_agg_info *atmp;
|
||
|
|
||
|
list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
|
||
|
struct ice_sched_agg_vsi_info *agg_vsi_info;
|
||
|
struct ice_sched_agg_vsi_info *vtmp;
|
||
|
|
||
|
list_for_each_entry_safe(agg_vsi_info, vtmp,
|
||
|
&agg_info->agg_vsi_list, list_entry) {
|
||
|
list_del(&agg_vsi_info->list_entry);
|
||
|
devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
|
||
|
}
|
||
|
list_del(&agg_info->list_entry);
|
||
|
devm_kfree(ice_hw_to_dev(hw), agg_info);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_clear_tx_topo - clears the scheduler tree nodes
|
||
|
* @pi: port information structure
|
||
|
*
|
||
|
* This function removes all the nodes from HW as well as from SW DB.
|
||
|
*/
|
||
|
static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
|
||
|
{
|
||
|
if (!pi)
|
||
|
return;
|
||
|
/* remove RL profiles related lists */
|
||
|
ice_sched_clear_rl_prof(pi);
|
||
|
if (pi->root) {
|
||
|
ice_free_sched_node(pi, pi->root);
|
||
|
pi->root = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_clear_port - clear the scheduler elements from SW DB for a port
|
||
|
* @pi: port information structure
|
||
|
*
|
||
|
* Cleanup scheduling elements from SW DB
|
||
|
*/
|
||
|
void ice_sched_clear_port(struct ice_port_info *pi)
|
||
|
{
|
||
|
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
|
||
|
return;
|
||
|
|
||
|
pi->port_state = ICE_SCHED_PORT_STATE_INIT;
|
||
|
mutex_lock(&pi->sched_lock);
|
||
|
ice_sched_clear_tx_topo(pi);
|
||
|
mutex_unlock(&pi->sched_lock);
|
||
|
mutex_destroy(&pi->sched_lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
|
||
|
* @hw: pointer to the HW struct
|
||
|
*
|
||
|
* Cleanup scheduling elements from SW DB for all the ports
|
||
|
*/
|
||
|
void ice_sched_cleanup_all(struct ice_hw *hw)
|
||
|
{
|
||
|
if (!hw)
|
||
|
return;
|
||
|
|
||
|
if (hw->layer_info) {
|
||
|
devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
|
||
|
hw->layer_info = NULL;
|
||
|
}
|
||
|
|
||
|
ice_sched_clear_port(hw->port_info);
|
||
|
|
||
|
hw->num_tx_sched_layers = 0;
|
||
|
hw->num_tx_sched_phys_layers = 0;
|
||
|
hw->flattened_layers = 0;
|
||
|
hw->max_cgds = 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_elems - add nodes to HW and SW DB
|
||
|
* @pi: port information structure
|
||
|
* @tc_node: pointer to the branch node
|
||
|
* @parent: pointer to the parent node
|
||
|
* @layer: layer number to add nodes
|
||
|
* @num_nodes: number of nodes
|
||
|
* @num_nodes_added: pointer to num nodes added
|
||
|
* @first_node_teid: if new nodes are added then return the TEID of first node
|
||
|
*
|
||
|
* This function add nodes to HW as well as to SW DB for a given layer
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
|
||
|
struct ice_sched_node *parent, u8 layer, u16 num_nodes,
|
||
|
u16 *num_nodes_added, u32 *first_node_teid)
|
||
|
{
|
||
|
struct ice_sched_node *prev, *new_node;
|
||
|
struct ice_aqc_add_elem *buf;
|
||
|
u16 i, num_groups_added = 0;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
size_t buf_size;
|
||
|
int status = 0;
|
||
|
u32 teid;
|
||
|
|
||
|
buf_size = struct_size(buf, generic, num_nodes);
|
||
|
buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
buf->hdr.parent_teid = parent->info.node_teid;
|
||
|
buf->hdr.num_elems = cpu_to_le16(num_nodes);
|
||
|
for (i = 0; i < num_nodes; i++) {
|
||
|
buf->generic[i].parent_teid = parent->info.node_teid;
|
||
|
buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
|
||
|
buf->generic[i].data.valid_sections =
|
||
|
ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
|
||
|
ICE_AQC_ELEM_VALID_EIR;
|
||
|
buf->generic[i].data.generic = 0;
|
||
|
buf->generic[i].data.cir_bw.bw_profile_idx =
|
||
|
cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
|
||
|
buf->generic[i].data.cir_bw.bw_alloc =
|
||
|
cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
|
||
|
buf->generic[i].data.eir_bw.bw_profile_idx =
|
||
|
cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
|
||
|
buf->generic[i].data.eir_bw.bw_alloc =
|
||
|
cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
|
||
|
}
|
||
|
|
||
|
status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
|
||
|
&num_groups_added, NULL);
|
||
|
if (status || num_groups_added != 1) {
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
|
||
|
hw->adminq.sq_last_status);
|
||
|
devm_kfree(ice_hw_to_dev(hw), buf);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
*num_nodes_added = num_nodes;
|
||
|
/* add nodes to the SW DB */
|
||
|
for (i = 0; i < num_nodes; i++) {
|
||
|
status = ice_sched_add_node(pi, layer, &buf->generic[i]);
|
||
|
if (status) {
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
|
||
|
status);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
teid = le32_to_cpu(buf->generic[i].node_teid);
|
||
|
new_node = ice_sched_find_node_by_teid(parent, teid);
|
||
|
if (!new_node) {
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
new_node->sibling = NULL;
|
||
|
new_node->tc_num = tc_node->tc_num;
|
||
|
|
||
|
/* add it to previous node sibling pointer */
|
||
|
/* Note: siblings are not linked across branches */
|
||
|
prev = ice_sched_get_first_node(pi, tc_node, layer);
|
||
|
if (prev && prev != new_node) {
|
||
|
while (prev->sibling)
|
||
|
prev = prev->sibling;
|
||
|
prev->sibling = new_node;
|
||
|
}
|
||
|
|
||
|
/* initialize the sibling head */
|
||
|
if (!pi->sib_head[tc_node->tc_num][layer])
|
||
|
pi->sib_head[tc_node->tc_num][layer] = new_node;
|
||
|
|
||
|
if (i == 0)
|
||
|
*first_node_teid = teid;
|
||
|
}
|
||
|
|
||
|
devm_kfree(ice_hw_to_dev(hw), buf);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
|
||
|
* @pi: port information structure
|
||
|
* @tc_node: pointer to TC node
|
||
|
* @parent: pointer to parent node
|
||
|
* @layer: layer number to add nodes
|
||
|
* @num_nodes: number of nodes to be added
|
||
|
* @first_node_teid: pointer to the first node TEID
|
||
|
* @num_nodes_added: pointer to number of nodes added
|
||
|
*
|
||
|
* Add nodes into specific HW layer.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
|
||
|
struct ice_sched_node *tc_node,
|
||
|
struct ice_sched_node *parent, u8 layer,
|
||
|
u16 num_nodes, u32 *first_node_teid,
|
||
|
u16 *num_nodes_added)
|
||
|
{
|
||
|
u16 max_child_nodes;
|
||
|
|
||
|
*num_nodes_added = 0;
|
||
|
|
||
|
if (!num_nodes)
|
||
|
return 0;
|
||
|
|
||
|
if (!parent || layer < pi->hw->sw_entry_point_layer)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* max children per node per layer */
|
||
|
max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
|
||
|
|
||
|
/* current number of children + required nodes exceed max children */
|
||
|
if ((parent->num_children + num_nodes) > max_child_nodes) {
|
||
|
/* Fail if the parent is a TC node */
|
||
|
if (parent == tc_node)
|
||
|
return -EIO;
|
||
|
return -ENOSPC;
|
||
|
}
|
||
|
|
||
|
return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
|
||
|
num_nodes_added, first_node_teid);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_nodes_to_layer - Add nodes to a given layer
|
||
|
* @pi: port information structure
|
||
|
* @tc_node: pointer to TC node
|
||
|
* @parent: pointer to parent node
|
||
|
* @layer: layer number to add nodes
|
||
|
* @num_nodes: number of nodes to be added
|
||
|
* @first_node_teid: pointer to the first node TEID
|
||
|
* @num_nodes_added: pointer to number of nodes added
|
||
|
*
|
||
|
* This function add nodes to a given layer.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
|
||
|
struct ice_sched_node *tc_node,
|
||
|
struct ice_sched_node *parent, u8 layer,
|
||
|
u16 num_nodes, u32 *first_node_teid,
|
||
|
u16 *num_nodes_added)
|
||
|
{
|
||
|
u32 *first_teid_ptr = first_node_teid;
|
||
|
u16 new_num_nodes = num_nodes;
|
||
|
int status = 0;
|
||
|
|
||
|
*num_nodes_added = 0;
|
||
|
while (*num_nodes_added < num_nodes) {
|
||
|
u16 max_child_nodes, num_added = 0;
|
||
|
/* cppcheck-suppress unusedVariable */
|
||
|
u32 temp;
|
||
|
|
||
|
status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
|
||
|
layer, new_num_nodes,
|
||
|
first_teid_ptr,
|
||
|
&num_added);
|
||
|
if (!status)
|
||
|
*num_nodes_added += num_added;
|
||
|
/* added more nodes than requested ? */
|
||
|
if (*num_nodes_added > num_nodes) {
|
||
|
ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
|
||
|
*num_nodes_added);
|
||
|
status = -EIO;
|
||
|
break;
|
||
|
}
|
||
|
/* break if all the nodes are added successfully */
|
||
|
if (!status && (*num_nodes_added == num_nodes))
|
||
|
break;
|
||
|
/* break if the error is not max limit */
|
||
|
if (status && status != -ENOSPC)
|
||
|
break;
|
||
|
/* Exceeded the max children */
|
||
|
max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
|
||
|
/* utilize all the spaces if the parent is not full */
|
||
|
if (parent->num_children < max_child_nodes) {
|
||
|
new_num_nodes = max_child_nodes - parent->num_children;
|
||
|
} else {
|
||
|
/* This parent is full, try the next sibling */
|
||
|
parent = parent->sibling;
|
||
|
/* Don't modify the first node TEID memory if the
|
||
|
* first node was added already in the above call.
|
||
|
* Instead send some temp memory for all other
|
||
|
* recursive calls.
|
||
|
*/
|
||
|
if (num_added)
|
||
|
first_teid_ptr = &temp;
|
||
|
|
||
|
new_num_nodes = num_nodes - *num_nodes_added;
|
||
|
}
|
||
|
}
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_qgrp_layer - get the current queue group layer number
|
||
|
* @hw: pointer to the HW struct
|
||
|
*
|
||
|
* This function returns the current queue group layer number
|
||
|
*/
|
||
|
static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
|
||
|
{
|
||
|
/* It's always total layers - 1, the array is 0 relative so -2 */
|
||
|
return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_vsi_layer - get the current VSI layer number
|
||
|
* @hw: pointer to the HW struct
|
||
|
*
|
||
|
* This function returns the current VSI layer number
|
||
|
*/
|
||
|
static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
|
||
|
{
|
||
|
/* Num Layers VSI layer
|
||
|
* 9 6
|
||
|
* 7 4
|
||
|
* 5 or less sw_entry_point_layer
|
||
|
*/
|
||
|
/* calculate the VSI layer based on number of layers. */
|
||
|
if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
|
||
|
u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
|
||
|
|
||
|
if (layer > hw->sw_entry_point_layer)
|
||
|
return layer;
|
||
|
}
|
||
|
return hw->sw_entry_point_layer;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_agg_layer - get the current aggregator layer number
|
||
|
* @hw: pointer to the HW struct
|
||
|
*
|
||
|
* This function returns the current aggregator layer number
|
||
|
*/
|
||
|
static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
|
||
|
{
|
||
|
/* Num Layers aggregator layer
|
||
|
* 9 4
|
||
|
* 7 or less sw_entry_point_layer
|
||
|
*/
|
||
|
/* calculate the aggregator layer based on number of layers. */
|
||
|
if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
|
||
|
u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
|
||
|
|
||
|
if (layer > hw->sw_entry_point_layer)
|
||
|
return layer;
|
||
|
}
|
||
|
return hw->sw_entry_point_layer;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_rm_dflt_leaf_node - remove the default leaf node in the tree
|
||
|
* @pi: port information structure
|
||
|
*
|
||
|
* This function removes the leaf node that was created by the FW
|
||
|
* during initialization
|
||
|
*/
|
||
|
static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
|
||
|
{
|
||
|
struct ice_sched_node *node;
|
||
|
|
||
|
node = pi->root;
|
||
|
while (node) {
|
||
|
if (!node->num_children)
|
||
|
break;
|
||
|
node = node->children[0];
|
||
|
}
|
||
|
if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
|
||
|
u32 teid = le32_to_cpu(node->info.node_teid);
|
||
|
int status;
|
||
|
|
||
|
/* remove the default leaf node */
|
||
|
status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
|
||
|
if (!status)
|
||
|
ice_free_sched_node(pi, node);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_rm_dflt_nodes - free the default nodes in the tree
|
||
|
* @pi: port information structure
|
||
|
*
|
||
|
* This function frees all the nodes except root and TC that were created by
|
||
|
* the FW during initialization
|
||
|
*/
|
||
|
static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
|
||
|
{
|
||
|
struct ice_sched_node *node;
|
||
|
|
||
|
ice_rm_dflt_leaf_node(pi);
|
||
|
|
||
|
/* remove the default nodes except TC and root nodes */
|
||
|
node = pi->root;
|
||
|
while (node) {
|
||
|
if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
|
||
|
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
|
||
|
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
|
||
|
ice_free_sched_node(pi, node);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (!node->num_children)
|
||
|
break;
|
||
|
node = node->children[0];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_init_port - Initialize scheduler by querying information from FW
|
||
|
* @pi: port info structure for the tree to cleanup
|
||
|
*
|
||
|
* This function is the initial call to find the total number of Tx scheduler
|
||
|
* resources, default topology created by firmware and storing the information
|
||
|
* in SW DB.
|
||
|
*/
|
||
|
int ice_sched_init_port(struct ice_port_info *pi)
|
||
|
{
|
||
|
struct ice_aqc_get_topo_elem *buf;
|
||
|
struct ice_hw *hw;
|
||
|
u8 num_branches;
|
||
|
u16 num_elems;
|
||
|
int status;
|
||
|
u8 i, j;
|
||
|
|
||
|
if (!pi)
|
||
|
return -EINVAL;
|
||
|
hw = pi->hw;
|
||
|
|
||
|
/* Query the Default Topology from FW */
|
||
|
buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* Query default scheduling tree topology */
|
||
|
status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
|
||
|
&num_branches, NULL);
|
||
|
if (status)
|
||
|
goto err_init_port;
|
||
|
|
||
|
/* num_branches should be between 1-8 */
|
||
|
if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
|
||
|
num_branches);
|
||
|
status = -EINVAL;
|
||
|
goto err_init_port;
|
||
|
}
|
||
|
|
||
|
/* get the number of elements on the default/first branch */
|
||
|
num_elems = le16_to_cpu(buf[0].hdr.num_elems);
|
||
|
|
||
|
/* num_elems should always be between 1-9 */
|
||
|
if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
|
||
|
num_elems);
|
||
|
status = -EINVAL;
|
||
|
goto err_init_port;
|
||
|
}
|
||
|
|
||
|
/* If the last node is a leaf node then the index of the queue group
|
||
|
* layer is two less than the number of elements.
|
||
|
*/
|
||
|
if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
|
||
|
ICE_AQC_ELEM_TYPE_LEAF)
|
||
|
pi->last_node_teid =
|
||
|
le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
|
||
|
else
|
||
|
pi->last_node_teid =
|
||
|
le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
|
||
|
|
||
|
/* Insert the Tx Sched root node */
|
||
|
status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
|
||
|
if (status)
|
||
|
goto err_init_port;
|
||
|
|
||
|
/* Parse the default tree and cache the information */
|
||
|
for (i = 0; i < num_branches; i++) {
|
||
|
num_elems = le16_to_cpu(buf[i].hdr.num_elems);
|
||
|
|
||
|
/* Skip root element as already inserted */
|
||
|
for (j = 1; j < num_elems; j++) {
|
||
|
/* update the sw entry point */
|
||
|
if (buf[0].generic[j].data.elem_type ==
|
||
|
ICE_AQC_ELEM_TYPE_ENTRY_POINT)
|
||
|
hw->sw_entry_point_layer = j;
|
||
|
|
||
|
status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
|
||
|
if (status)
|
||
|
goto err_init_port;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Remove the default nodes. */
|
||
|
if (pi->root)
|
||
|
ice_sched_rm_dflt_nodes(pi);
|
||
|
|
||
|
/* initialize the port for handling the scheduler tree */
|
||
|
pi->port_state = ICE_SCHED_PORT_STATE_READY;
|
||
|
mutex_init(&pi->sched_lock);
|
||
|
for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
|
||
|
INIT_LIST_HEAD(&pi->rl_prof_list[i]);
|
||
|
|
||
|
err_init_port:
|
||
|
if (status && pi->root) {
|
||
|
ice_free_sched_node(pi, pi->root);
|
||
|
pi->root = NULL;
|
||
|
}
|
||
|
|
||
|
kfree(buf);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_query_res_alloc - query the FW for num of logical sched layers
|
||
|
* @hw: pointer to the HW struct
|
||
|
*
|
||
|
* query FW for allocated scheduler resources and store in HW struct
|
||
|
*/
|
||
|
int ice_sched_query_res_alloc(struct ice_hw *hw)
|
||
|
{
|
||
|
struct ice_aqc_query_txsched_res_resp *buf;
|
||
|
__le16 max_sibl;
|
||
|
int status = 0;
|
||
|
u16 i;
|
||
|
|
||
|
if (hw->layer_info)
|
||
|
return status;
|
||
|
|
||
|
buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
|
||
|
if (status)
|
||
|
goto sched_query_out;
|
||
|
|
||
|
hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
|
||
|
hw->num_tx_sched_phys_layers =
|
||
|
le16_to_cpu(buf->sched_props.phys_levels);
|
||
|
hw->flattened_layers = buf->sched_props.flattening_bitmap;
|
||
|
hw->max_cgds = buf->sched_props.max_pf_cgds;
|
||
|
|
||
|
/* max sibling group size of current layer refers to the max children
|
||
|
* of the below layer node.
|
||
|
* layer 1 node max children will be layer 2 max sibling group size
|
||
|
* layer 2 node max children will be layer 3 max sibling group size
|
||
|
* and so on. This array will be populated from root (index 0) to
|
||
|
* qgroup layer 7. Leaf node has no children.
|
||
|
*/
|
||
|
for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
|
||
|
max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
|
||
|
hw->max_children[i] = le16_to_cpu(max_sibl);
|
||
|
}
|
||
|
|
||
|
hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
|
||
|
(hw->num_tx_sched_layers *
|
||
|
sizeof(*hw->layer_info)),
|
||
|
GFP_KERNEL);
|
||
|
if (!hw->layer_info) {
|
||
|
status = -ENOMEM;
|
||
|
goto sched_query_out;
|
||
|
}
|
||
|
|
||
|
sched_query_out:
|
||
|
devm_kfree(ice_hw_to_dev(hw), buf);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_psm_clk_freq - determine the PSM clock frequency
|
||
|
* @hw: pointer to the HW struct
|
||
|
*
|
||
|
* Determine the PSM clock frequency and store in HW struct
|
||
|
*/
|
||
|
void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
|
||
|
{
|
||
|
u32 val, clk_src;
|
||
|
|
||
|
val = rd32(hw, GLGEN_CLKSTAT_SRC);
|
||
|
clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
|
||
|
GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
|
||
|
|
||
|
#define PSM_CLK_SRC_367_MHZ 0x0
|
||
|
#define PSM_CLK_SRC_416_MHZ 0x1
|
||
|
#define PSM_CLK_SRC_446_MHZ 0x2
|
||
|
#define PSM_CLK_SRC_390_MHZ 0x3
|
||
|
|
||
|
switch (clk_src) {
|
||
|
case PSM_CLK_SRC_367_MHZ:
|
||
|
hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
|
||
|
break;
|
||
|
case PSM_CLK_SRC_416_MHZ:
|
||
|
hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
|
||
|
break;
|
||
|
case PSM_CLK_SRC_446_MHZ:
|
||
|
hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
|
||
|
break;
|
||
|
case PSM_CLK_SRC_390_MHZ:
|
||
|
hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
|
||
|
break;
|
||
|
default:
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
|
||
|
clk_src);
|
||
|
/* fall back to a safe default */
|
||
|
hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_find_node_in_subtree - Find node in part of base node subtree
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @base: pointer to the base node
|
||
|
* @node: pointer to the node to search
|
||
|
*
|
||
|
* This function checks whether a given node is part of the base node
|
||
|
* subtree or not
|
||
|
*/
|
||
|
static bool
|
||
|
ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
|
||
|
struct ice_sched_node *node)
|
||
|
{
|
||
|
u8 i;
|
||
|
|
||
|
for (i = 0; i < base->num_children; i++) {
|
||
|
struct ice_sched_node *child = base->children[i];
|
||
|
|
||
|
if (node == child)
|
||
|
return true;
|
||
|
|
||
|
if (child->tx_sched_layer > node->tx_sched_layer)
|
||
|
return false;
|
||
|
|
||
|
/* this recursion is intentional, and wouldn't
|
||
|
* go more than 8 calls
|
||
|
*/
|
||
|
if (ice_sched_find_node_in_subtree(hw, child, node))
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
|
||
|
* @pi: port information structure
|
||
|
* @vsi_node: software VSI handle
|
||
|
* @qgrp_node: first queue group node identified for scanning
|
||
|
* @owner: LAN or RDMA
|
||
|
*
|
||
|
* This function retrieves a free LAN or RDMA queue group node by scanning
|
||
|
* qgrp_node and its siblings for the queue group with the fewest number
|
||
|
* of queues currently assigned.
|
||
|
*/
|
||
|
static struct ice_sched_node *
|
||
|
ice_sched_get_free_qgrp(struct ice_port_info *pi,
|
||
|
struct ice_sched_node *vsi_node,
|
||
|
struct ice_sched_node *qgrp_node, u8 owner)
|
||
|
{
|
||
|
struct ice_sched_node *min_qgrp;
|
||
|
u8 min_children;
|
||
|
|
||
|
if (!qgrp_node)
|
||
|
return qgrp_node;
|
||
|
min_children = qgrp_node->num_children;
|
||
|
if (!min_children)
|
||
|
return qgrp_node;
|
||
|
min_qgrp = qgrp_node;
|
||
|
/* scan all queue groups until find a node which has less than the
|
||
|
* minimum number of children. This way all queue group nodes get
|
||
|
* equal number of shares and active. The bandwidth will be equally
|
||
|
* distributed across all queues.
|
||
|
*/
|
||
|
while (qgrp_node) {
|
||
|
/* make sure the qgroup node is part of the VSI subtree */
|
||
|
if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
|
||
|
if (qgrp_node->num_children < min_children &&
|
||
|
qgrp_node->owner == owner) {
|
||
|
/* replace the new min queue group node */
|
||
|
min_qgrp = qgrp_node;
|
||
|
min_children = min_qgrp->num_children;
|
||
|
/* break if it has no children, */
|
||
|
if (!min_children)
|
||
|
break;
|
||
|
}
|
||
|
qgrp_node = qgrp_node->sibling;
|
||
|
}
|
||
|
return min_qgrp;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc: branch number
|
||
|
* @owner: LAN or RDMA
|
||
|
*
|
||
|
* This function retrieves a free LAN or RDMA queue group node
|
||
|
*/
|
||
|
struct ice_sched_node *
|
||
|
ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
|
||
|
u8 owner)
|
||
|
{
|
||
|
struct ice_sched_node *vsi_node, *qgrp_node;
|
||
|
struct ice_vsi_ctx *vsi_ctx;
|
||
|
u16 max_children;
|
||
|
u8 qgrp_layer;
|
||
|
|
||
|
qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
|
||
|
max_children = pi->hw->max_children[qgrp_layer];
|
||
|
|
||
|
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
|
||
|
if (!vsi_ctx)
|
||
|
return NULL;
|
||
|
vsi_node = vsi_ctx->sched.vsi_node[tc];
|
||
|
/* validate invalid VSI ID */
|
||
|
if (!vsi_node)
|
||
|
return NULL;
|
||
|
|
||
|
/* get the first queue group node from VSI sub-tree */
|
||
|
qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
|
||
|
while (qgrp_node) {
|
||
|
/* make sure the qgroup node is part of the VSI subtree */
|
||
|
if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
|
||
|
if (qgrp_node->num_children < max_children &&
|
||
|
qgrp_node->owner == owner)
|
||
|
break;
|
||
|
qgrp_node = qgrp_node->sibling;
|
||
|
}
|
||
|
|
||
|
/* Select the best queue group */
|
||
|
return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_vsi_node - Get a VSI node based on VSI ID
|
||
|
* @pi: pointer to the port information structure
|
||
|
* @tc_node: pointer to the TC node
|
||
|
* @vsi_handle: software VSI handle
|
||
|
*
|
||
|
* This function retrieves a VSI node for a given VSI ID from a given
|
||
|
* TC branch
|
||
|
*/
|
||
|
static struct ice_sched_node *
|
||
|
ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
|
||
|
u16 vsi_handle)
|
||
|
{
|
||
|
struct ice_sched_node *node;
|
||
|
u8 vsi_layer;
|
||
|
|
||
|
vsi_layer = ice_sched_get_vsi_layer(pi->hw);
|
||
|
node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
|
||
|
|
||
|
/* Check whether it already exists */
|
||
|
while (node) {
|
||
|
if (node->vsi_handle == vsi_handle)
|
||
|
return node;
|
||
|
node = node->sibling;
|
||
|
}
|
||
|
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
|
||
|
* @pi: pointer to the port information structure
|
||
|
* @tc_node: pointer to the TC node
|
||
|
* @agg_id: aggregator ID
|
||
|
*
|
||
|
* This function retrieves an aggregator node for a given aggregator ID from
|
||
|
* a given TC branch
|
||
|
*/
|
||
|
static struct ice_sched_node *
|
||
|
ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
|
||
|
u32 agg_id)
|
||
|
{
|
||
|
struct ice_sched_node *node;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
u8 agg_layer;
|
||
|
|
||
|
if (!hw)
|
||
|
return NULL;
|
||
|
agg_layer = ice_sched_get_agg_layer(hw);
|
||
|
node = ice_sched_get_first_node(pi, tc_node, agg_layer);
|
||
|
|
||
|
/* Check whether it already exists */
|
||
|
while (node) {
|
||
|
if (node->agg_id == agg_id)
|
||
|
return node;
|
||
|
node = node->sibling;
|
||
|
}
|
||
|
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @num_qs: number of queues
|
||
|
* @num_nodes: num nodes array
|
||
|
*
|
||
|
* This function calculates the number of VSI child nodes based on the
|
||
|
* number of queues.
|
||
|
*/
|
||
|
static void
|
||
|
ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
|
||
|
{
|
||
|
u16 num = num_qs;
|
||
|
u8 i, qgl, vsil;
|
||
|
|
||
|
qgl = ice_sched_get_qgrp_layer(hw);
|
||
|
vsil = ice_sched_get_vsi_layer(hw);
|
||
|
|
||
|
/* calculate num nodes from queue group to VSI layer */
|
||
|
for (i = qgl; i > vsil; i--) {
|
||
|
/* round to the next integer if there is a remainder */
|
||
|
num = DIV_ROUND_UP(num, hw->max_children[i]);
|
||
|
|
||
|
/* need at least one node */
|
||
|
num_nodes[i] = num ? num : 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc_node: pointer to the TC node
|
||
|
* @num_nodes: pointer to the num nodes that needs to be added per layer
|
||
|
* @owner: node owner (LAN or RDMA)
|
||
|
*
|
||
|
* This function adds the VSI child nodes to tree. It gets called for
|
||
|
* LAN and RDMA separately.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
|
||
|
struct ice_sched_node *tc_node, u16 *num_nodes,
|
||
|
u8 owner)
|
||
|
{
|
||
|
struct ice_sched_node *parent, *node;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
u32 first_node_teid;
|
||
|
u16 num_added = 0;
|
||
|
u8 i, qgl, vsil;
|
||
|
int status;
|
||
|
|
||
|
qgl = ice_sched_get_qgrp_layer(hw);
|
||
|
vsil = ice_sched_get_vsi_layer(hw);
|
||
|
parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
|
||
|
for (i = vsil + 1; i <= qgl; i++) {
|
||
|
if (!parent)
|
||
|
return -EIO;
|
||
|
|
||
|
status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
|
||
|
num_nodes[i],
|
||
|
&first_node_teid,
|
||
|
&num_added);
|
||
|
if (status || num_nodes[i] != num_added)
|
||
|
return -EIO;
|
||
|
|
||
|
/* The newly added node can be a new parent for the next
|
||
|
* layer nodes
|
||
|
*/
|
||
|
if (num_added) {
|
||
|
parent = ice_sched_find_node_by_teid(tc_node,
|
||
|
first_node_teid);
|
||
|
node = parent;
|
||
|
while (node) {
|
||
|
node->owner = owner;
|
||
|
node = node->sibling;
|
||
|
}
|
||
|
} else {
|
||
|
parent = parent->children[0];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
|
||
|
* @pi: pointer to the port info structure
|
||
|
* @tc_node: pointer to TC node
|
||
|
* @num_nodes: pointer to num nodes array
|
||
|
*
|
||
|
* This function calculates the number of supported nodes needed to add this
|
||
|
* VSI into Tx tree including the VSI, parent and intermediate nodes in below
|
||
|
* layers
|
||
|
*/
|
||
|
static void
|
||
|
ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
|
||
|
struct ice_sched_node *tc_node, u16 *num_nodes)
|
||
|
{
|
||
|
struct ice_sched_node *node;
|
||
|
u8 vsil;
|
||
|
int i;
|
||
|
|
||
|
vsil = ice_sched_get_vsi_layer(pi->hw);
|
||
|
for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
|
||
|
/* Add intermediate nodes if TC has no children and
|
||
|
* need at least one node for VSI
|
||
|
*/
|
||
|
if (!tc_node->num_children || i == vsil) {
|
||
|
num_nodes[i]++;
|
||
|
} else {
|
||
|
/* If intermediate nodes are reached max children
|
||
|
* then add a new one.
|
||
|
*/
|
||
|
node = ice_sched_get_first_node(pi, tc_node, (u8)i);
|
||
|
/* scan all the siblings */
|
||
|
while (node) {
|
||
|
if (node->num_children < pi->hw->max_children[i])
|
||
|
break;
|
||
|
node = node->sibling;
|
||
|
}
|
||
|
|
||
|
/* tree has one intermediate node to add this new VSI.
|
||
|
* So no need to calculate supported nodes for below
|
||
|
* layers.
|
||
|
*/
|
||
|
if (node)
|
||
|
break;
|
||
|
/* all the nodes are full, allocate a new one */
|
||
|
num_nodes[i]++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc_node: pointer to TC node
|
||
|
* @num_nodes: pointer to num nodes array
|
||
|
*
|
||
|
* This function adds the VSI supported nodes into Tx tree including the
|
||
|
* VSI, its parent and intermediate nodes in below layers
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
|
||
|
struct ice_sched_node *tc_node, u16 *num_nodes)
|
||
|
{
|
||
|
struct ice_sched_node *parent = tc_node;
|
||
|
u32 first_node_teid;
|
||
|
u16 num_added = 0;
|
||
|
u8 i, vsil;
|
||
|
int status;
|
||
|
|
||
|
if (!pi)
|
||
|
return -EINVAL;
|
||
|
|
||
|
vsil = ice_sched_get_vsi_layer(pi->hw);
|
||
|
for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
|
||
|
status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
|
||
|
i, num_nodes[i],
|
||
|
&first_node_teid,
|
||
|
&num_added);
|
||
|
if (status || num_nodes[i] != num_added)
|
||
|
return -EIO;
|
||
|
|
||
|
/* The newly added node can be a new parent for the next
|
||
|
* layer nodes
|
||
|
*/
|
||
|
if (num_added)
|
||
|
parent = ice_sched_find_node_by_teid(tc_node,
|
||
|
first_node_teid);
|
||
|
else
|
||
|
parent = parent->children[0];
|
||
|
|
||
|
if (!parent)
|
||
|
return -EIO;
|
||
|
|
||
|
if (i == vsil)
|
||
|
parent->vsi_handle = vsi_handle;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_vsi_to_topo - add a new VSI into tree
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc: TC number
|
||
|
*
|
||
|
* This function adds a new VSI into scheduler tree
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
|
||
|
{
|
||
|
u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
|
||
|
struct ice_sched_node *tc_node;
|
||
|
|
||
|
tc_node = ice_sched_get_tc_node(pi, tc);
|
||
|
if (!tc_node)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* calculate number of supported nodes needed for this VSI */
|
||
|
ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
|
||
|
|
||
|
/* add VSI supported nodes to TC subtree */
|
||
|
return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
|
||
|
num_nodes);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_update_vsi_child_nodes - update VSI child nodes
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc: TC number
|
||
|
* @new_numqs: new number of max queues
|
||
|
* @owner: owner of this subtree
|
||
|
*
|
||
|
* This function updates the VSI child nodes based on the number of queues
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
|
||
|
u8 tc, u16 new_numqs, u8 owner)
|
||
|
{
|
||
|
u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
|
||
|
struct ice_sched_node *vsi_node;
|
||
|
struct ice_sched_node *tc_node;
|
||
|
struct ice_vsi_ctx *vsi_ctx;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
u16 prev_numqs;
|
||
|
int status = 0;
|
||
|
|
||
|
tc_node = ice_sched_get_tc_node(pi, tc);
|
||
|
if (!tc_node)
|
||
|
return -EIO;
|
||
|
|
||
|
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
|
||
|
if (!vsi_node)
|
||
|
return -EIO;
|
||
|
|
||
|
vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
|
||
|
if (!vsi_ctx)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (owner == ICE_SCHED_NODE_OWNER_LAN)
|
||
|
prev_numqs = vsi_ctx->sched.max_lanq[tc];
|
||
|
else
|
||
|
prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
|
||
|
/* num queues are not changed or less than the previous number */
|
||
|
if (new_numqs <= prev_numqs)
|
||
|
return status;
|
||
|
if (owner == ICE_SCHED_NODE_OWNER_LAN) {
|
||
|
status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
|
||
|
if (status)
|
||
|
return status;
|
||
|
} else {
|
||
|
status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
|
||
|
if (status)
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
if (new_numqs)
|
||
|
ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
|
||
|
/* Keep the max number of queue configuration all the time. Update the
|
||
|
* tree only if number of queues > previous number of queues. This may
|
||
|
* leave some extra nodes in the tree if number of queues < previous
|
||
|
* number but that wouldn't harm anything. Removing those extra nodes
|
||
|
* may complicate the code if those nodes are part of SRL or
|
||
|
* individually rate limited.
|
||
|
*/
|
||
|
status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
|
||
|
new_num_nodes, owner);
|
||
|
if (status)
|
||
|
return status;
|
||
|
if (owner == ICE_SCHED_NODE_OWNER_LAN)
|
||
|
vsi_ctx->sched.max_lanq[tc] = new_numqs;
|
||
|
else
|
||
|
vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_cfg_vsi - configure the new/existing VSI
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc: TC number
|
||
|
* @maxqs: max number of queues
|
||
|
* @owner: LAN or RDMA
|
||
|
* @enable: TC enabled or disabled
|
||
|
*
|
||
|
* This function adds/updates VSI nodes based on the number of queues. If TC is
|
||
|
* enabled and VSI is in suspended state then resume the VSI back. If TC is
|
||
|
* disabled then suspend the VSI if it is not already.
|
||
|
*/
|
||
|
int
|
||
|
ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
|
||
|
u8 owner, bool enable)
|
||
|
{
|
||
|
struct ice_sched_node *vsi_node, *tc_node;
|
||
|
struct ice_vsi_ctx *vsi_ctx;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
int status = 0;
|
||
|
|
||
|
ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
|
||
|
tc_node = ice_sched_get_tc_node(pi, tc);
|
||
|
if (!tc_node)
|
||
|
return -EINVAL;
|
||
|
vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
|
||
|
if (!vsi_ctx)
|
||
|
return -EINVAL;
|
||
|
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
|
||
|
|
||
|
/* suspend the VSI if TC is not enabled */
|
||
|
if (!enable) {
|
||
|
if (vsi_node && vsi_node->in_use) {
|
||
|
u32 teid = le32_to_cpu(vsi_node->info.node_teid);
|
||
|
|
||
|
status = ice_sched_suspend_resume_elems(hw, 1, &teid,
|
||
|
true);
|
||
|
if (!status)
|
||
|
vsi_node->in_use = false;
|
||
|
}
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* TC is enabled, if it is a new VSI then add it to the tree */
|
||
|
if (!vsi_node) {
|
||
|
status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
|
||
|
if (!vsi_node)
|
||
|
return -EIO;
|
||
|
|
||
|
vsi_ctx->sched.vsi_node[tc] = vsi_node;
|
||
|
vsi_node->in_use = true;
|
||
|
/* invalidate the max queues whenever VSI gets added first time
|
||
|
* into the scheduler tree (boot or after reset). We need to
|
||
|
* recreate the child nodes all the time in these cases.
|
||
|
*/
|
||
|
vsi_ctx->sched.max_lanq[tc] = 0;
|
||
|
vsi_ctx->sched.max_rdmaq[tc] = 0;
|
||
|
}
|
||
|
|
||
|
/* update the VSI child nodes */
|
||
|
status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
|
||
|
owner);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
/* TC is enabled, resume the VSI if it is in the suspend state */
|
||
|
if (!vsi_node->in_use) {
|
||
|
u32 teid = le32_to_cpu(vsi_node->info.node_teid);
|
||
|
|
||
|
status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
|
||
|
if (!status)
|
||
|
vsi_node->in_use = true;
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
*
|
||
|
* This function removes single aggregator VSI info entry from
|
||
|
* aggregator list.
|
||
|
*/
|
||
|
static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
|
||
|
{
|
||
|
struct ice_sched_agg_info *agg_info;
|
||
|
struct ice_sched_agg_info *atmp;
|
||
|
|
||
|
list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
|
||
|
list_entry) {
|
||
|
struct ice_sched_agg_vsi_info *agg_vsi_info;
|
||
|
struct ice_sched_agg_vsi_info *vtmp;
|
||
|
|
||
|
list_for_each_entry_safe(agg_vsi_info, vtmp,
|
||
|
&agg_info->agg_vsi_list, list_entry)
|
||
|
if (agg_vsi_info->vsi_handle == vsi_handle) {
|
||
|
list_del(&agg_vsi_info->list_entry);
|
||
|
devm_kfree(ice_hw_to_dev(pi->hw),
|
||
|
agg_vsi_info);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
|
||
|
* @node: pointer to the sub-tree node
|
||
|
*
|
||
|
* This function checks for a leaf node presence in a given sub-tree node.
|
||
|
*/
|
||
|
static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
|
||
|
{
|
||
|
u8 i;
|
||
|
|
||
|
for (i = 0; i < node->num_children; i++)
|
||
|
if (ice_sched_is_leaf_node_present(node->children[i]))
|
||
|
return true;
|
||
|
/* check for a leaf node */
|
||
|
return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @owner: LAN or RDMA
|
||
|
*
|
||
|
* This function removes the VSI and its LAN or RDMA children nodes from the
|
||
|
* scheduler tree.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
|
||
|
{
|
||
|
struct ice_vsi_ctx *vsi_ctx;
|
||
|
int status = -EINVAL;
|
||
|
u8 i;
|
||
|
|
||
|
ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
|
||
|
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
|
||
|
return status;
|
||
|
mutex_lock(&pi->sched_lock);
|
||
|
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
|
||
|
if (!vsi_ctx)
|
||
|
goto exit_sched_rm_vsi_cfg;
|
||
|
|
||
|
ice_for_each_traffic_class(i) {
|
||
|
struct ice_sched_node *vsi_node, *tc_node;
|
||
|
u8 j = 0;
|
||
|
|
||
|
tc_node = ice_sched_get_tc_node(pi, i);
|
||
|
if (!tc_node)
|
||
|
continue;
|
||
|
|
||
|
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
|
||
|
if (!vsi_node)
|
||
|
continue;
|
||
|
|
||
|
if (ice_sched_is_leaf_node_present(vsi_node)) {
|
||
|
ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
|
||
|
status = -EBUSY;
|
||
|
goto exit_sched_rm_vsi_cfg;
|
||
|
}
|
||
|
while (j < vsi_node->num_children) {
|
||
|
if (vsi_node->children[j]->owner == owner) {
|
||
|
ice_free_sched_node(pi, vsi_node->children[j]);
|
||
|
|
||
|
/* reset the counter again since the num
|
||
|
* children will be updated after node removal
|
||
|
*/
|
||
|
j = 0;
|
||
|
} else {
|
||
|
j++;
|
||
|
}
|
||
|
}
|
||
|
/* remove the VSI if it has no children */
|
||
|
if (!vsi_node->num_children) {
|
||
|
ice_free_sched_node(pi, vsi_node);
|
||
|
vsi_ctx->sched.vsi_node[i] = NULL;
|
||
|
|
||
|
/* clean up aggregator related VSI info if any */
|
||
|
ice_sched_rm_agg_vsi_info(pi, vsi_handle);
|
||
|
}
|
||
|
if (owner == ICE_SCHED_NODE_OWNER_LAN)
|
||
|
vsi_ctx->sched.max_lanq[i] = 0;
|
||
|
else
|
||
|
vsi_ctx->sched.max_rdmaq[i] = 0;
|
||
|
}
|
||
|
status = 0;
|
||
|
|
||
|
exit_sched_rm_vsi_cfg:
|
||
|
mutex_unlock(&pi->sched_lock);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
*
|
||
|
* This function clears the VSI and its LAN children nodes from scheduler tree
|
||
|
* for all TCs.
|
||
|
*/
|
||
|
int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
|
||
|
{
|
||
|
return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
*
|
||
|
* This function clears the VSI and its RDMA children nodes from scheduler tree
|
||
|
* for all TCs.
|
||
|
*/
|
||
|
int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
|
||
|
{
|
||
|
return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_get_agg_info - get the aggregator ID
|
||
|
* @hw: pointer to the hardware structure
|
||
|
* @agg_id: aggregator ID
|
||
|
*
|
||
|
* This function validates aggregator ID. The function returns info if
|
||
|
* aggregator ID is present in list otherwise it returns null.
|
||
|
*/
|
||
|
static struct ice_sched_agg_info *
|
||
|
ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
|
||
|
{
|
||
|
struct ice_sched_agg_info *agg_info;
|
||
|
|
||
|
list_for_each_entry(agg_info, &hw->agg_list, list_entry)
|
||
|
if (agg_info->agg_id == agg_id)
|
||
|
return agg_info;
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @node: pointer to a child node
|
||
|
* @num_nodes: num nodes count array
|
||
|
*
|
||
|
* This function walks through the aggregator subtree to find a free parent
|
||
|
* node
|
||
|
*/
|
||
|
static struct ice_sched_node *
|
||
|
ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
|
||
|
u16 *num_nodes)
|
||
|
{
|
||
|
u8 l = node->tx_sched_layer;
|
||
|
u8 vsil, i;
|
||
|
|
||
|
vsil = ice_sched_get_vsi_layer(hw);
|
||
|
|
||
|
/* Is it VSI parent layer ? */
|
||
|
if (l == vsil - 1)
|
||
|
return (node->num_children < hw->max_children[l]) ? node : NULL;
|
||
|
|
||
|
/* We have intermediate nodes. Let's walk through the subtree. If the
|
||
|
* intermediate node has space to add a new node then clear the count
|
||
|
*/
|
||
|
if (node->num_children < hw->max_children[l])
|
||
|
num_nodes[l] = 0;
|
||
|
/* The below recursive call is intentional and wouldn't go more than
|
||
|
* 2 or 3 iterations.
|
||
|
*/
|
||
|
|
||
|
for (i = 0; i < node->num_children; i++) {
|
||
|
struct ice_sched_node *parent;
|
||
|
|
||
|
parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
|
||
|
num_nodes);
|
||
|
if (parent)
|
||
|
return parent;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_update_parent - update the new parent in SW DB
|
||
|
* @new_parent: pointer to a new parent node
|
||
|
* @node: pointer to a child node
|
||
|
*
|
||
|
* This function removes the child from the old parent and adds it to a new
|
||
|
* parent
|
||
|
*/
|
||
|
static void
|
||
|
ice_sched_update_parent(struct ice_sched_node *new_parent,
|
||
|
struct ice_sched_node *node)
|
||
|
{
|
||
|
struct ice_sched_node *old_parent;
|
||
|
u8 i, j;
|
||
|
|
||
|
old_parent = node->parent;
|
||
|
|
||
|
/* update the old parent children */
|
||
|
for (i = 0; i < old_parent->num_children; i++)
|
||
|
if (old_parent->children[i] == node) {
|
||
|
for (j = i + 1; j < old_parent->num_children; j++)
|
||
|
old_parent->children[j - 1] =
|
||
|
old_parent->children[j];
|
||
|
old_parent->num_children--;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* now move the node to a new parent */
|
||
|
new_parent->children[new_parent->num_children++] = node;
|
||
|
node->parent = new_parent;
|
||
|
node->info.parent_teid = new_parent->info.node_teid;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_move_nodes - move child nodes to a given parent
|
||
|
* @pi: port information structure
|
||
|
* @parent: pointer to parent node
|
||
|
* @num_items: number of child nodes to be moved
|
||
|
* @list: pointer to child node teids
|
||
|
*
|
||
|
* This function move the child nodes to a given parent.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
|
||
|
u16 num_items, u32 *list)
|
||
|
{
|
||
|
struct ice_aqc_move_elem *buf;
|
||
|
struct ice_sched_node *node;
|
||
|
u16 i, grps_movd = 0;
|
||
|
struct ice_hw *hw;
|
||
|
int status = 0;
|
||
|
u16 buf_len;
|
||
|
|
||
|
hw = pi->hw;
|
||
|
|
||
|
if (!parent || !num_items)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Does parent have enough space */
|
||
|
if (parent->num_children + num_items >
|
||
|
hw->max_children[parent->tx_sched_layer])
|
||
|
return -ENOSPC;
|
||
|
|
||
|
buf_len = struct_size(buf, teid, 1);
|
||
|
buf = kzalloc(buf_len, GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
for (i = 0; i < num_items; i++) {
|
||
|
node = ice_sched_find_node_by_teid(pi->root, list[i]);
|
||
|
if (!node) {
|
||
|
status = -EINVAL;
|
||
|
goto move_err_exit;
|
||
|
}
|
||
|
|
||
|
buf->hdr.src_parent_teid = node->info.parent_teid;
|
||
|
buf->hdr.dest_parent_teid = parent->info.node_teid;
|
||
|
buf->teid[0] = node->info.node_teid;
|
||
|
buf->hdr.num_elems = cpu_to_le16(1);
|
||
|
status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
|
||
|
&grps_movd, NULL);
|
||
|
if (status && grps_movd != 1) {
|
||
|
status = -EIO;
|
||
|
goto move_err_exit;
|
||
|
}
|
||
|
|
||
|
/* update the SW DB */
|
||
|
ice_sched_update_parent(parent, node);
|
||
|
}
|
||
|
|
||
|
move_err_exit:
|
||
|
kfree(buf);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_move_vsi_to_agg - move VSI to aggregator node
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @agg_id: aggregator ID
|
||
|
* @tc: TC number
|
||
|
*
|
||
|
* This function moves a VSI to an aggregator node or its subtree.
|
||
|
* Intermediate nodes may be created if required.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
|
||
|
u8 tc)
|
||
|
{
|
||
|
struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
|
||
|
u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
|
||
|
u32 first_node_teid, vsi_teid;
|
||
|
u16 num_nodes_added;
|
||
|
u8 aggl, vsil, i;
|
||
|
int status;
|
||
|
|
||
|
tc_node = ice_sched_get_tc_node(pi, tc);
|
||
|
if (!tc_node)
|
||
|
return -EIO;
|
||
|
|
||
|
agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
|
||
|
if (!agg_node)
|
||
|
return -ENOENT;
|
||
|
|
||
|
vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
|
||
|
if (!vsi_node)
|
||
|
return -ENOENT;
|
||
|
|
||
|
/* Is this VSI already part of given aggregator? */
|
||
|
if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
|
||
|
return 0;
|
||
|
|
||
|
aggl = ice_sched_get_agg_layer(pi->hw);
|
||
|
vsil = ice_sched_get_vsi_layer(pi->hw);
|
||
|
|
||
|
/* set intermediate node count to 1 between aggregator and VSI layers */
|
||
|
for (i = aggl + 1; i < vsil; i++)
|
||
|
num_nodes[i] = 1;
|
||
|
|
||
|
/* Check if the aggregator subtree has any free node to add the VSI */
|
||
|
for (i = 0; i < agg_node->num_children; i++) {
|
||
|
parent = ice_sched_get_free_vsi_parent(pi->hw,
|
||
|
agg_node->children[i],
|
||
|
num_nodes);
|
||
|
if (parent)
|
||
|
goto move_nodes;
|
||
|
}
|
||
|
|
||
|
/* add new nodes */
|
||
|
parent = agg_node;
|
||
|
for (i = aggl + 1; i < vsil; i++) {
|
||
|
status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
|
||
|
num_nodes[i],
|
||
|
&first_node_teid,
|
||
|
&num_nodes_added);
|
||
|
if (status || num_nodes[i] != num_nodes_added)
|
||
|
return -EIO;
|
||
|
|
||
|
/* The newly added node can be a new parent for the next
|
||
|
* layer nodes
|
||
|
*/
|
||
|
if (num_nodes_added)
|
||
|
parent = ice_sched_find_node_by_teid(tc_node,
|
||
|
first_node_teid);
|
||
|
else
|
||
|
parent = parent->children[0];
|
||
|
|
||
|
if (!parent)
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
move_nodes:
|
||
|
vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
|
||
|
return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
|
||
|
* @pi: port information structure
|
||
|
* @agg_info: aggregator info
|
||
|
* @tc: traffic class number
|
||
|
* @rm_vsi_info: true or false
|
||
|
*
|
||
|
* This function move all the VSI(s) to the default aggregator and delete
|
||
|
* aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
|
||
|
* caller holds the scheduler lock.
|
||
|
*/
|
||
|
static int
|
||
|
ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
|
||
|
struct ice_sched_agg_info *agg_info, u8 tc,
|
||
|
bool rm_vsi_info)
|
||
|
{
|
||
|
struct ice_sched_agg_vsi_info *agg_vsi_info;
|
||
|
struct ice_sched_agg_vsi_info *tmp;
|
||
|
int status = 0;
|
||
|
|
||
|
list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
|
||
|
list_entry) {
|
||
|
u16 vsi_handle = agg_vsi_info->vsi_handle;
|
||
|
|
||
|
/* Move VSI to default aggregator */
|
||
|
if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
|
||
|
continue;
|
||
|
|
||
|
status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
|
||
|
ICE_DFLT_AGG_ID, tc);
|
||
|
if (status)
|
||
|
break;
|
||
|
|
||
|
clear_bit(tc, agg_vsi_info->tc_bitmap);
|
||
|
if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
|
||
|
list_del(&agg_vsi_info->list_entry);
|
||
|
devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_is_agg_inuse - check whether the aggregator is in use or not
|
||
|
* @pi: port information structure
|
||
|
* @node: node pointer
|
||
|
*
|
||
|
* This function checks whether the aggregator is attached with any VSI or not.
|
||
|
*/
|
||
|
static bool
|
||
|
ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
|
||
|
{
|
||
|
u8 vsil, i;
|
||
|
|
||
|
vsil = ice_sched_get_vsi_layer(pi->hw);
|
||
|
if (node->tx_sched_layer < vsil - 1) {
|
||
|
for (i = 0; i < node->num_children; i++)
|
||
|
if (ice_sched_is_agg_inuse(pi, node->children[i]))
|
||
|
return true;
|
||
|
return false;
|
||
|
} else {
|
||
|
return node->num_children ? true : false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_rm_agg_cfg - remove the aggregator node
|
||
|
* @pi: port information structure
|
||
|
* @agg_id: aggregator ID
|
||
|
* @tc: TC number
|
||
|
*
|
||
|
* This function removes the aggregator node and intermediate nodes if any
|
||
|
* from the given TC
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
|
||
|
{
|
||
|
struct ice_sched_node *tc_node, *agg_node;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
|
||
|
tc_node = ice_sched_get_tc_node(pi, tc);
|
||
|
if (!tc_node)
|
||
|
return -EIO;
|
||
|
|
||
|
agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
|
||
|
if (!agg_node)
|
||
|
return -ENOENT;
|
||
|
|
||
|
/* Can't remove the aggregator node if it has children */
|
||
|
if (ice_sched_is_agg_inuse(pi, agg_node))
|
||
|
return -EBUSY;
|
||
|
|
||
|
/* need to remove the whole subtree if aggregator node is the
|
||
|
* only child.
|
||
|
*/
|
||
|
while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
|
||
|
struct ice_sched_node *parent = agg_node->parent;
|
||
|
|
||
|
if (!parent)
|
||
|
return -EIO;
|
||
|
|
||
|
if (parent->num_children > 1)
|
||
|
break;
|
||
|
|
||
|
agg_node = parent;
|
||
|
}
|
||
|
|
||
|
ice_free_sched_node(pi, agg_node);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_rm_agg_cfg_tc - remove aggregator configuration for TC
|
||
|
* @pi: port information structure
|
||
|
* @agg_info: aggregator ID
|
||
|
* @tc: TC number
|
||
|
* @rm_vsi_info: bool value true or false
|
||
|
*
|
||
|
* This function removes aggregator reference to VSI of given TC. It removes
|
||
|
* the aggregator configuration completely for requested TC. The caller needs
|
||
|
* to hold the scheduler lock.
|
||
|
*/
|
||
|
static int
|
||
|
ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
|
||
|
u8 tc, bool rm_vsi_info)
|
||
|
{
|
||
|
int status = 0;
|
||
|
|
||
|
/* If nothing to remove - return success */
|
||
|
if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
|
||
|
goto exit_rm_agg_cfg_tc;
|
||
|
|
||
|
status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
|
||
|
if (status)
|
||
|
goto exit_rm_agg_cfg_tc;
|
||
|
|
||
|
/* Delete aggregator node(s) */
|
||
|
status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
|
||
|
if (status)
|
||
|
goto exit_rm_agg_cfg_tc;
|
||
|
|
||
|
clear_bit(tc, agg_info->tc_bitmap);
|
||
|
exit_rm_agg_cfg_tc:
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_save_agg_tc_bitmap - save aggregator TC bitmap
|
||
|
* @pi: port information structure
|
||
|
* @agg_id: aggregator ID
|
||
|
* @tc_bitmap: 8 bits TC bitmap
|
||
|
*
|
||
|
* Save aggregator TC bitmap. This function needs to be called with scheduler
|
||
|
* lock held.
|
||
|
*/
|
||
|
static int
|
||
|
ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
|
||
|
unsigned long *tc_bitmap)
|
||
|
{
|
||
|
struct ice_sched_agg_info *agg_info;
|
||
|
|
||
|
agg_info = ice_get_agg_info(pi->hw, agg_id);
|
||
|
if (!agg_info)
|
||
|
return -EINVAL;
|
||
|
bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
|
||
|
ICE_MAX_TRAFFIC_CLASS);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_agg_cfg - create an aggregator node
|
||
|
* @pi: port information structure
|
||
|
* @agg_id: aggregator ID
|
||
|
* @tc: TC number
|
||
|
*
|
||
|
* This function creates an aggregator node and intermediate nodes if required
|
||
|
* for the given TC
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
|
||
|
{
|
||
|
struct ice_sched_node *parent, *agg_node, *tc_node;
|
||
|
u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
u32 first_node_teid;
|
||
|
u16 num_nodes_added;
|
||
|
int status = 0;
|
||
|
u8 i, aggl;
|
||
|
|
||
|
tc_node = ice_sched_get_tc_node(pi, tc);
|
||
|
if (!tc_node)
|
||
|
return -EIO;
|
||
|
|
||
|
agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
|
||
|
/* Does Agg node already exist ? */
|
||
|
if (agg_node)
|
||
|
return status;
|
||
|
|
||
|
aggl = ice_sched_get_agg_layer(hw);
|
||
|
|
||
|
/* need one node in Agg layer */
|
||
|
num_nodes[aggl] = 1;
|
||
|
|
||
|
/* Check whether the intermediate nodes have space to add the
|
||
|
* new aggregator. If they are full, then SW needs to allocate a new
|
||
|
* intermediate node on those layers
|
||
|
*/
|
||
|
for (i = hw->sw_entry_point_layer; i < aggl; i++) {
|
||
|
parent = ice_sched_get_first_node(pi, tc_node, i);
|
||
|
|
||
|
/* scan all the siblings */
|
||
|
while (parent) {
|
||
|
if (parent->num_children < hw->max_children[i])
|
||
|
break;
|
||
|
parent = parent->sibling;
|
||
|
}
|
||
|
|
||
|
/* all the nodes are full, reserve one for this layer */
|
||
|
if (!parent)
|
||
|
num_nodes[i]++;
|
||
|
}
|
||
|
|
||
|
/* add the aggregator node */
|
||
|
parent = tc_node;
|
||
|
for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
|
||
|
if (!parent)
|
||
|
return -EIO;
|
||
|
|
||
|
status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
|
||
|
num_nodes[i],
|
||
|
&first_node_teid,
|
||
|
&num_nodes_added);
|
||
|
if (status || num_nodes[i] != num_nodes_added)
|
||
|
return -EIO;
|
||
|
|
||
|
/* The newly added node can be a new parent for the next
|
||
|
* layer nodes
|
||
|
*/
|
||
|
if (num_nodes_added) {
|
||
|
parent = ice_sched_find_node_by_teid(tc_node,
|
||
|
first_node_teid);
|
||
|
/* register aggregator ID with the aggregator node */
|
||
|
if (parent && i == aggl)
|
||
|
parent->agg_id = agg_id;
|
||
|
} else {
|
||
|
parent = parent->children[0];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_cfg_agg - configure aggregator node
|
||
|
* @pi: port information structure
|
||
|
* @agg_id: aggregator ID
|
||
|
* @agg_type: aggregator type queue, VSI, or aggregator group
|
||
|
* @tc_bitmap: bits TC bitmap
|
||
|
*
|
||
|
* It registers a unique aggregator node into scheduler services. It
|
||
|
* allows a user to register with a unique ID to track it's resources.
|
||
|
* The aggregator type determines if this is a queue group, VSI group
|
||
|
* or aggregator group. It then creates the aggregator node(s) for requested
|
||
|
* TC(s) or removes an existing aggregator node including its configuration
|
||
|
* if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
|
||
|
* resources and remove aggregator ID.
|
||
|
* This function needs to be called with scheduler lock held.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
|
||
|
enum ice_agg_type agg_type, unsigned long *tc_bitmap)
|
||
|
{
|
||
|
struct ice_sched_agg_info *agg_info;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
int status = 0;
|
||
|
u8 tc;
|
||
|
|
||
|
agg_info = ice_get_agg_info(hw, agg_id);
|
||
|
if (!agg_info) {
|
||
|
/* Create new entry for new aggregator ID */
|
||
|
agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
|
||
|
GFP_KERNEL);
|
||
|
if (!agg_info)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
agg_info->agg_id = agg_id;
|
||
|
agg_info->agg_type = agg_type;
|
||
|
agg_info->tc_bitmap[0] = 0;
|
||
|
|
||
|
/* Initialize the aggregator VSI list head */
|
||
|
INIT_LIST_HEAD(&agg_info->agg_vsi_list);
|
||
|
|
||
|
/* Add new entry in aggregator list */
|
||
|
list_add(&agg_info->list_entry, &hw->agg_list);
|
||
|
}
|
||
|
/* Create aggregator node(s) for requested TC(s) */
|
||
|
ice_for_each_traffic_class(tc) {
|
||
|
if (!ice_is_tc_ena(*tc_bitmap, tc)) {
|
||
|
/* Delete aggregator cfg TC if it exists previously */
|
||
|
status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
|
||
|
if (status)
|
||
|
break;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Check if aggregator node for TC already exists */
|
||
|
if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
|
||
|
continue;
|
||
|
|
||
|
/* Create new aggregator node for TC */
|
||
|
status = ice_sched_add_agg_cfg(pi, agg_id, tc);
|
||
|
if (status)
|
||
|
break;
|
||
|
|
||
|
/* Save aggregator node's TC information */
|
||
|
set_bit(tc, agg_info->tc_bitmap);
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_cfg_agg - config aggregator node
|
||
|
* @pi: port information structure
|
||
|
* @agg_id: aggregator ID
|
||
|
* @agg_type: aggregator type queue, VSI, or aggregator group
|
||
|
* @tc_bitmap: bits TC bitmap
|
||
|
*
|
||
|
* This function configures aggregator node(s).
|
||
|
*/
|
||
|
int
|
||
|
ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
|
||
|
u8 tc_bitmap)
|
||
|
{
|
||
|
unsigned long bitmap = tc_bitmap;
|
||
|
int status;
|
||
|
|
||
|
mutex_lock(&pi->sched_lock);
|
||
|
status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
|
||
|
if (!status)
|
||
|
status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
|
||
|
mutex_unlock(&pi->sched_lock);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_get_agg_vsi_info - get the aggregator ID
|
||
|
* @agg_info: aggregator info
|
||
|
* @vsi_handle: software VSI handle
|
||
|
*
|
||
|
* The function returns aggregator VSI info based on VSI handle. This function
|
||
|
* needs to be called with scheduler lock held.
|
||
|
*/
|
||
|
static struct ice_sched_agg_vsi_info *
|
||
|
ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
|
||
|
{
|
||
|
struct ice_sched_agg_vsi_info *agg_vsi_info;
|
||
|
|
||
|
list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
|
||
|
if (agg_vsi_info->vsi_handle == vsi_handle)
|
||
|
return agg_vsi_info;
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_get_vsi_agg_info - get the aggregator info of VSI
|
||
|
* @hw: pointer to the hardware structure
|
||
|
* @vsi_handle: Sw VSI handle
|
||
|
*
|
||
|
* The function returns aggregator info of VSI represented via vsi_handle. The
|
||
|
* VSI has in this case a different aggregator than the default one. This
|
||
|
* function needs to be called with scheduler lock held.
|
||
|
*/
|
||
|
static struct ice_sched_agg_info *
|
||
|
ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
|
||
|
{
|
||
|
struct ice_sched_agg_info *agg_info;
|
||
|
|
||
|
list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
|
||
|
struct ice_sched_agg_vsi_info *agg_vsi_info;
|
||
|
|
||
|
agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
|
||
|
if (agg_vsi_info)
|
||
|
return agg_info;
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
|
||
|
* @pi: port information structure
|
||
|
* @agg_id: aggregator ID
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc_bitmap: TC bitmap of enabled TC(s)
|
||
|
*
|
||
|
* Save VSI to aggregator TC bitmap. This function needs to call with scheduler
|
||
|
* lock held.
|
||
|
*/
|
||
|
static int
|
||
|
ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
|
||
|
unsigned long *tc_bitmap)
|
||
|
{
|
||
|
struct ice_sched_agg_vsi_info *agg_vsi_info;
|
||
|
struct ice_sched_agg_info *agg_info;
|
||
|
|
||
|
agg_info = ice_get_agg_info(pi->hw, agg_id);
|
||
|
if (!agg_info)
|
||
|
return -EINVAL;
|
||
|
/* check if entry already exist */
|
||
|
agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
|
||
|
if (!agg_vsi_info)
|
||
|
return -EINVAL;
|
||
|
bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
|
||
|
ICE_MAX_TRAFFIC_CLASS);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
|
||
|
* @pi: port information structure
|
||
|
* @agg_id: aggregator ID
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc_bitmap: TC bitmap of enabled TC(s)
|
||
|
*
|
||
|
* This function moves VSI to a new or default aggregator node. If VSI is
|
||
|
* already associated to the aggregator node then no operation is performed on
|
||
|
* the tree. This function needs to be called with scheduler lock held.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
|
||
|
u16 vsi_handle, unsigned long *tc_bitmap)
|
||
|
{
|
||
|
struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL;
|
||
|
struct ice_sched_agg_info *agg_info, *old_agg_info;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
int status = 0;
|
||
|
u8 tc;
|
||
|
|
||
|
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
|
||
|
return -EINVAL;
|
||
|
agg_info = ice_get_agg_info(hw, agg_id);
|
||
|
if (!agg_info)
|
||
|
return -EINVAL;
|
||
|
/* If the VSI is already part of another aggregator then update
|
||
|
* its VSI info list
|
||
|
*/
|
||
|
old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
|
||
|
if (old_agg_info && old_agg_info != agg_info) {
|
||
|
struct ice_sched_agg_vsi_info *vtmp;
|
||
|
|
||
|
list_for_each_entry_safe(iter, vtmp,
|
||
|
&old_agg_info->agg_vsi_list,
|
||
|
list_entry)
|
||
|
if (iter->vsi_handle == vsi_handle) {
|
||
|
old_agg_vsi_info = iter;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* check if entry already exist */
|
||
|
agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
|
||
|
if (!agg_vsi_info) {
|
||
|
/* Create new entry for VSI under aggregator list */
|
||
|
agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
|
||
|
sizeof(*agg_vsi_info), GFP_KERNEL);
|
||
|
if (!agg_vsi_info)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* add VSI ID into the aggregator list */
|
||
|
agg_vsi_info->vsi_handle = vsi_handle;
|
||
|
list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
|
||
|
}
|
||
|
/* Move VSI node to new aggregator node for requested TC(s) */
|
||
|
ice_for_each_traffic_class(tc) {
|
||
|
if (!ice_is_tc_ena(*tc_bitmap, tc))
|
||
|
continue;
|
||
|
|
||
|
/* Move VSI to new aggregator */
|
||
|
status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
|
||
|
if (status)
|
||
|
break;
|
||
|
|
||
|
set_bit(tc, agg_vsi_info->tc_bitmap);
|
||
|
if (old_agg_vsi_info)
|
||
|
clear_bit(tc, old_agg_vsi_info->tc_bitmap);
|
||
|
}
|
||
|
if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
|
||
|
list_del(&old_agg_vsi_info->list_entry);
|
||
|
devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
|
||
|
}
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_rm_unused_rl_prof - remove unused RL profile
|
||
|
* @pi: port information structure
|
||
|
*
|
||
|
* This function removes unused rate limit profiles from the HW and
|
||
|
* SW DB. The caller needs to hold scheduler lock.
|
||
|
*/
|
||
|
static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
|
||
|
{
|
||
|
u16 ln;
|
||
|
|
||
|
for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
|
||
|
struct ice_aqc_rl_profile_info *rl_prof_elem;
|
||
|
struct ice_aqc_rl_profile_info *rl_prof_tmp;
|
||
|
|
||
|
list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
|
||
|
&pi->rl_prof_list[ln], list_entry) {
|
||
|
if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
|
||
|
ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_update_elem - update element
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @node: pointer to node
|
||
|
* @info: node info to update
|
||
|
*
|
||
|
* Update the HW DB, and local SW DB of node. Update the scheduling
|
||
|
* parameters of node from argument info data buffer (Info->data buf) and
|
||
|
* returns success or error on config sched element failure. The caller
|
||
|
* needs to hold scheduler lock.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
|
||
|
struct ice_aqc_txsched_elem_data *info)
|
||
|
{
|
||
|
struct ice_aqc_txsched_elem_data buf;
|
||
|
u16 elem_cfgd = 0;
|
||
|
u16 num_elems = 1;
|
||
|
int status;
|
||
|
|
||
|
buf = *info;
|
||
|
/* Parent TEID is reserved field in this aq call */
|
||
|
buf.parent_teid = 0;
|
||
|
/* Element type is reserved field in this aq call */
|
||
|
buf.data.elem_type = 0;
|
||
|
/* Flags is reserved field in this aq call */
|
||
|
buf.data.flags = 0;
|
||
|
|
||
|
/* Update HW DB */
|
||
|
/* Configure element node */
|
||
|
status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
|
||
|
&elem_cfgd, NULL);
|
||
|
if (status || elem_cfgd != num_elems) {
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
/* Config success case */
|
||
|
/* Now update local SW DB */
|
||
|
/* Only copy the data portion of info buffer */
|
||
|
node->info.data = info->data;
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @node: sched node to configure
|
||
|
* @rl_type: rate limit type CIR, EIR, or shared
|
||
|
* @bw_alloc: BW weight/allocation
|
||
|
*
|
||
|
* This function configures node element's BW allocation.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
|
||
|
enum ice_rl_type rl_type, u16 bw_alloc)
|
||
|
{
|
||
|
struct ice_aqc_txsched_elem_data buf;
|
||
|
struct ice_aqc_txsched_elem *data;
|
||
|
|
||
|
buf = node->info;
|
||
|
data = &buf.data;
|
||
|
if (rl_type == ICE_MIN_BW) {
|
||
|
data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
|
||
|
data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
|
||
|
} else if (rl_type == ICE_MAX_BW) {
|
||
|
data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
|
||
|
data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
|
||
|
} else {
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* Configure element */
|
||
|
return ice_sched_update_elem(hw, node, &buf);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_move_vsi_to_agg - moves VSI to new or default aggregator
|
||
|
* @pi: port information structure
|
||
|
* @agg_id: aggregator ID
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc_bitmap: TC bitmap of enabled TC(s)
|
||
|
*
|
||
|
* Move or associate VSI to a new or default aggregator node.
|
||
|
*/
|
||
|
int
|
||
|
ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
|
||
|
u8 tc_bitmap)
|
||
|
{
|
||
|
unsigned long bitmap = tc_bitmap;
|
||
|
int status;
|
||
|
|
||
|
mutex_lock(&pi->sched_lock);
|
||
|
status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
|
||
|
(unsigned long *)&bitmap);
|
||
|
if (!status)
|
||
|
status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
|
||
|
(unsigned long *)&bitmap);
|
||
|
mutex_unlock(&pi->sched_lock);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_set_clear_cir_bw - set or clear CIR BW
|
||
|
* @bw_t_info: bandwidth type information structure
|
||
|
* @bw: bandwidth in Kbps - Kilo bits per sec
|
||
|
*
|
||
|
* Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
|
||
|
*/
|
||
|
static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
|
||
|
{
|
||
|
if (bw == ICE_SCHED_DFLT_BW) {
|
||
|
clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
|
||
|
bw_t_info->cir_bw.bw = 0;
|
||
|
} else {
|
||
|
/* Save type of BW information */
|
||
|
set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
|
||
|
bw_t_info->cir_bw.bw = bw;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_set_clear_eir_bw - set or clear EIR BW
|
||
|
* @bw_t_info: bandwidth type information structure
|
||
|
* @bw: bandwidth in Kbps - Kilo bits per sec
|
||
|
*
|
||
|
* Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
|
||
|
*/
|
||
|
static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
|
||
|
{
|
||
|
if (bw == ICE_SCHED_DFLT_BW) {
|
||
|
clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
|
||
|
bw_t_info->eir_bw.bw = 0;
|
||
|
} else {
|
||
|
/* EIR BW and Shared BW profiles are mutually exclusive and
|
||
|
* hence only one of them may be set for any given element.
|
||
|
* First clear earlier saved shared BW information.
|
||
|
*/
|
||
|
clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
|
||
|
bw_t_info->shared_bw = 0;
|
||
|
/* save EIR BW information */
|
||
|
set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
|
||
|
bw_t_info->eir_bw.bw = bw;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_set_clear_shared_bw - set or clear shared BW
|
||
|
* @bw_t_info: bandwidth type information structure
|
||
|
* @bw: bandwidth in Kbps - Kilo bits per sec
|
||
|
*
|
||
|
* Save or clear shared bandwidth (BW) in the passed param bw_t_info.
|
||
|
*/
|
||
|
static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
|
||
|
{
|
||
|
if (bw == ICE_SCHED_DFLT_BW) {
|
||
|
clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
|
||
|
bw_t_info->shared_bw = 0;
|
||
|
} else {
|
||
|
/* EIR BW and Shared BW profiles are mutually exclusive and
|
||
|
* hence only one of them may be set for any given element.
|
||
|
* First clear earlier saved EIR BW information.
|
||
|
*/
|
||
|
clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
|
||
|
bw_t_info->eir_bw.bw = 0;
|
||
|
/* save shared BW information */
|
||
|
set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
|
||
|
bw_t_info->shared_bw = bw;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_save_vsi_bw - save VSI node's BW information
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: sw VSI handle
|
||
|
* @tc: traffic class
|
||
|
* @rl_type: rate limit type min, max, or shared
|
||
|
* @bw: bandwidth in Kbps - Kilo bits per sec
|
||
|
*
|
||
|
* Save BW information of VSI type node for post replay use.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
|
||
|
enum ice_rl_type rl_type, u32 bw)
|
||
|
{
|
||
|
struct ice_vsi_ctx *vsi_ctx;
|
||
|
|
||
|
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
|
||
|
return -EINVAL;
|
||
|
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
|
||
|
if (!vsi_ctx)
|
||
|
return -EINVAL;
|
||
|
switch (rl_type) {
|
||
|
case ICE_MIN_BW:
|
||
|
ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
|
||
|
break;
|
||
|
case ICE_MAX_BW:
|
||
|
ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
|
||
|
break;
|
||
|
case ICE_SHARED_BW:
|
||
|
ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
|
||
|
break;
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_calc_wakeup - calculate RL profile wakeup parameter
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @bw: bandwidth in Kbps
|
||
|
*
|
||
|
* This function calculates the wakeup parameter of RL profile.
|
||
|
*/
|
||
|
static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
|
||
|
{
|
||
|
s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
|
||
|
s32 wakeup_f_int;
|
||
|
u16 wakeup = 0;
|
||
|
|
||
|
/* Get the wakeup integer value */
|
||
|
bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
|
||
|
wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
|
||
|
if (wakeup_int > 63) {
|
||
|
wakeup = (u16)((1 << 15) | wakeup_int);
|
||
|
} else {
|
||
|
/* Calculate fraction value up to 4 decimals
|
||
|
* Convert Integer value to a constant multiplier
|
||
|
*/
|
||
|
wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
|
||
|
wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
|
||
|
hw->psm_clk_freq, bytes_per_sec);
|
||
|
|
||
|
/* Get Fraction value */
|
||
|
wakeup_f = wakeup_a - wakeup_b;
|
||
|
|
||
|
/* Round up the Fractional value via Ceil(Fractional value) */
|
||
|
if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
|
||
|
wakeup_f += 1;
|
||
|
|
||
|
wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
|
||
|
ICE_RL_PROF_MULTIPLIER);
|
||
|
wakeup |= (u16)(wakeup_int << 9);
|
||
|
wakeup |= (u16)(0x1ff & wakeup_f_int);
|
||
|
}
|
||
|
|
||
|
return wakeup;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_bw_to_rl_profile - convert BW to profile parameters
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @bw: bandwidth in Kbps
|
||
|
* @profile: profile parameters to return
|
||
|
*
|
||
|
* This function converts the BW to profile structure format.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
|
||
|
struct ice_aqc_rl_profile_elem *profile)
|
||
|
{
|
||
|
s64 bytes_per_sec, ts_rate, mv_tmp;
|
||
|
int status = -EINVAL;
|
||
|
bool found = false;
|
||
|
s32 encode = 0;
|
||
|
s64 mv = 0;
|
||
|
s32 i;
|
||
|
|
||
|
/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
|
||
|
if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
|
||
|
return status;
|
||
|
|
||
|
/* Bytes per second from Kbps */
|
||
|
bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
|
||
|
|
||
|
/* encode is 6 bits but really useful are 5 bits */
|
||
|
for (i = 0; i < 64; i++) {
|
||
|
u64 pow_result = BIT_ULL(i);
|
||
|
|
||
|
ts_rate = div64_long((s64)hw->psm_clk_freq,
|
||
|
pow_result * ICE_RL_PROF_TS_MULTIPLIER);
|
||
|
if (ts_rate <= 0)
|
||
|
continue;
|
||
|
|
||
|
/* Multiplier value */
|
||
|
mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
|
||
|
ts_rate);
|
||
|
|
||
|
/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
|
||
|
mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
|
||
|
|
||
|
/* First multiplier value greater than the given
|
||
|
* accuracy bytes
|
||
|
*/
|
||
|
if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
|
||
|
encode = i;
|
||
|
found = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (found) {
|
||
|
u16 wm;
|
||
|
|
||
|
wm = ice_sched_calc_wakeup(hw, bw);
|
||
|
profile->rl_multiply = cpu_to_le16(mv);
|
||
|
profile->wake_up_calc = cpu_to_le16(wm);
|
||
|
profile->rl_encode = cpu_to_le16(encode);
|
||
|
status = 0;
|
||
|
} else {
|
||
|
status = -ENOENT;
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_rl_profile - add RL profile
|
||
|
* @pi: port information structure
|
||
|
* @rl_type: type of rate limit BW - min, max, or shared
|
||
|
* @bw: bandwidth in Kbps - Kilo bits per sec
|
||
|
* @layer_num: specifies in which layer to create profile
|
||
|
*
|
||
|
* This function first checks the existing list for corresponding BW
|
||
|
* parameter. If it exists, it returns the associated profile otherwise
|
||
|
* it creates a new rate limit profile for requested BW, and adds it to
|
||
|
* the HW DB and local list. It returns the new profile or null on error.
|
||
|
* The caller needs to hold the scheduler lock.
|
||
|
*/
|
||
|
static struct ice_aqc_rl_profile_info *
|
||
|
ice_sched_add_rl_profile(struct ice_port_info *pi,
|
||
|
enum ice_rl_type rl_type, u32 bw, u8 layer_num)
|
||
|
{
|
||
|
struct ice_aqc_rl_profile_info *rl_prof_elem;
|
||
|
u16 profiles_added = 0, num_profiles = 1;
|
||
|
struct ice_aqc_rl_profile_elem *buf;
|
||
|
struct ice_hw *hw;
|
||
|
u8 profile_type;
|
||
|
int status;
|
||
|
|
||
|
if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
|
||
|
return NULL;
|
||
|
switch (rl_type) {
|
||
|
case ICE_MIN_BW:
|
||
|
profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
|
||
|
break;
|
||
|
case ICE_MAX_BW:
|
||
|
profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
|
||
|
break;
|
||
|
case ICE_SHARED_BW:
|
||
|
profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
|
||
|
break;
|
||
|
default:
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if (!pi)
|
||
|
return NULL;
|
||
|
hw = pi->hw;
|
||
|
list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
|
||
|
list_entry)
|
||
|
if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
|
||
|
profile_type && rl_prof_elem->bw == bw)
|
||
|
/* Return existing profile ID info */
|
||
|
return rl_prof_elem;
|
||
|
|
||
|
/* Create new profile ID */
|
||
|
rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
|
||
|
GFP_KERNEL);
|
||
|
|
||
|
if (!rl_prof_elem)
|
||
|
return NULL;
|
||
|
|
||
|
status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
|
||
|
if (status)
|
||
|
goto exit_add_rl_prof;
|
||
|
|
||
|
rl_prof_elem->bw = bw;
|
||
|
/* layer_num is zero relative, and fw expects level from 1 to 9 */
|
||
|
rl_prof_elem->profile.level = layer_num + 1;
|
||
|
rl_prof_elem->profile.flags = profile_type;
|
||
|
rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
|
||
|
|
||
|
/* Create new entry in HW DB */
|
||
|
buf = &rl_prof_elem->profile;
|
||
|
status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
|
||
|
&profiles_added, NULL);
|
||
|
if (status || profiles_added != num_profiles)
|
||
|
goto exit_add_rl_prof;
|
||
|
|
||
|
/* Good entry - add in the list */
|
||
|
rl_prof_elem->prof_id_ref = 0;
|
||
|
list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
|
||
|
return rl_prof_elem;
|
||
|
|
||
|
exit_add_rl_prof:
|
||
|
devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_cfg_node_bw_lmt - configure node sched params
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @node: sched node to configure
|
||
|
* @rl_type: rate limit type CIR, EIR, or shared
|
||
|
* @rl_prof_id: rate limit profile ID
|
||
|
*
|
||
|
* This function configures node element's BW limit.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
|
||
|
enum ice_rl_type rl_type, u16 rl_prof_id)
|
||
|
{
|
||
|
struct ice_aqc_txsched_elem_data buf;
|
||
|
struct ice_aqc_txsched_elem *data;
|
||
|
|
||
|
buf = node->info;
|
||
|
data = &buf.data;
|
||
|
switch (rl_type) {
|
||
|
case ICE_MIN_BW:
|
||
|
data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
|
||
|
data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
|
||
|
break;
|
||
|
case ICE_MAX_BW:
|
||
|
/* EIR BW and Shared BW profiles are mutually exclusive and
|
||
|
* hence only one of them may be set for any given element
|
||
|
*/
|
||
|
if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
|
||
|
return -EIO;
|
||
|
data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
|
||
|
data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
|
||
|
break;
|
||
|
case ICE_SHARED_BW:
|
||
|
/* Check for removing shared BW */
|
||
|
if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
|
||
|
/* remove shared profile */
|
||
|
data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
|
||
|
data->srl_id = 0; /* clear SRL field */
|
||
|
|
||
|
/* enable back EIR to default profile */
|
||
|
data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
|
||
|
data->eir_bw.bw_profile_idx =
|
||
|
cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
|
||
|
break;
|
||
|
}
|
||
|
/* EIR BW and Shared BW profiles are mutually exclusive and
|
||
|
* hence only one of them may be set for any given element
|
||
|
*/
|
||
|
if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
|
||
|
(le16_to_cpu(data->eir_bw.bw_profile_idx) !=
|
||
|
ICE_SCHED_DFLT_RL_PROF_ID))
|
||
|
return -EIO;
|
||
|
/* EIR BW is set to default, disable it */
|
||
|
data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
|
||
|
/* Okay to enable shared BW now */
|
||
|
data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
|
||
|
data->srl_id = cpu_to_le16(rl_prof_id);
|
||
|
break;
|
||
|
default:
|
||
|
/* Unknown rate limit type */
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* Configure element */
|
||
|
return ice_sched_update_elem(hw, node, &buf);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
|
||
|
* @node: sched node
|
||
|
* @rl_type: rate limit type
|
||
|
*
|
||
|
* If existing profile matches, it returns the corresponding rate
|
||
|
* limit profile ID, otherwise it returns an invalid ID as error.
|
||
|
*/
|
||
|
static u16
|
||
|
ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
|
||
|
enum ice_rl_type rl_type)
|
||
|
{
|
||
|
u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
|
||
|
struct ice_aqc_txsched_elem *data;
|
||
|
|
||
|
data = &node->info.data;
|
||
|
switch (rl_type) {
|
||
|
case ICE_MIN_BW:
|
||
|
if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
|
||
|
rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
|
||
|
break;
|
||
|
case ICE_MAX_BW:
|
||
|
if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
|
||
|
rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
|
||
|
break;
|
||
|
case ICE_SHARED_BW:
|
||
|
if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
|
||
|
rl_prof_id = le16_to_cpu(data->srl_id);
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return rl_prof_id;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
|
||
|
* @pi: port information structure
|
||
|
* @rl_type: type of rate limit BW - min, max, or shared
|
||
|
* @layer_index: layer index
|
||
|
*
|
||
|
* This function returns requested profile creation layer.
|
||
|
*/
|
||
|
static u8
|
||
|
ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
|
||
|
u8 layer_index)
|
||
|
{
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
|
||
|
if (layer_index >= hw->num_tx_sched_layers)
|
||
|
return ICE_SCHED_INVAL_LAYER_NUM;
|
||
|
switch (rl_type) {
|
||
|
case ICE_MIN_BW:
|
||
|
if (hw->layer_info[layer_index].max_cir_rl_profiles)
|
||
|
return layer_index;
|
||
|
break;
|
||
|
case ICE_MAX_BW:
|
||
|
if (hw->layer_info[layer_index].max_eir_rl_profiles)
|
||
|
return layer_index;
|
||
|
break;
|
||
|
case ICE_SHARED_BW:
|
||
|
/* if current layer doesn't support SRL profile creation
|
||
|
* then try a layer up or down.
|
||
|
*/
|
||
|
if (hw->layer_info[layer_index].max_srl_profiles)
|
||
|
return layer_index;
|
||
|
else if (layer_index < hw->num_tx_sched_layers - 1 &&
|
||
|
hw->layer_info[layer_index + 1].max_srl_profiles)
|
||
|
return layer_index + 1;
|
||
|
else if (layer_index > 0 &&
|
||
|
hw->layer_info[layer_index - 1].max_srl_profiles)
|
||
|
return layer_index - 1;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
return ICE_SCHED_INVAL_LAYER_NUM;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_srl_node - get shared rate limit node
|
||
|
* @node: tree node
|
||
|
* @srl_layer: shared rate limit layer
|
||
|
*
|
||
|
* This function returns SRL node to be used for shared rate limit purpose.
|
||
|
* The caller needs to hold scheduler lock.
|
||
|
*/
|
||
|
static struct ice_sched_node *
|
||
|
ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
|
||
|
{
|
||
|
if (srl_layer > node->tx_sched_layer)
|
||
|
return node->children[0];
|
||
|
else if (srl_layer < node->tx_sched_layer)
|
||
|
/* Node can't be created without a parent. It will always
|
||
|
* have a valid parent except root node.
|
||
|
*/
|
||
|
return node->parent;
|
||
|
else
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_rm_rl_profile - remove RL profile ID
|
||
|
* @pi: port information structure
|
||
|
* @layer_num: layer number where profiles are saved
|
||
|
* @profile_type: profile type like EIR, CIR, or SRL
|
||
|
* @profile_id: profile ID to remove
|
||
|
*
|
||
|
* This function removes rate limit profile from layer 'layer_num' of type
|
||
|
* 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
|
||
|
* scheduler lock.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
|
||
|
u16 profile_id)
|
||
|
{
|
||
|
struct ice_aqc_rl_profile_info *rl_prof_elem;
|
||
|
int status = 0;
|
||
|
|
||
|
if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
|
||
|
return -EINVAL;
|
||
|
/* Check the existing list for RL profile */
|
||
|
list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
|
||
|
list_entry)
|
||
|
if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
|
||
|
profile_type &&
|
||
|
le16_to_cpu(rl_prof_elem->profile.profile_id) ==
|
||
|
profile_id) {
|
||
|
if (rl_prof_elem->prof_id_ref)
|
||
|
rl_prof_elem->prof_id_ref--;
|
||
|
|
||
|
/* Remove old profile ID from database */
|
||
|
status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
|
||
|
if (status && status != -EBUSY)
|
||
|
ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
|
||
|
break;
|
||
|
}
|
||
|
if (status == -EBUSY)
|
||
|
status = 0;
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
|
||
|
* @pi: port information structure
|
||
|
* @node: pointer to node structure
|
||
|
* @rl_type: rate limit type min, max, or shared
|
||
|
* @layer_num: layer number where RL profiles are saved
|
||
|
*
|
||
|
* This function configures node element's BW rate limit profile ID of
|
||
|
* type CIR, EIR, or SRL to default. This function needs to be called
|
||
|
* with the scheduler lock held.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
|
||
|
struct ice_sched_node *node,
|
||
|
enum ice_rl_type rl_type, u8 layer_num)
|
||
|
{
|
||
|
struct ice_hw *hw;
|
||
|
u8 profile_type;
|
||
|
u16 rl_prof_id;
|
||
|
u16 old_id;
|
||
|
int status;
|
||
|
|
||
|
hw = pi->hw;
|
||
|
switch (rl_type) {
|
||
|
case ICE_MIN_BW:
|
||
|
profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
|
||
|
rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
|
||
|
break;
|
||
|
case ICE_MAX_BW:
|
||
|
profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
|
||
|
rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
|
||
|
break;
|
||
|
case ICE_SHARED_BW:
|
||
|
profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
|
||
|
/* No SRL is configured for default case */
|
||
|
rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
|
||
|
break;
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
/* Save existing RL prof ID for later clean up */
|
||
|
old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
|
||
|
/* Configure BW scheduling parameters */
|
||
|
status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
/* Remove stale RL profile ID */
|
||
|
if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
|
||
|
old_id == ICE_SCHED_INVAL_PROF_ID)
|
||
|
return 0;
|
||
|
|
||
|
return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
|
||
|
* @pi: port information structure
|
||
|
* @node: pointer to node structure
|
||
|
* @layer_num: layer number where rate limit profiles are saved
|
||
|
* @rl_type: rate limit type min, max, or shared
|
||
|
* @bw: bandwidth value
|
||
|
*
|
||
|
* This function prepares node element's bandwidth to SRL or EIR exclusively.
|
||
|
* EIR BW and Shared BW profiles are mutually exclusive and hence only one of
|
||
|
* them may be set for any given element. This function needs to be called
|
||
|
* with the scheduler lock held.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
|
||
|
struct ice_sched_node *node,
|
||
|
u8 layer_num, enum ice_rl_type rl_type, u32 bw)
|
||
|
{
|
||
|
if (rl_type == ICE_SHARED_BW) {
|
||
|
/* SRL node passed in this case, it may be different node */
|
||
|
if (bw == ICE_SCHED_DFLT_BW)
|
||
|
/* SRL being removed, ice_sched_cfg_node_bw_lmt()
|
||
|
* enables EIR to default. EIR is not set in this
|
||
|
* case, so no additional action is required.
|
||
|
*/
|
||
|
return 0;
|
||
|
|
||
|
/* SRL being configured, set EIR to default here.
|
||
|
* ice_sched_cfg_node_bw_lmt() disables EIR when it
|
||
|
* configures SRL
|
||
|
*/
|
||
|
return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
|
||
|
layer_num);
|
||
|
} else if (rl_type == ICE_MAX_BW &&
|
||
|
node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
|
||
|
/* Remove Shared profile. Set default shared BW call
|
||
|
* removes shared profile for a node.
|
||
|
*/
|
||
|
return ice_sched_set_node_bw_dflt(pi, node,
|
||
|
ICE_SHARED_BW,
|
||
|
layer_num);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_set_node_bw - set node's bandwidth
|
||
|
* @pi: port information structure
|
||
|
* @node: tree node
|
||
|
* @rl_type: rate limit type min, max, or shared
|
||
|
* @bw: bandwidth in Kbps - Kilo bits per sec
|
||
|
* @layer_num: layer number
|
||
|
*
|
||
|
* This function adds new profile corresponding to requested BW, configures
|
||
|
* node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
|
||
|
* ID from local database. The caller needs to hold scheduler lock.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
|
||
|
enum ice_rl_type rl_type, u32 bw, u8 layer_num)
|
||
|
{
|
||
|
struct ice_aqc_rl_profile_info *rl_prof_info;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
u16 old_id, rl_prof_id;
|
||
|
int status = -EINVAL;
|
||
|
|
||
|
rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
|
||
|
if (!rl_prof_info)
|
||
|
return status;
|
||
|
|
||
|
rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
|
||
|
|
||
|
/* Save existing RL prof ID for later clean up */
|
||
|
old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
|
||
|
/* Configure BW scheduling parameters */
|
||
|
status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
/* New changes has been applied */
|
||
|
/* Increment the profile ID reference count */
|
||
|
rl_prof_info->prof_id_ref++;
|
||
|
|
||
|
/* Check for old ID removal */
|
||
|
if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
|
||
|
old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
|
||
|
return 0;
|
||
|
|
||
|
return ice_sched_rm_rl_profile(pi, layer_num,
|
||
|
rl_prof_info->profile.flags &
|
||
|
ICE_AQC_RL_PROFILE_TYPE_M, old_id);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_set_node_bw_lmt - set node's BW limit
|
||
|
* @pi: port information structure
|
||
|
* @node: tree node
|
||
|
* @rl_type: rate limit type min, max, or shared
|
||
|
* @bw: bandwidth in Kbps - Kilo bits per sec
|
||
|
*
|
||
|
* It updates node's BW limit parameters like BW RL profile ID of type CIR,
|
||
|
* EIR, or SRL. The caller needs to hold scheduler lock.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
|
||
|
enum ice_rl_type rl_type, u32 bw)
|
||
|
{
|
||
|
struct ice_sched_node *cfg_node = node;
|
||
|
int status;
|
||
|
|
||
|
struct ice_hw *hw;
|
||
|
u8 layer_num;
|
||
|
|
||
|
if (!pi)
|
||
|
return -EINVAL;
|
||
|
hw = pi->hw;
|
||
|
/* Remove unused RL profile IDs from HW and SW DB */
|
||
|
ice_sched_rm_unused_rl_prof(pi);
|
||
|
layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
|
||
|
node->tx_sched_layer);
|
||
|
if (layer_num >= hw->num_tx_sched_layers)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (rl_type == ICE_SHARED_BW) {
|
||
|
/* SRL node may be different */
|
||
|
cfg_node = ice_sched_get_srl_node(node, layer_num);
|
||
|
if (!cfg_node)
|
||
|
return -EIO;
|
||
|
}
|
||
|
/* EIR BW and Shared BW profiles are mutually exclusive and
|
||
|
* hence only one of them may be set for any given element
|
||
|
*/
|
||
|
status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
|
||
|
bw);
|
||
|
if (status)
|
||
|
return status;
|
||
|
if (bw == ICE_SCHED_DFLT_BW)
|
||
|
return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
|
||
|
layer_num);
|
||
|
return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
|
||
|
* @pi: port information structure
|
||
|
* @node: pointer to node structure
|
||
|
* @rl_type: rate limit type min, max, or shared
|
||
|
*
|
||
|
* This function configures node element's BW rate limit profile ID of
|
||
|
* type CIR, EIR, or SRL to default. This function needs to be called
|
||
|
* with the scheduler lock held.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
|
||
|
struct ice_sched_node *node,
|
||
|
enum ice_rl_type rl_type)
|
||
|
{
|
||
|
return ice_sched_set_node_bw_lmt(pi, node, rl_type,
|
||
|
ICE_SCHED_DFLT_BW);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_validate_srl_node - Check node for SRL applicability
|
||
|
* @node: sched node to configure
|
||
|
* @sel_layer: selected SRL layer
|
||
|
*
|
||
|
* This function checks if the SRL can be applied to a selected layer node on
|
||
|
* behalf of the requested node (first argument). This function needs to be
|
||
|
* called with scheduler lock held.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
|
||
|
{
|
||
|
/* SRL profiles are not available on all layers. Check if the
|
||
|
* SRL profile can be applied to a node above or below the
|
||
|
* requested node. SRL configuration is possible only if the
|
||
|
* selected layer's node has single child.
|
||
|
*/
|
||
|
if (sel_layer == node->tx_sched_layer ||
|
||
|
((sel_layer == node->tx_sched_layer + 1) &&
|
||
|
node->num_children == 1) ||
|
||
|
((sel_layer == node->tx_sched_layer - 1) &&
|
||
|
(node->parent && node->parent->num_children == 1)))
|
||
|
return 0;
|
||
|
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_save_q_bw - save queue node's BW information
|
||
|
* @q_ctx: queue context structure
|
||
|
* @rl_type: rate limit type min, max, or shared
|
||
|
* @bw: bandwidth in Kbps - Kilo bits per sec
|
||
|
*
|
||
|
* Save BW information of queue type node for post replay use.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
|
||
|
{
|
||
|
switch (rl_type) {
|
||
|
case ICE_MIN_BW:
|
||
|
ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
|
||
|
break;
|
||
|
case ICE_MAX_BW:
|
||
|
ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
|
||
|
break;
|
||
|
case ICE_SHARED_BW:
|
||
|
ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
|
||
|
break;
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_set_q_bw_lmt - sets queue BW limit
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: sw VSI handle
|
||
|
* @tc: traffic class
|
||
|
* @q_handle: software queue handle
|
||
|
* @rl_type: min, max, or shared
|
||
|
* @bw: bandwidth in Kbps
|
||
|
*
|
||
|
* This function sets BW limit of queue scheduling node.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
|
||
|
u16 q_handle, enum ice_rl_type rl_type, u32 bw)
|
||
|
{
|
||
|
struct ice_sched_node *node;
|
||
|
struct ice_q_ctx *q_ctx;
|
||
|
int status = -EINVAL;
|
||
|
|
||
|
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
|
||
|
return -EINVAL;
|
||
|
mutex_lock(&pi->sched_lock);
|
||
|
q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
|
||
|
if (!q_ctx)
|
||
|
goto exit_q_bw_lmt;
|
||
|
node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
|
||
|
if (!node) {
|
||
|
ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
|
||
|
goto exit_q_bw_lmt;
|
||
|
}
|
||
|
|
||
|
/* Return error if it is not a leaf node */
|
||
|
if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
|
||
|
goto exit_q_bw_lmt;
|
||
|
|
||
|
/* SRL bandwidth layer selection */
|
||
|
if (rl_type == ICE_SHARED_BW) {
|
||
|
u8 sel_layer; /* selected layer */
|
||
|
|
||
|
sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
|
||
|
node->tx_sched_layer);
|
||
|
if (sel_layer >= pi->hw->num_tx_sched_layers) {
|
||
|
status = -EINVAL;
|
||
|
goto exit_q_bw_lmt;
|
||
|
}
|
||
|
status = ice_sched_validate_srl_node(node, sel_layer);
|
||
|
if (status)
|
||
|
goto exit_q_bw_lmt;
|
||
|
}
|
||
|
|
||
|
if (bw == ICE_SCHED_DFLT_BW)
|
||
|
status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
|
||
|
else
|
||
|
status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
|
||
|
|
||
|
if (!status)
|
||
|
status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
|
||
|
|
||
|
exit_q_bw_lmt:
|
||
|
mutex_unlock(&pi->sched_lock);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_cfg_q_bw_lmt - configure queue BW limit
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: sw VSI handle
|
||
|
* @tc: traffic class
|
||
|
* @q_handle: software queue handle
|
||
|
* @rl_type: min, max, or shared
|
||
|
* @bw: bandwidth in Kbps
|
||
|
*
|
||
|
* This function configures BW limit of queue scheduling node.
|
||
|
*/
|
||
|
int
|
||
|
ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
|
||
|
u16 q_handle, enum ice_rl_type rl_type, u32 bw)
|
||
|
{
|
||
|
return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
|
||
|
bw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: sw VSI handle
|
||
|
* @tc: traffic class
|
||
|
* @q_handle: software queue handle
|
||
|
* @rl_type: min, max, or shared
|
||
|
*
|
||
|
* This function configures BW default limit of queue scheduling node.
|
||
|
*/
|
||
|
int
|
||
|
ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
|
||
|
u16 q_handle, enum ice_rl_type rl_type)
|
||
|
{
|
||
|
return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
|
||
|
ICE_SCHED_DFLT_BW);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_node_by_id_type - get node from ID type
|
||
|
* @pi: port information structure
|
||
|
* @id: identifier
|
||
|
* @agg_type: type of aggregator
|
||
|
* @tc: traffic class
|
||
|
*
|
||
|
* This function returns node identified by ID of type aggregator, and
|
||
|
* based on traffic class (TC). This function needs to be called with
|
||
|
* the scheduler lock held.
|
||
|
*/
|
||
|
static struct ice_sched_node *
|
||
|
ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
|
||
|
enum ice_agg_type agg_type, u8 tc)
|
||
|
{
|
||
|
struct ice_sched_node *node = NULL;
|
||
|
|
||
|
switch (agg_type) {
|
||
|
case ICE_AGG_TYPE_VSI: {
|
||
|
struct ice_vsi_ctx *vsi_ctx;
|
||
|
u16 vsi_handle = (u16)id;
|
||
|
|
||
|
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
|
||
|
break;
|
||
|
/* Get sched_vsi_info */
|
||
|
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
|
||
|
if (!vsi_ctx)
|
||
|
break;
|
||
|
node = vsi_ctx->sched.vsi_node[tc];
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case ICE_AGG_TYPE_AGG: {
|
||
|
struct ice_sched_node *tc_node;
|
||
|
|
||
|
tc_node = ice_sched_get_tc_node(pi, tc);
|
||
|
if (tc_node)
|
||
|
node = ice_sched_get_agg_node(pi, tc_node, id);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
|
||
|
* @pi: port information structure
|
||
|
* @id: ID (software VSI handle or AGG ID)
|
||
|
* @agg_type: aggregator type (VSI or AGG type node)
|
||
|
* @tc: traffic class
|
||
|
* @rl_type: min or max
|
||
|
* @bw: bandwidth in Kbps
|
||
|
*
|
||
|
* This function sets BW limit of VSI or Aggregator scheduling node
|
||
|
* based on TC information from passed in argument BW.
|
||
|
*/
|
||
|
int
|
||
|
ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
|
||
|
enum ice_agg_type agg_type, u8 tc,
|
||
|
enum ice_rl_type rl_type, u32 bw)
|
||
|
{
|
||
|
struct ice_sched_node *node;
|
||
|
int status = -EINVAL;
|
||
|
|
||
|
if (!pi)
|
||
|
return status;
|
||
|
|
||
|
if (rl_type == ICE_UNKNOWN_BW)
|
||
|
return status;
|
||
|
|
||
|
mutex_lock(&pi->sched_lock);
|
||
|
node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
|
||
|
if (!node) {
|
||
|
ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
|
||
|
goto exit_set_node_bw_lmt_per_tc;
|
||
|
}
|
||
|
if (bw == ICE_SCHED_DFLT_BW)
|
||
|
status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
|
||
|
else
|
||
|
status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
|
||
|
|
||
|
exit_set_node_bw_lmt_per_tc:
|
||
|
mutex_unlock(&pi->sched_lock);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc: traffic class
|
||
|
* @rl_type: min or max
|
||
|
* @bw: bandwidth in Kbps
|
||
|
*
|
||
|
* This function configures BW limit of VSI scheduling node based on TC
|
||
|
* information.
|
||
|
*/
|
||
|
int
|
||
|
ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
|
||
|
enum ice_rl_type rl_type, u32 bw)
|
||
|
{
|
||
|
int status;
|
||
|
|
||
|
status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
|
||
|
ICE_AGG_TYPE_VSI,
|
||
|
tc, rl_type, bw);
|
||
|
if (!status) {
|
||
|
mutex_lock(&pi->sched_lock);
|
||
|
status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
|
||
|
mutex_unlock(&pi->sched_lock);
|
||
|
}
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc: traffic class
|
||
|
* @rl_type: min or max
|
||
|
*
|
||
|
* This function configures default BW limit of VSI scheduling node based on TC
|
||
|
* information.
|
||
|
*/
|
||
|
int
|
||
|
ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
|
||
|
enum ice_rl_type rl_type)
|
||
|
{
|
||
|
int status;
|
||
|
|
||
|
status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
|
||
|
ICE_AGG_TYPE_VSI,
|
||
|
tc, rl_type,
|
||
|
ICE_SCHED_DFLT_BW);
|
||
|
if (!status) {
|
||
|
mutex_lock(&pi->sched_lock);
|
||
|
status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
|
||
|
ICE_SCHED_DFLT_BW);
|
||
|
mutex_unlock(&pi->sched_lock);
|
||
|
}
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_cfg_rl_burst_size - Set burst size value
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @bytes: burst size in bytes
|
||
|
*
|
||
|
* This function configures/set the burst size to requested new value. The new
|
||
|
* burst size value is used for future rate limit calls. It doesn't change the
|
||
|
* existing or previously created RL profiles.
|
||
|
*/
|
||
|
int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
|
||
|
{
|
||
|
u16 burst_size_to_prog;
|
||
|
|
||
|
if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
|
||
|
bytes > ICE_MAX_BURST_SIZE_ALLOWED)
|
||
|
return -EINVAL;
|
||
|
if (ice_round_to_num(bytes, 64) <=
|
||
|
ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
|
||
|
/* 64 byte granularity case */
|
||
|
/* Disable MSB granularity bit */
|
||
|
burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
|
||
|
/* round number to nearest 64 byte granularity */
|
||
|
bytes = ice_round_to_num(bytes, 64);
|
||
|
/* The value is in 64 byte chunks */
|
||
|
burst_size_to_prog |= (u16)(bytes / 64);
|
||
|
} else {
|
||
|
/* k bytes granularity case */
|
||
|
/* Enable MSB granularity bit */
|
||
|
burst_size_to_prog = ICE_KBYTE_GRANULARITY;
|
||
|
/* round number to nearest 1024 granularity */
|
||
|
bytes = ice_round_to_num(bytes, 1024);
|
||
|
/* check rounding doesn't go beyond allowed */
|
||
|
if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
|
||
|
bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
|
||
|
/* The value is in k bytes */
|
||
|
burst_size_to_prog |= (u16)(bytes / 1024);
|
||
|
}
|
||
|
hw->max_burst_size = burst_size_to_prog;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_replay_node_prio - re-configure node priority
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @node: sched node to configure
|
||
|
* @priority: priority value
|
||
|
*
|
||
|
* This function configures node element's priority value. It
|
||
|
* needs to be called with scheduler lock held.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
|
||
|
u8 priority)
|
||
|
{
|
||
|
struct ice_aqc_txsched_elem_data buf;
|
||
|
struct ice_aqc_txsched_elem *data;
|
||
|
int status;
|
||
|
|
||
|
buf = node->info;
|
||
|
data = &buf.data;
|
||
|
data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
|
||
|
data->generic = priority;
|
||
|
|
||
|
/* Configure element */
|
||
|
status = ice_sched_update_elem(hw, node, &buf);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_replay_node_bw - replay node(s) BW
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @node: sched node to configure
|
||
|
* @bw_t_info: BW type information
|
||
|
*
|
||
|
* This function restores node's BW from bw_t_info. The caller needs
|
||
|
* to hold the scheduler lock.
|
||
|
*/
|
||
|
static int
|
||
|
ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
|
||
|
struct ice_bw_type_info *bw_t_info)
|
||
|
{
|
||
|
struct ice_port_info *pi = hw->port_info;
|
||
|
int status = -EINVAL;
|
||
|
u16 bw_alloc;
|
||
|
|
||
|
if (!node)
|
||
|
return status;
|
||
|
if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
|
||
|
return 0;
|
||
|
if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
|
||
|
status = ice_sched_replay_node_prio(hw, node,
|
||
|
bw_t_info->generic);
|
||
|
if (status)
|
||
|
return status;
|
||
|
}
|
||
|
if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
|
||
|
status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
|
||
|
bw_t_info->cir_bw.bw);
|
||
|
if (status)
|
||
|
return status;
|
||
|
}
|
||
|
if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
|
||
|
bw_alloc = bw_t_info->cir_bw.bw_alloc;
|
||
|
status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
|
||
|
bw_alloc);
|
||
|
if (status)
|
||
|
return status;
|
||
|
}
|
||
|
if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
|
||
|
status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
|
||
|
bw_t_info->eir_bw.bw);
|
||
|
if (status)
|
||
|
return status;
|
||
|
}
|
||
|
if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
|
||
|
bw_alloc = bw_t_info->eir_bw.bw_alloc;
|
||
|
status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
|
||
|
bw_alloc);
|
||
|
if (status)
|
||
|
return status;
|
||
|
}
|
||
|
if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
|
||
|
status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
|
||
|
bw_t_info->shared_bw);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
|
||
|
* @pi: port info struct
|
||
|
* @tc_bitmap: 8 bits TC bitmap to check
|
||
|
* @ena_tc_bitmap: 8 bits enabled TC bitmap to return
|
||
|
*
|
||
|
* This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
|
||
|
* may be missing, it returns enabled TCs. This function needs to be called with
|
||
|
* scheduler lock held.
|
||
|
*/
|
||
|
static void
|
||
|
ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
|
||
|
unsigned long *tc_bitmap,
|
||
|
unsigned long *ena_tc_bitmap)
|
||
|
{
|
||
|
u8 tc;
|
||
|
|
||
|
/* Some TC(s) may be missing after reset, adjust for replay */
|
||
|
ice_for_each_traffic_class(tc)
|
||
|
if (ice_is_tc_ena(*tc_bitmap, tc) &&
|
||
|
(ice_sched_get_tc_node(pi, tc)))
|
||
|
set_bit(tc, ena_tc_bitmap);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_replay_agg - recreate aggregator node(s)
|
||
|
* @hw: pointer to the HW struct
|
||
|
*
|
||
|
* This function recreate aggregator type nodes which are not replayed earlier.
|
||
|
* It also replay aggregator BW information. These aggregator nodes are not
|
||
|
* associated with VSI type node yet.
|
||
|
*/
|
||
|
void ice_sched_replay_agg(struct ice_hw *hw)
|
||
|
{
|
||
|
struct ice_port_info *pi = hw->port_info;
|
||
|
struct ice_sched_agg_info *agg_info;
|
||
|
|
||
|
mutex_lock(&pi->sched_lock);
|
||
|
list_for_each_entry(agg_info, &hw->agg_list, list_entry)
|
||
|
/* replay aggregator (re-create aggregator node) */
|
||
|
if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
|
||
|
ICE_MAX_TRAFFIC_CLASS)) {
|
||
|
DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
|
||
|
int status;
|
||
|
|
||
|
bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
|
||
|
ice_sched_get_ena_tc_bitmap(pi,
|
||
|
agg_info->replay_tc_bitmap,
|
||
|
replay_bitmap);
|
||
|
status = ice_sched_cfg_agg(hw->port_info,
|
||
|
agg_info->agg_id,
|
||
|
ICE_AGG_TYPE_AGG,
|
||
|
replay_bitmap);
|
||
|
if (status) {
|
||
|
dev_info(ice_hw_to_dev(hw),
|
||
|
"Replay agg id[%d] failed\n",
|
||
|
agg_info->agg_id);
|
||
|
/* Move on to next one */
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
mutex_unlock(&pi->sched_lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
|
||
|
* @hw: pointer to the HW struct
|
||
|
*
|
||
|
* This function initialize aggregator(s) TC bitmap to zero. A required
|
||
|
* preinit step for replaying aggregators.
|
||
|
*/
|
||
|
void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
|
||
|
{
|
||
|
struct ice_port_info *pi = hw->port_info;
|
||
|
struct ice_sched_agg_info *agg_info;
|
||
|
|
||
|
mutex_lock(&pi->sched_lock);
|
||
|
list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
|
||
|
struct ice_sched_agg_vsi_info *agg_vsi_info;
|
||
|
|
||
|
agg_info->tc_bitmap[0] = 0;
|
||
|
list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
|
||
|
list_entry)
|
||
|
agg_vsi_info->tc_bitmap[0] = 0;
|
||
|
}
|
||
|
mutex_unlock(&pi->sched_lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @vsi_handle: software VSI handle
|
||
|
*
|
||
|
* This function replays aggregator node, VSI to aggregator type nodes, and
|
||
|
* their node bandwidth information. This function needs to be called with
|
||
|
* scheduler lock held.
|
||
|
*/
|
||
|
static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
|
||
|
{
|
||
|
DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
|
||
|
struct ice_sched_agg_vsi_info *agg_vsi_info;
|
||
|
struct ice_port_info *pi = hw->port_info;
|
||
|
struct ice_sched_agg_info *agg_info;
|
||
|
int status;
|
||
|
|
||
|
bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
|
||
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
||
|
return -EINVAL;
|
||
|
agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
|
||
|
if (!agg_info)
|
||
|
return 0; /* Not present in list - default Agg case */
|
||
|
agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
|
||
|
if (!agg_vsi_info)
|
||
|
return 0; /* Not present in list - default Agg case */
|
||
|
ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
|
||
|
replay_bitmap);
|
||
|
/* Replay aggregator node associated to vsi_handle */
|
||
|
status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
|
||
|
ICE_AGG_TYPE_AGG, replay_bitmap);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
|
||
|
ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
|
||
|
replay_bitmap);
|
||
|
/* Move this VSI (vsi_handle) to above aggregator */
|
||
|
return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
|
||
|
replay_bitmap);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_replay_vsi_agg - replay VSI to aggregator node
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @vsi_handle: software VSI handle
|
||
|
*
|
||
|
* This function replays association of VSI to aggregator type nodes, and
|
||
|
* node bandwidth information.
|
||
|
*/
|
||
|
int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
|
||
|
{
|
||
|
struct ice_port_info *pi = hw->port_info;
|
||
|
int status;
|
||
|
|
||
|
mutex_lock(&pi->sched_lock);
|
||
|
status = ice_sched_replay_vsi_agg(hw, vsi_handle);
|
||
|
mutex_unlock(&pi->sched_lock);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_replay_q_bw - replay queue type node BW
|
||
|
* @pi: port information structure
|
||
|
* @q_ctx: queue context structure
|
||
|
*
|
||
|
* This function replays queue type node bandwidth. This function needs to be
|
||
|
* called with scheduler lock held.
|
||
|
*/
|
||
|
int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
|
||
|
{
|
||
|
struct ice_sched_node *q_node;
|
||
|
|
||
|
/* Following also checks the presence of node in tree */
|
||
|
q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
|
||
|
if (!q_node)
|
||
|
return -EINVAL;
|
||
|
return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
|
||
|
}
|