linuxdebug/drivers/net/can/spi/mcp251xfd/mcp251xfd-regmap.c

610 lines
16 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
//
// mcp251xfd - Microchip MCP251xFD Family CAN controller driver
//
// Copyright (c) 2019, 2020, 2021 Pengutronix,
// Marc Kleine-Budde <kernel@pengutronix.de>
//
#include "mcp251xfd.h"
#include <asm/unaligned.h>
static const struct regmap_config mcp251xfd_regmap_crc;
static int
mcp251xfd_regmap_nocrc_write(void *context, const void *data, size_t count)
{
struct spi_device *spi = context;
return spi_write(spi, data, count);
}
static int
mcp251xfd_regmap_nocrc_gather_write(void *context,
const void *reg, size_t reg_len,
const void *val, size_t val_len)
{
struct spi_device *spi = context;
struct mcp251xfd_priv *priv = spi_get_drvdata(spi);
struct mcp251xfd_map_buf_nocrc *buf_tx = priv->map_buf_nocrc_tx;
struct spi_transfer xfer[] = {
{
.tx_buf = buf_tx,
.len = sizeof(buf_tx->cmd) + val_len,
},
};
BUILD_BUG_ON(sizeof(buf_tx->cmd) != sizeof(__be16));
if (IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY) &&
reg_len != sizeof(buf_tx->cmd.cmd))
return -EINVAL;
memcpy(&buf_tx->cmd, reg, sizeof(buf_tx->cmd));
memcpy(buf_tx->data, val, val_len);
return spi_sync_transfer(spi, xfer, ARRAY_SIZE(xfer));
}
static inline bool
mcp251xfd_update_bits_read_reg(const struct mcp251xfd_priv *priv,
unsigned int reg)
{
struct mcp251xfd_rx_ring *ring;
int n;
switch (reg) {
case MCP251XFD_REG_INT:
case MCP251XFD_REG_TEFCON:
case MCP251XFD_REG_FLTCON(0):
case MCP251XFD_REG_ECCSTAT:
case MCP251XFD_REG_CRC:
return false;
case MCP251XFD_REG_CON:
case MCP251XFD_REG_OSC:
case MCP251XFD_REG_ECCCON:
return true;
default:
mcp251xfd_for_each_rx_ring(priv, ring, n) {
if (reg == MCP251XFD_REG_FIFOCON(ring->fifo_nr))
return false;
if (reg == MCP251XFD_REG_FIFOSTA(ring->fifo_nr))
return true;
}
WARN(1, "Status of reg 0x%04x unknown.\n", reg);
}
return true;
}
static int
mcp251xfd_regmap_nocrc_update_bits(void *context, unsigned int reg,
unsigned int mask, unsigned int val)
{
struct spi_device *spi = context;
struct mcp251xfd_priv *priv = spi_get_drvdata(spi);
struct mcp251xfd_map_buf_nocrc *buf_rx = priv->map_buf_nocrc_rx;
struct mcp251xfd_map_buf_nocrc *buf_tx = priv->map_buf_nocrc_tx;
__le32 orig_le32 = 0, mask_le32, val_le32, tmp_le32;
u8 first_byte, last_byte, len;
int err;
BUILD_BUG_ON(sizeof(buf_rx->cmd) != sizeof(__be16));
BUILD_BUG_ON(sizeof(buf_tx->cmd) != sizeof(__be16));
if (IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY) &&
mask == 0)
return -EINVAL;
first_byte = mcp251xfd_first_byte_set(mask);
last_byte = mcp251xfd_last_byte_set(mask);
len = last_byte - first_byte + 1;
if (mcp251xfd_update_bits_read_reg(priv, reg)) {
struct spi_transfer xfer[2] = { };
struct spi_message msg;
spi_message_init(&msg);
spi_message_add_tail(&xfer[0], &msg);
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_HALF_DUPLEX) {
xfer[0].tx_buf = buf_tx;
xfer[0].len = sizeof(buf_tx->cmd);
xfer[1].rx_buf = buf_rx->data;
xfer[1].len = len;
spi_message_add_tail(&xfer[1], &msg);
} else {
xfer[0].tx_buf = buf_tx;
xfer[0].rx_buf = buf_rx;
xfer[0].len = sizeof(buf_tx->cmd) + len;
if (MCP251XFD_SANITIZE_SPI)
memset(buf_tx->data, 0x0, len);
}
mcp251xfd_spi_cmd_read_nocrc(&buf_tx->cmd, reg + first_byte);
err = spi_sync(spi, &msg);
if (err)
return err;
memcpy(&orig_le32, buf_rx->data, len);
}
mask_le32 = cpu_to_le32(mask >> BITS_PER_BYTE * first_byte);
val_le32 = cpu_to_le32(val >> BITS_PER_BYTE * first_byte);
tmp_le32 = orig_le32 & ~mask_le32;
tmp_le32 |= val_le32 & mask_le32;
mcp251xfd_spi_cmd_write_nocrc(&buf_tx->cmd, reg + first_byte);
memcpy(buf_tx->data, &tmp_le32, len);
return spi_write(spi, buf_tx, sizeof(buf_tx->cmd) + len);
}
static int
mcp251xfd_regmap_nocrc_read(void *context,
const void *reg, size_t reg_len,
void *val_buf, size_t val_len)
{
struct spi_device *spi = context;
struct mcp251xfd_priv *priv = spi_get_drvdata(spi);
struct mcp251xfd_map_buf_nocrc *buf_rx = priv->map_buf_nocrc_rx;
struct mcp251xfd_map_buf_nocrc *buf_tx = priv->map_buf_nocrc_tx;
struct spi_transfer xfer[2] = { };
struct spi_message msg;
int err;
BUILD_BUG_ON(sizeof(buf_rx->cmd) != sizeof(__be16));
BUILD_BUG_ON(sizeof(buf_tx->cmd) != sizeof(__be16));
if (IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY) &&
reg_len != sizeof(buf_tx->cmd.cmd))
return -EINVAL;
spi_message_init(&msg);
spi_message_add_tail(&xfer[0], &msg);
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_HALF_DUPLEX) {
xfer[0].tx_buf = reg;
xfer[0].len = sizeof(buf_tx->cmd);
xfer[1].rx_buf = val_buf;
xfer[1].len = val_len;
spi_message_add_tail(&xfer[1], &msg);
} else {
xfer[0].tx_buf = buf_tx;
xfer[0].rx_buf = buf_rx;
xfer[0].len = sizeof(buf_tx->cmd) + val_len;
memcpy(&buf_tx->cmd, reg, sizeof(buf_tx->cmd));
if (MCP251XFD_SANITIZE_SPI)
memset(buf_tx->data, 0x0, val_len);
}
err = spi_sync(spi, &msg);
if (err)
return err;
if (!(priv->devtype_data.quirks & MCP251XFD_QUIRK_HALF_DUPLEX))
memcpy(val_buf, buf_rx->data, val_len);
return 0;
}
static int
mcp251xfd_regmap_crc_gather_write(void *context,
const void *reg_p, size_t reg_len,
const void *val, size_t val_len)
{
struct spi_device *spi = context;
struct mcp251xfd_priv *priv = spi_get_drvdata(spi);
struct mcp251xfd_map_buf_crc *buf_tx = priv->map_buf_crc_tx;
struct spi_transfer xfer[] = {
{
.tx_buf = buf_tx,
.len = sizeof(buf_tx->cmd) + val_len +
sizeof(buf_tx->crc),
},
};
u16 reg = *(u16 *)reg_p;
u16 crc;
BUILD_BUG_ON(sizeof(buf_tx->cmd) != sizeof(__be16) + sizeof(u8));
if (IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY) &&
reg_len != sizeof(buf_tx->cmd.cmd) +
mcp251xfd_regmap_crc.pad_bits / BITS_PER_BYTE)
return -EINVAL;
mcp251xfd_spi_cmd_write_crc(&buf_tx->cmd, reg, val_len);
memcpy(buf_tx->data, val, val_len);
crc = mcp251xfd_crc16_compute(buf_tx, sizeof(buf_tx->cmd) + val_len);
put_unaligned_be16(crc, buf_tx->data + val_len);
return spi_sync_transfer(spi, xfer, ARRAY_SIZE(xfer));
}
static int
mcp251xfd_regmap_crc_write(void *context,
const void *data, size_t count)
{
const size_t data_offset = sizeof(__be16) +
mcp251xfd_regmap_crc.pad_bits / BITS_PER_BYTE;
return mcp251xfd_regmap_crc_gather_write(context,
data, data_offset,
data + data_offset,
count - data_offset);
}
static int
mcp251xfd_regmap_crc_read_check_crc(const struct mcp251xfd_map_buf_crc * const buf_rx,
const struct mcp251xfd_map_buf_crc * const buf_tx,
unsigned int data_len)
{
u16 crc_received, crc_calculated;
crc_received = get_unaligned_be16(buf_rx->data + data_len);
crc_calculated = mcp251xfd_crc16_compute2(&buf_tx->cmd,
sizeof(buf_tx->cmd),
buf_rx->data,
data_len);
if (crc_received != crc_calculated)
return -EBADMSG;
return 0;
}
static int
mcp251xfd_regmap_crc_read_one(struct mcp251xfd_priv *priv,
struct spi_message *msg, unsigned int data_len)
{
const struct mcp251xfd_map_buf_crc *buf_rx = priv->map_buf_crc_rx;
const struct mcp251xfd_map_buf_crc *buf_tx = priv->map_buf_crc_tx;
int err;
BUILD_BUG_ON(sizeof(buf_rx->cmd) != sizeof(__be16) + sizeof(u8));
BUILD_BUG_ON(sizeof(buf_tx->cmd) != sizeof(__be16) + sizeof(u8));
err = spi_sync(priv->spi, msg);
if (err)
return err;
return mcp251xfd_regmap_crc_read_check_crc(buf_rx, buf_tx, data_len);
}
static int
mcp251xfd_regmap_crc_read(void *context,
const void *reg_p, size_t reg_len,
void *val_buf, size_t val_len)
{
struct spi_device *spi = context;
struct mcp251xfd_priv *priv = spi_get_drvdata(spi);
struct mcp251xfd_map_buf_crc *buf_rx = priv->map_buf_crc_rx;
struct mcp251xfd_map_buf_crc *buf_tx = priv->map_buf_crc_tx;
struct spi_transfer xfer[2] = { };
struct spi_message msg;
u16 reg = *(u16 *)reg_p;
int i, err;
BUILD_BUG_ON(sizeof(buf_rx->cmd) != sizeof(__be16) + sizeof(u8));
BUILD_BUG_ON(sizeof(buf_tx->cmd) != sizeof(__be16) + sizeof(u8));
if (IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY) &&
reg_len != sizeof(buf_tx->cmd.cmd) +
mcp251xfd_regmap_crc.pad_bits / BITS_PER_BYTE)
return -EINVAL;
spi_message_init(&msg);
spi_message_add_tail(&xfer[0], &msg);
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_HALF_DUPLEX) {
xfer[0].tx_buf = buf_tx;
xfer[0].len = sizeof(buf_tx->cmd);
xfer[1].rx_buf = buf_rx->data;
xfer[1].len = val_len + sizeof(buf_tx->crc);
spi_message_add_tail(&xfer[1], &msg);
} else {
xfer[0].tx_buf = buf_tx;
xfer[0].rx_buf = buf_rx;
xfer[0].len = sizeof(buf_tx->cmd) + val_len +
sizeof(buf_tx->crc);
if (MCP251XFD_SANITIZE_SPI)
memset(buf_tx->data, 0x0, val_len +
sizeof(buf_tx->crc));
}
mcp251xfd_spi_cmd_read_crc(&buf_tx->cmd, reg, val_len);
for (i = 0; i < MCP251XFD_READ_CRC_RETRIES_MAX; i++) {
err = mcp251xfd_regmap_crc_read_one(priv, &msg, val_len);
if (!err)
goto out;
if (err != -EBADMSG)
return err;
/* MCP251XFD_REG_TBC is the time base counter
* register. It increments once per SYS clock tick,
* which is 20 or 40 MHz.
*
* Observation on the mcp2518fd shows that if the
* lowest byte (which is transferred first on the SPI
* bus) of that register is 0x00 or 0x80 the
* calculated CRC doesn't always match the transferred
* one. On the mcp2517fd this problem is not limited
* to the first byte being 0x00 or 0x80.
*
* If the highest bit in the lowest byte is flipped
* the transferred CRC matches the calculated one. We
* assume for now the CRC operates on the correct
* data.
*/
if (reg == MCP251XFD_REG_TBC &&
((buf_rx->data[0] & 0xf8) == 0x0 ||
(buf_rx->data[0] & 0xf8) == 0x80)) {
/* Flip highest bit in lowest byte of le32 */
buf_rx->data[0] ^= 0x80;
/* re-check CRC */
err = mcp251xfd_regmap_crc_read_check_crc(buf_rx,
buf_tx,
val_len);
if (!err) {
/* If CRC is now correct, assume
* flipped data is OK.
*/
goto out;
}
}
/* MCP251XFD_REG_OSC is the first ever reg we read from.
*
* The chip may be in deep sleep and this SPI transfer
* (i.e. the assertion of the CS) will wake the chip
* up. This takes about 3ms. The CRC of this transfer
* is wrong.
*
* Or there isn't a chip at all, in this case the CRC
* will be wrong, too.
*
* In both cases ignore the CRC and copy the read data
* to the caller. It will take care of both cases.
*
*/
if (reg == MCP251XFD_REG_OSC && val_len == sizeof(__le32)) {
err = 0;
goto out;
}
netdev_info(priv->ndev,
"CRC read error at address 0x%04x (length=%zd, data=%*ph, CRC=0x%04x) retrying.\n",
reg, val_len, (int)val_len, buf_rx->data,
get_unaligned_be16(buf_rx->data + val_len));
}
if (err) {
netdev_err(priv->ndev,
"CRC read error at address 0x%04x (length=%zd, data=%*ph, CRC=0x%04x).\n",
reg, val_len, (int)val_len, buf_rx->data,
get_unaligned_be16(buf_rx->data + val_len));
return err;
}
out:
memcpy(val_buf, buf_rx->data, val_len);
return 0;
}
static const struct regmap_range mcp251xfd_reg_table_yes_range[] = {
regmap_reg_range(0x000, 0x2ec), /* CAN FD Controller Module SFR */
regmap_reg_range(0x400, 0xbfc), /* RAM */
regmap_reg_range(0xe00, 0xe14), /* MCP2517/18FD SFR */
};
static const struct regmap_access_table mcp251xfd_reg_table = {
.yes_ranges = mcp251xfd_reg_table_yes_range,
.n_yes_ranges = ARRAY_SIZE(mcp251xfd_reg_table_yes_range),
};
static const struct regmap_config mcp251xfd_regmap_nocrc = {
.name = "nocrc",
.reg_bits = 16,
.reg_stride = 4,
.pad_bits = 0,
.val_bits = 32,
.max_register = 0xffc,
.wr_table = &mcp251xfd_reg_table,
.rd_table = &mcp251xfd_reg_table,
.cache_type = REGCACHE_NONE,
.read_flag_mask = (__force unsigned long)
cpu_to_be16(MCP251XFD_SPI_INSTRUCTION_READ),
.write_flag_mask = (__force unsigned long)
cpu_to_be16(MCP251XFD_SPI_INSTRUCTION_WRITE),
};
static const struct regmap_bus mcp251xfd_bus_nocrc = {
.write = mcp251xfd_regmap_nocrc_write,
.gather_write = mcp251xfd_regmap_nocrc_gather_write,
.reg_update_bits = mcp251xfd_regmap_nocrc_update_bits,
.read = mcp251xfd_regmap_nocrc_read,
.reg_format_endian_default = REGMAP_ENDIAN_BIG,
.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
.max_raw_read = sizeof_field(struct mcp251xfd_map_buf_nocrc, data),
.max_raw_write = sizeof_field(struct mcp251xfd_map_buf_nocrc, data),
};
static const struct regmap_config mcp251xfd_regmap_crc = {
.name = "crc",
.reg_bits = 16,
.reg_stride = 4,
.pad_bits = 16, /* keep data bits aligned */
.val_bits = 32,
.max_register = 0xffc,
.wr_table = &mcp251xfd_reg_table,
.rd_table = &mcp251xfd_reg_table,
.cache_type = REGCACHE_NONE,
};
static const struct regmap_bus mcp251xfd_bus_crc = {
.write = mcp251xfd_regmap_crc_write,
.gather_write = mcp251xfd_regmap_crc_gather_write,
.read = mcp251xfd_regmap_crc_read,
.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
.max_raw_read = sizeof_field(struct mcp251xfd_map_buf_crc, data),
.max_raw_write = sizeof_field(struct mcp251xfd_map_buf_crc, data),
};
static inline bool
mcp251xfd_regmap_use_nocrc(struct mcp251xfd_priv *priv)
{
return (!(priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_REG)) ||
(!(priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_RX));
}
static inline bool
mcp251xfd_regmap_use_crc(struct mcp251xfd_priv *priv)
{
return (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_REG) ||
(priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_RX);
}
static int
mcp251xfd_regmap_init_nocrc(struct mcp251xfd_priv *priv)
{
if (!priv->map_nocrc) {
struct regmap *map;
map = devm_regmap_init(&priv->spi->dev, &mcp251xfd_bus_nocrc,
priv->spi, &mcp251xfd_regmap_nocrc);
if (IS_ERR(map))
return PTR_ERR(map);
priv->map_nocrc = map;
}
if (!priv->map_buf_nocrc_rx) {
priv->map_buf_nocrc_rx =
devm_kzalloc(&priv->spi->dev,
sizeof(*priv->map_buf_nocrc_rx),
GFP_KERNEL);
if (!priv->map_buf_nocrc_rx)
return -ENOMEM;
}
if (!priv->map_buf_nocrc_tx) {
priv->map_buf_nocrc_tx =
devm_kzalloc(&priv->spi->dev,
sizeof(*priv->map_buf_nocrc_tx),
GFP_KERNEL);
if (!priv->map_buf_nocrc_tx)
return -ENOMEM;
}
if (!(priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_REG))
priv->map_reg = priv->map_nocrc;
if (!(priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_RX))
priv->map_rx = priv->map_nocrc;
return 0;
}
static void mcp251xfd_regmap_destroy_nocrc(struct mcp251xfd_priv *priv)
{
if (priv->map_buf_nocrc_rx) {
devm_kfree(&priv->spi->dev, priv->map_buf_nocrc_rx);
priv->map_buf_nocrc_rx = NULL;
}
if (priv->map_buf_nocrc_tx) {
devm_kfree(&priv->spi->dev, priv->map_buf_nocrc_tx);
priv->map_buf_nocrc_tx = NULL;
}
}
static int
mcp251xfd_regmap_init_crc(struct mcp251xfd_priv *priv)
{
if (!priv->map_crc) {
struct regmap *map;
map = devm_regmap_init(&priv->spi->dev, &mcp251xfd_bus_crc,
priv->spi, &mcp251xfd_regmap_crc);
if (IS_ERR(map))
return PTR_ERR(map);
priv->map_crc = map;
}
if (!priv->map_buf_crc_rx) {
priv->map_buf_crc_rx =
devm_kzalloc(&priv->spi->dev,
sizeof(*priv->map_buf_crc_rx),
GFP_KERNEL);
if (!priv->map_buf_crc_rx)
return -ENOMEM;
}
if (!priv->map_buf_crc_tx) {
priv->map_buf_crc_tx =
devm_kzalloc(&priv->spi->dev,
sizeof(*priv->map_buf_crc_tx),
GFP_KERNEL);
if (!priv->map_buf_crc_tx)
return -ENOMEM;
}
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_REG)
priv->map_reg = priv->map_crc;
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_RX)
priv->map_rx = priv->map_crc;
return 0;
}
static void mcp251xfd_regmap_destroy_crc(struct mcp251xfd_priv *priv)
{
if (priv->map_buf_crc_rx) {
devm_kfree(&priv->spi->dev, priv->map_buf_crc_rx);
priv->map_buf_crc_rx = NULL;
}
if (priv->map_buf_crc_tx) {
devm_kfree(&priv->spi->dev, priv->map_buf_crc_tx);
priv->map_buf_crc_tx = NULL;
}
}
int mcp251xfd_regmap_init(struct mcp251xfd_priv *priv)
{
int err;
if (mcp251xfd_regmap_use_nocrc(priv)) {
err = mcp251xfd_regmap_init_nocrc(priv);
if (err)
return err;
} else {
mcp251xfd_regmap_destroy_nocrc(priv);
}
if (mcp251xfd_regmap_use_crc(priv)) {
err = mcp251xfd_regmap_init_crc(priv);
if (err)
return err;
} else {
mcp251xfd_regmap_destroy_crc(priv);
}
return 0;
}