linuxdebug/drivers/media/radio/wl128x/fmdrv_common.c

1677 lines
44 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* FM Driver for Connectivity chip of Texas Instruments.
*
* This sub-module of FM driver is common for FM RX and TX
* functionality. This module is responsible for:
* 1) Forming group of Channel-8 commands to perform particular
* functionality (eg., frequency set require more than
* one Channel-8 command to be sent to the chip).
* 2) Sending each Channel-8 command to the chip and reading
* response back over Shared Transport.
* 3) Managing TX and RX Queues and Tasklets.
* 4) Handling FM Interrupt packet and taking appropriate action.
* 5) Loading FM firmware to the chip (common, FM TX, and FM RX
* firmware files based on mode selection)
*
* Copyright (C) 2011 Texas Instruments
* Author: Raja Mani <raja_mani@ti.com>
* Author: Manjunatha Halli <manjunatha_halli@ti.com>
*/
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/nospec.h>
#include <linux/jiffies.h>
#include "fmdrv.h"
#include "fmdrv_v4l2.h"
#include "fmdrv_common.h"
#include <linux/ti_wilink_st.h>
#include "fmdrv_rx.h"
#include "fmdrv_tx.h"
/* Region info */
static struct region_info region_configs[] = {
/* Europe/US */
{
.chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
.bot_freq = 87500, /* 87.5 MHz */
.top_freq = 108000, /* 108 MHz */
.fm_band = 0,
},
/* Japan */
{
.chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
.bot_freq = 76000, /* 76 MHz */
.top_freq = 90000, /* 90 MHz */
.fm_band = 1,
},
};
/* Band selection */
static u8 default_radio_region; /* Europe/US */
module_param(default_radio_region, byte, 0);
MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
/* RDS buffer blocks */
static u32 default_rds_buf = 300;
module_param(default_rds_buf, uint, 0444);
MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
/* Radio Nr */
static u32 radio_nr = -1;
module_param(radio_nr, int, 0444);
MODULE_PARM_DESC(radio_nr, "Radio Nr");
/* FM irq handlers forward declaration */
static void fm_irq_send_flag_getcmd(struct fmdev *);
static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
static void fm_irq_handle_hw_malfunction(struct fmdev *);
static void fm_irq_handle_rds_start(struct fmdev *);
static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
static void fm_irq_handle_rds_finish(struct fmdev *);
static void fm_irq_handle_tune_op_ended(struct fmdev *);
static void fm_irq_handle_power_enb(struct fmdev *);
static void fm_irq_handle_low_rssi_start(struct fmdev *);
static void fm_irq_afjump_set_pi(struct fmdev *);
static void fm_irq_handle_set_pi_resp(struct fmdev *);
static void fm_irq_afjump_set_pimask(struct fmdev *);
static void fm_irq_handle_set_pimask_resp(struct fmdev *);
static void fm_irq_afjump_setfreq(struct fmdev *);
static void fm_irq_handle_setfreq_resp(struct fmdev *);
static void fm_irq_afjump_enableint(struct fmdev *);
static void fm_irq_afjump_enableint_resp(struct fmdev *);
static void fm_irq_start_afjump(struct fmdev *);
static void fm_irq_handle_start_afjump_resp(struct fmdev *);
static void fm_irq_afjump_rd_freq(struct fmdev *);
static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
static void fm_irq_handle_low_rssi_finish(struct fmdev *);
static void fm_irq_send_intmsk_cmd(struct fmdev *);
static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
/*
* When FM common module receives interrupt packet, following handlers
* will be executed one after another to service the interrupt(s)
*/
enum fmc_irq_handler_index {
FM_SEND_FLAG_GETCMD_IDX,
FM_HANDLE_FLAG_GETCMD_RESP_IDX,
/* HW malfunction irq handler */
FM_HW_MAL_FUNC_IDX,
/* RDS threshold reached irq handler */
FM_RDS_START_IDX,
FM_RDS_SEND_RDS_GETCMD_IDX,
FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
FM_RDS_FINISH_IDX,
/* Tune operation ended irq handler */
FM_HW_TUNE_OP_ENDED_IDX,
/* TX power enable irq handler */
FM_HW_POWER_ENB_IDX,
/* Low RSSI irq handler */
FM_LOW_RSSI_START_IDX,
FM_AF_JUMP_SETPI_IDX,
FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
FM_AF_JUMP_SETPI_MASK_IDX,
FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
FM_AF_JUMP_SET_AF_FREQ_IDX,
FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
FM_AF_JUMP_ENABLE_INT_IDX,
FM_AF_JUMP_ENABLE_INT_RESP_IDX,
FM_AF_JUMP_START_AFJUMP_IDX,
FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
FM_AF_JUMP_RD_FREQ_IDX,
FM_AF_JUMP_RD_FREQ_RESP_IDX,
FM_LOW_RSSI_FINISH_IDX,
/* Interrupt process post action */
FM_SEND_INTMSK_CMD_IDX,
FM_HANDLE_INTMSK_CMD_RESP_IDX,
};
/* FM interrupt handler table */
static int_handler_prototype int_handler_table[] = {
fm_irq_send_flag_getcmd,
fm_irq_handle_flag_getcmd_resp,
fm_irq_handle_hw_malfunction,
fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
fm_irq_send_rdsdata_getcmd,
fm_irq_handle_rdsdata_getcmd_resp,
fm_irq_handle_rds_finish,
fm_irq_handle_tune_op_ended,
fm_irq_handle_power_enb, /* TX power enable irq handler */
fm_irq_handle_low_rssi_start,
fm_irq_afjump_set_pi,
fm_irq_handle_set_pi_resp,
fm_irq_afjump_set_pimask,
fm_irq_handle_set_pimask_resp,
fm_irq_afjump_setfreq,
fm_irq_handle_setfreq_resp,
fm_irq_afjump_enableint,
fm_irq_afjump_enableint_resp,
fm_irq_start_afjump,
fm_irq_handle_start_afjump_resp,
fm_irq_afjump_rd_freq,
fm_irq_afjump_rd_freq_resp,
fm_irq_handle_low_rssi_finish,
fm_irq_send_intmsk_cmd, /* Interrupt process post action */
fm_irq_handle_intmsk_cmd_resp
};
static long (*g_st_write) (struct sk_buff *skb);
static struct completion wait_for_fmdrv_reg_comp;
static inline void fm_irq_call(struct fmdev *fmdev)
{
fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
}
/* Continue next function in interrupt handler table */
static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
{
fmdev->irq_info.stage = stage;
fm_irq_call(fmdev);
}
static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
{
fmdev->irq_info.stage = stage;
mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
}
#ifdef FM_DUMP_TXRX_PKT
/* To dump outgoing FM Channel-8 packets */
inline void dump_tx_skb_data(struct sk_buff *skb)
{
int len, len_org;
u8 index;
struct fm_cmd_msg_hdr *cmd_hdr;
cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
cmd_hdr->len, cmd_hdr->op,
cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
if (len_org > 0) {
printk(KERN_CONT "\n data(%d): ", cmd_hdr->dlen);
len = min(len_org, 14);
for (index = 0; index < len; index++)
printk(KERN_CONT "%x ",
skb->data[FM_CMD_MSG_HDR_SIZE + index]);
printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
}
printk(KERN_CONT "\n");
}
/* To dump incoming FM Channel-8 packets */
inline void dump_rx_skb_data(struct sk_buff *skb)
{
int len, len_org;
u8 index;
struct fm_event_msg_hdr *evt_hdr;
evt_hdr = (struct fm_event_msg_hdr *)skb->data;
printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
evt_hdr->hdr, evt_hdr->len,
evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
(evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
if (len_org > 0) {
printk(KERN_CONT "\n data(%d): ", evt_hdr->dlen);
len = min(len_org, 14);
for (index = 0; index < len; index++)
printk(KERN_CONT "%x ",
skb->data[FM_EVT_MSG_HDR_SIZE + index]);
printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
}
printk(KERN_CONT "\n");
}
#endif
void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
{
fmdev->rx.region = region_configs[region_to_set];
}
/*
* FM common sub-module will schedule this tasklet whenever it receives
* FM packet from ST driver.
*/
static void recv_tasklet(struct tasklet_struct *t)
{
struct fmdev *fmdev;
struct fm_irq *irq_info;
struct fm_event_msg_hdr *evt_hdr;
struct sk_buff *skb;
u8 num_fm_hci_cmds;
unsigned long flags;
fmdev = from_tasklet(fmdev, t, tx_task);
irq_info = &fmdev->irq_info;
/* Process all packets in the RX queue */
while ((skb = skb_dequeue(&fmdev->rx_q))) {
if (skb->len < sizeof(struct fm_event_msg_hdr)) {
fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
skb,
skb->len, sizeof(struct fm_event_msg_hdr));
kfree_skb(skb);
continue;
}
evt_hdr = (void *)skb->data;
num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
/* FM interrupt packet? */
if (evt_hdr->op == FM_INTERRUPT) {
/* FM interrupt handler started already? */
if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
if (irq_info->stage != 0) {
fmerr("Inval stage resetting to zero\n");
irq_info->stage = 0;
}
/*
* Execute first function in interrupt handler
* table.
*/
irq_info->handlers[irq_info->stage](fmdev);
} else {
set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
}
kfree_skb(skb);
}
/* Anyone waiting for this with completion handler? */
else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
fmdev->resp_skb = skb;
spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
complete(fmdev->resp_comp);
fmdev->resp_comp = NULL;
atomic_set(&fmdev->tx_cnt, 1);
}
/* Is this for interrupt handler? */
else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
if (fmdev->resp_skb != NULL)
fmerr("Response SKB ptr not NULL\n");
spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
fmdev->resp_skb = skb;
spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
/* Execute interrupt handler where state index points */
irq_info->handlers[irq_info->stage](fmdev);
kfree_skb(skb);
atomic_set(&fmdev->tx_cnt, 1);
} else {
fmerr("Nobody claimed SKB(%p),purging\n", skb);
}
/*
* Check flow control field. If Num_FM_HCI_Commands field is
* not zero, schedule FM TX tasklet.
*/
if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
if (!skb_queue_empty(&fmdev->tx_q))
tasklet_schedule(&fmdev->tx_task);
}
}
/* FM send tasklet: is scheduled when FM packet has to be sent to chip */
static void send_tasklet(struct tasklet_struct *t)
{
struct fmdev *fmdev;
struct sk_buff *skb;
int len;
fmdev = from_tasklet(fmdev, t, tx_task);
if (!atomic_read(&fmdev->tx_cnt))
return;
/* Check, is there any timeout happened to last transmitted packet */
if (time_is_before_jiffies(fmdev->last_tx_jiffies + FM_DRV_TX_TIMEOUT)) {
fmerr("TX timeout occurred\n");
atomic_set(&fmdev->tx_cnt, 1);
}
/* Send queued FM TX packets */
skb = skb_dequeue(&fmdev->tx_q);
if (!skb)
return;
atomic_dec(&fmdev->tx_cnt);
fmdev->pre_op = fm_cb(skb)->fm_op;
if (fmdev->resp_comp != NULL)
fmerr("Response completion handler is not NULL\n");
fmdev->resp_comp = fm_cb(skb)->completion;
/* Write FM packet to ST driver */
len = g_st_write(skb);
if (len < 0) {
kfree_skb(skb);
fmdev->resp_comp = NULL;
fmerr("TX tasklet failed to send skb(%p)\n", skb);
atomic_set(&fmdev->tx_cnt, 1);
} else {
fmdev->last_tx_jiffies = jiffies;
}
}
/*
* Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
* transmission
*/
static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
int payload_len, struct completion *wait_completion)
{
struct sk_buff *skb;
struct fm_cmd_msg_hdr *hdr;
int size;
if (fm_op >= FM_INTERRUPT) {
fmerr("Invalid fm opcode - %d\n", fm_op);
return -EINVAL;
}
if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
fmerr("Payload data is NULL during fw download\n");
return -EINVAL;
}
if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
size =
FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
else
size = payload_len;
skb = alloc_skb(size, GFP_ATOMIC);
if (!skb) {
fmerr("No memory to create new SKB\n");
return -ENOMEM;
}
/*
* Don't fill FM header info for the commands which come from
* FM firmware file.
*/
if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
/* Fill command header info */
hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */
/* 3 (fm_opcode,rd_wr,dlen) + payload len) */
hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
/* FM opcode */
hdr->op = fm_op;
/* read/write type */
hdr->rd_wr = type;
hdr->dlen = payload_len;
fm_cb(skb)->fm_op = fm_op;
/*
* If firmware download has finished and the command is
* not a read command then payload is != NULL - a write
* command with u16 payload - convert to be16
*/
if (payload != NULL)
*(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
} else if (payload != NULL) {
fm_cb(skb)->fm_op = *((u8 *)payload + 2);
}
if (payload != NULL)
skb_put_data(skb, payload, payload_len);
fm_cb(skb)->completion = wait_completion;
skb_queue_tail(&fmdev->tx_q, skb);
tasklet_schedule(&fmdev->tx_task);
return 0;
}
/* Sends FM Channel-8 command to the chip and waits for the response */
int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
unsigned int payload_len, void *response, int *response_len)
{
struct sk_buff *skb;
struct fm_event_msg_hdr *evt_hdr;
unsigned long flags;
int ret;
init_completion(&fmdev->maintask_comp);
ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
&fmdev->maintask_comp);
if (ret)
return ret;
if (!wait_for_completion_timeout(&fmdev->maintask_comp,
FM_DRV_TX_TIMEOUT)) {
fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
return -ETIMEDOUT;
}
if (!fmdev->resp_skb) {
fmerr("Response SKB is missing\n");
return -EFAULT;
}
spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
skb = fmdev->resp_skb;
fmdev->resp_skb = NULL;
spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
evt_hdr = (void *)skb->data;
if (evt_hdr->status != 0) {
fmerr("Received event pkt status(%d) is not zero\n",
evt_hdr->status);
kfree_skb(skb);
return -EIO;
}
/* Send response data to caller */
if (response != NULL && response_len != NULL && evt_hdr->dlen &&
evt_hdr->dlen <= payload_len) {
/* Skip header info and copy only response data */
skb_pull(skb, sizeof(struct fm_event_msg_hdr));
memcpy(response, skb->data, evt_hdr->dlen);
*response_len = evt_hdr->dlen;
} else if (response_len != NULL && evt_hdr->dlen == 0) {
*response_len = 0;
}
kfree_skb(skb);
return 0;
}
/* --- Helper functions used in FM interrupt handlers ---*/
static inline int check_cmdresp_status(struct fmdev *fmdev,
struct sk_buff **skb)
{
struct fm_event_msg_hdr *fm_evt_hdr;
unsigned long flags;
del_timer(&fmdev->irq_info.timer);
spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
*skb = fmdev->resp_skb;
fmdev->resp_skb = NULL;
spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
fm_evt_hdr = (void *)(*skb)->data;
if (fm_evt_hdr->status != 0) {
fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
fm_evt_hdr->op);
mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
return -1;
}
return 0;
}
static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
{
struct sk_buff *skb;
if (!check_cmdresp_status(fmdev, &skb))
fm_irq_call_stage(fmdev, stage);
}
/*
* Interrupt process timeout handler.
* One of the irq handler did not get proper response from the chip. So take
* recovery action here. FM interrupts are disabled in the beginning of
* interrupt process. Therefore reset stage index to re-enable default
* interrupts. So that next interrupt will be processed as usual.
*/
static void int_timeout_handler(struct timer_list *t)
{
struct fmdev *fmdev;
struct fm_irq *fmirq;
fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
fmdev = from_timer(fmdev, t, irq_info.timer);
fmirq = &fmdev->irq_info;
fmirq->retry++;
if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
/* Stop recovery action (interrupt reenable process) and
* reset stage index & retry count values */
fmirq->stage = 0;
fmirq->retry = 0;
fmerr("Recovery action failed duringirq processing, max retry reached\n");
return;
}
fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
}
/* --------- FM interrupt handlers ------------*/
static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
{
u16 flag;
/* Send FLAG_GET command , to know the source of interrupt */
if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
}
static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
{
struct sk_buff *skb;
struct fm_event_msg_hdr *fm_evt_hdr;
if (check_cmdresp_status(fmdev, &skb))
return;
fm_evt_hdr = (void *)skb->data;
if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
return;
/* Skip header info and copy only response data */
skb_pull(skb, sizeof(struct fm_event_msg_hdr));
memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
/* Continue next function in interrupt handler table */
fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
}
static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
{
if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
fmerr("irq: HW MAL int received - do nothing\n");
/* Continue next function in interrupt handler table */
fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
}
static void fm_irq_handle_rds_start(struct fmdev *fmdev)
{
if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
fmdbg("irq: rds threshold reached\n");
fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
} else {
/* Continue next function in interrupt handler table */
fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
}
fm_irq_call(fmdev);
}
static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
{
/* Send the command to read RDS data from the chip */
if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
(FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
}
/* Keeps track of current RX channel AF (Alternate Frequency) */
static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
{
struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
u8 reg_idx = fmdev->rx.region.fm_band;
u8 index;
u32 freq;
/* First AF indicates the number of AF follows. Reset the list */
if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
fmdev->rx.stat_info.afcache_size = 0;
fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
return;
}
if (af < FM_RDS_MIN_AF)
return;
if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
return;
if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
return;
freq = fmdev->rx.region.bot_freq + (af * 100);
if (freq == fmdev->rx.freq) {
fmdbg("Current freq(%d) is matching with received AF(%d)\n",
fmdev->rx.freq, freq);
return;
}
/* Do check in AF cache */
for (index = 0; index < stat_info->afcache_size; index++) {
if (stat_info->af_cache[index] == freq)
break;
}
/* Reached the limit of the list - ignore the next AF */
if (index == stat_info->af_list_max) {
fmdbg("AF cache is full\n");
return;
}
/*
* If we reached the end of the list then this AF is not
* in the list - add it.
*/
if (index == stat_info->afcache_size) {
fmdbg("Storing AF %d to cache index %d\n", freq, index);
stat_info->af_cache[index] = freq;
stat_info->afcache_size++;
}
}
/*
* Converts RDS buffer data from big endian format
* to little endian format.
*/
static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
struct fm_rdsdata_format *rds_format)
{
u8 index = 0;
u8 *rds_buff;
/*
* Since in Orca the 2 RDS Data bytes are in little endian and
* in Dolphin they are in big endian, the parsing of the RDS data
* is chip dependent
*/
if (fmdev->asci_id != 0x6350) {
rds_buff = &rds_format->data.groupdatabuff.buff[0];
while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
swap(rds_buff[index], rds_buff[index + 1]);
index += 2;
}
}
}
static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
{
struct sk_buff *skb;
struct fm_rdsdata_format rds_fmt;
struct fm_rds *rds = &fmdev->rx.rds;
unsigned long group_idx, flags;
u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
u8 type, blk_idx, idx;
u16 cur_picode;
u32 rds_len;
if (check_cmdresp_status(fmdev, &skb))
return;
/* Skip header info */
skb_pull(skb, sizeof(struct fm_event_msg_hdr));
rds_data = skb->data;
rds_len = skb->len;
/* Parse the RDS data */
while (rds_len >= FM_RDS_BLK_SIZE) {
meta_data = rds_data[2];
/* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
type = (meta_data & 0x07);
/* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
fmdbg("Block index:%d(%s)\n", blk_idx,
(meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
break;
if (blk_idx > FM_RDS_BLK_IDX_D) {
fmdbg("Block sequence mismatch\n");
rds->last_blk_idx = -1;
break;
}
/* Skip checkword (control) byte and copy only data byte */
idx = array_index_nospec(blk_idx * (FM_RDS_BLK_SIZE - 1),
FM_RX_RDS_INFO_FIELD_MAX - (FM_RDS_BLK_SIZE - 1));
memcpy(&rds_fmt.data.groupdatabuff.buff[idx], rds_data,
FM_RDS_BLK_SIZE - 1);
rds->last_blk_idx = blk_idx;
/* If completed a whole group then handle it */
if (blk_idx == FM_RDS_BLK_IDX_D) {
fmdbg("Good block received\n");
fm_rdsparse_swapbytes(fmdev, &rds_fmt);
/*
* Extract PI code and store in local cache.
* We need this during AF switch processing.
*/
cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
if (fmdev->rx.stat_info.picode != cur_picode)
fmdev->rx.stat_info.picode = cur_picode;
fmdbg("picode:%d\n", cur_picode);
group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
(group_idx % 2) ? "B" : "A");
group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
}
}
rds_len -= FM_RDS_BLK_SIZE;
rds_data += FM_RDS_BLK_SIZE;
}
/* Copy raw rds data to internal rds buffer */
rds_data = skb->data;
rds_len = skb->len;
spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
while (rds_len > 0) {
/*
* Fill RDS buffer as per V4L2 specification.
* Store control byte
*/
type = (rds_data[2] & 0x07);
blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
tmpbuf[2] = blk_idx; /* Offset name */
tmpbuf[2] |= blk_idx << 3; /* Received offset */
/* Store data byte */
tmpbuf[0] = rds_data[0];
tmpbuf[1] = rds_data[1];
memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
/* Check for overflow & start over */
if (rds->wr_idx == rds->rd_idx) {
fmdbg("RDS buffer overflow\n");
rds->wr_idx = 0;
rds->rd_idx = 0;
break;
}
rds_len -= FM_RDS_BLK_SIZE;
rds_data += FM_RDS_BLK_SIZE;
}
spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
/* Wakeup read queue */
if (rds->wr_idx != rds->rd_idx)
wake_up_interruptible(&rds->read_queue);
fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
}
static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
{
fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
}
static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
{
if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
irq_info.mask) {
fmdbg("irq: tune ended/bandlimit reached\n");
if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
} else {
complete(&fmdev->maintask_comp);
fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
}
} else
fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
fm_irq_call(fmdev);
}
static void fm_irq_handle_power_enb(struct fmdev *fmdev)
{
if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
fmdbg("irq: Power Enabled/Disabled\n");
complete(&fmdev->maintask_comp);
}
fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
}
static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
{
if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
(fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
(fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
(fmdev->rx.stat_info.afcache_size != 0)) {
fmdbg("irq: rssi level has fallen below threshold level\n");
/* Disable further low RSSI interrupts */
fmdev->irq_info.mask &= ~FM_LEV_EVENT;
fmdev->rx.afjump_idx = 0;
fmdev->rx.freq_before_jump = fmdev->rx.freq;
fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
} else {
/* Continue next function in interrupt handler table */
fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
}
fm_irq_call(fmdev);
}
static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
{
u16 payload;
/* Set PI code - must be updated if the AF list is not empty */
payload = fmdev->rx.stat_info.picode;
if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
}
static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
{
fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
}
/*
* Set PI mask.
* 0xFFFF = Enable PI code matching
* 0x0000 = Disable PI code matching
*/
static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
{
u16 payload;
payload = 0x0000;
if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
}
static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
{
fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
}
static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
{
u16 frq_index;
u16 payload;
fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
payload = frq_index;
if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
}
static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
{
fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
}
static void fm_irq_afjump_enableint(struct fmdev *fmdev)
{
u16 payload;
/* Enable FR (tuning operation ended) interrupt */
payload = FM_FR_EVENT;
if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
}
static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
{
fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
}
static void fm_irq_start_afjump(struct fmdev *fmdev)
{
u16 payload;
payload = FM_TUNER_AF_JUMP_MODE;
if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
sizeof(payload), NULL))
fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
}
static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
{
struct sk_buff *skb;
if (check_cmdresp_status(fmdev, &skb))
return;
fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
}
static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
{
u16 payload;
if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
}
static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
{
struct sk_buff *skb;
u16 read_freq;
u32 curr_freq, jumped_freq;
if (check_cmdresp_status(fmdev, &skb))
return;
/* Skip header info and copy only response data */
skb_pull(skb, sizeof(struct fm_event_msg_hdr));
memcpy(&read_freq, skb->data, sizeof(read_freq));
read_freq = be16_to_cpu((__force __be16)read_freq);
curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
/* If the frequency was changed the jump succeeded */
if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
fmdev->rx.freq = curr_freq;
fm_rx_reset_rds_cache(fmdev);
/* AF feature is on, enable low level RSSI interrupt */
if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
fmdev->irq_info.mask |= FM_LEV_EVENT;
fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
} else { /* jump to the next freq in the AF list */
fmdev->rx.afjump_idx++;
/* If we reached the end of the list - stop searching */
if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
fmdbg("AF switch processing failed\n");
fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
} else { /* AF List is not over - try next one */
fmdbg("Trying next freq in AF cache\n");
fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
}
}
fm_irq_call(fmdev);
}
static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
{
fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
}
static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
{
u16 payload;
/* Re-enable FM interrupts */
payload = fmdev->irq_info.mask;
if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
sizeof(payload), NULL))
fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
}
static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
{
struct sk_buff *skb;
if (check_cmdresp_status(fmdev, &skb))
return;
/*
* This is last function in interrupt table to be executed.
* So, reset stage index to 0.
*/
fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
/* Start processing any pending interrupt */
if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
else
clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
}
/* Returns availability of RDS data in internal buffer */
int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
struct poll_table_struct *pts)
{
poll_wait(file, &fmdev->rx.rds.read_queue, pts);
if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
return 0;
return -EAGAIN;
}
/* Copies RDS data from internal buffer to user buffer */
int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
u8 __user *buf, size_t count)
{
u32 block_count;
u8 tmpbuf[FM_RDS_BLK_SIZE];
unsigned long flags;
int ret;
if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
if (file->f_flags & O_NONBLOCK)
return -EWOULDBLOCK;
ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
(fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
if (ret)
return -EINTR;
}
/* Calculate block count from byte count */
count /= FM_RDS_BLK_SIZE;
block_count = 0;
ret = 0;
while (block_count < count) {
spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
break;
}
memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
FM_RDS_BLK_SIZE);
fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
fmdev->rx.rds.rd_idx = 0;
spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
break;
block_count++;
buf += FM_RDS_BLK_SIZE;
ret += FM_RDS_BLK_SIZE;
}
return ret;
}
int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
{
switch (fmdev->curr_fmmode) {
case FM_MODE_RX:
return fm_rx_set_freq(fmdev, freq_to_set);
case FM_MODE_TX:
return fm_tx_set_freq(fmdev, freq_to_set);
default:
return -EINVAL;
}
}
int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
{
if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
fmerr("RX frequency is not set\n");
return -EPERM;
}
if (cur_tuned_frq == NULL) {
fmerr("Invalid memory\n");
return -ENOMEM;
}
switch (fmdev->curr_fmmode) {
case FM_MODE_RX:
*cur_tuned_frq = fmdev->rx.freq;
return 0;
case FM_MODE_TX:
*cur_tuned_frq = 0; /* TODO : Change this later */
return 0;
default:
return -EINVAL;
}
}
int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
{
switch (fmdev->curr_fmmode) {
case FM_MODE_RX:
return fm_rx_set_region(fmdev, region_to_set);
case FM_MODE_TX:
return fm_tx_set_region(fmdev, region_to_set);
default:
return -EINVAL;
}
}
int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
{
switch (fmdev->curr_fmmode) {
case FM_MODE_RX:
return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
case FM_MODE_TX:
return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
default:
return -EINVAL;
}
}
int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
{
switch (fmdev->curr_fmmode) {
case FM_MODE_RX:
return fm_rx_set_stereo_mono(fmdev, mode);
case FM_MODE_TX:
return fm_tx_set_stereo_mono(fmdev, mode);
default:
return -EINVAL;
}
}
int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
{
switch (fmdev->curr_fmmode) {
case FM_MODE_RX:
return fm_rx_set_rds_mode(fmdev, rds_en_dis);
case FM_MODE_TX:
return fm_tx_set_rds_mode(fmdev, rds_en_dis);
default:
return -EINVAL;
}
}
/* Sends power off command to the chip */
static int fm_power_down(struct fmdev *fmdev)
{
u16 payload;
int ret;
if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
fmerr("FM core is not ready\n");
return -EPERM;
}
if (fmdev->curr_fmmode == FM_MODE_OFF) {
fmdbg("FM chip is already in OFF state\n");
return 0;
}
payload = 0x0;
ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
sizeof(payload), NULL, NULL);
if (ret < 0)
return ret;
return fmc_release(fmdev);
}
/* Reads init command from FM firmware file and loads to the chip */
static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
{
const struct firmware *fw_entry;
struct bts_header *fw_header;
struct bts_action *action;
struct bts_action_delay *delay;
u8 *fw_data;
int ret, fw_len, cmd_cnt;
cmd_cnt = 0;
set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
ret = request_firmware(&fw_entry, fw_name,
&fmdev->radio_dev->dev);
if (ret < 0) {
fmerr("Unable to read firmware(%s) content\n", fw_name);
return ret;
}
fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
fw_data = (void *)fw_entry->data;
fw_len = fw_entry->size;
fw_header = (struct bts_header *)fw_data;
if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
fmerr("%s not a legal TI firmware file\n", fw_name);
ret = -EINVAL;
goto rel_fw;
}
fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
/* Skip file header info , we already verified it */
fw_data += sizeof(struct bts_header);
fw_len -= sizeof(struct bts_header);
while (fw_data && fw_len > 0) {
action = (struct bts_action *)fw_data;
switch (action->type) {
case ACTION_SEND_COMMAND: /* Send */
ret = fmc_send_cmd(fmdev, 0, 0, action->data,
action->size, NULL, NULL);
if (ret)
goto rel_fw;
cmd_cnt++;
break;
case ACTION_DELAY: /* Delay */
delay = (struct bts_action_delay *)action->data;
mdelay(delay->msec);
break;
}
fw_data += (sizeof(struct bts_action) + (action->size));
fw_len -= (sizeof(struct bts_action) + (action->size));
}
fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
rel_fw:
release_firmware(fw_entry);
clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
return ret;
}
/* Loads default RX configuration to the chip */
static int load_default_rx_configuration(struct fmdev *fmdev)
{
int ret;
ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
if (ret < 0)
return ret;
return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
}
/* Does FM power on sequence */
static int fm_power_up(struct fmdev *fmdev, u8 mode)
{
u16 payload;
__be16 asic_id = 0, asic_ver = 0;
int resp_len, ret;
u8 fw_name[50];
if (mode >= FM_MODE_ENTRY_MAX) {
fmerr("Invalid firmware download option\n");
return -EINVAL;
}
/*
* Initialize FM common module. FM GPIO toggling is
* taken care in Shared Transport driver.
*/
ret = fmc_prepare(fmdev);
if (ret < 0) {
fmerr("Unable to prepare FM Common\n");
return ret;
}
payload = FM_ENABLE;
if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
sizeof(payload), NULL, NULL))
goto rel;
/* Allow the chip to settle down in Channel-8 mode */
msleep(20);
if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
sizeof(asic_id), &asic_id, &resp_len))
goto rel;
if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
sizeof(asic_ver), &asic_ver, &resp_len))
goto rel;
fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
ret = fm_download_firmware(fmdev, fw_name);
if (ret < 0) {
fmdbg("Failed to download firmware file %s\n", fw_name);
goto rel;
}
sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
ret = fm_download_firmware(fmdev, fw_name);
if (ret < 0) {
fmdbg("Failed to download firmware file %s\n", fw_name);
goto rel;
} else
return ret;
rel:
return fmc_release(fmdev);
}
/* Set FM Modes(TX, RX, OFF) */
int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
{
int ret = 0;
if (fm_mode >= FM_MODE_ENTRY_MAX) {
fmerr("Invalid FM mode\n");
return -EINVAL;
}
if (fmdev->curr_fmmode == fm_mode) {
fmdbg("Already fm is in mode(%d)\n", fm_mode);
return ret;
}
switch (fm_mode) {
case FM_MODE_OFF: /* OFF Mode */
ret = fm_power_down(fmdev);
if (ret < 0) {
fmerr("Failed to set OFF mode\n");
return ret;
}
break;
case FM_MODE_TX: /* TX Mode */
case FM_MODE_RX: /* RX Mode */
/* Power down before switching to TX or RX mode */
if (fmdev->curr_fmmode != FM_MODE_OFF) {
ret = fm_power_down(fmdev);
if (ret < 0) {
fmerr("Failed to set OFF mode\n");
return ret;
}
msleep(30);
}
ret = fm_power_up(fmdev, fm_mode);
if (ret < 0) {
fmerr("Failed to load firmware\n");
return ret;
}
}
fmdev->curr_fmmode = fm_mode;
/* Set default configuration */
if (fmdev->curr_fmmode == FM_MODE_RX) {
fmdbg("Loading default rx configuration..\n");
ret = load_default_rx_configuration(fmdev);
if (ret < 0)
fmerr("Failed to load default values\n");
}
return ret;
}
/* Returns current FM mode (TX, RX, OFF) */
int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
{
if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
fmerr("FM core is not ready\n");
return -EPERM;
}
if (fmmode == NULL) {
fmerr("Invalid memory\n");
return -ENOMEM;
}
*fmmode = fmdev->curr_fmmode;
return 0;
}
/* Called by ST layer when FM packet is available */
static long fm_st_receive(void *arg, struct sk_buff *skb)
{
struct fmdev *fmdev;
fmdev = (struct fmdev *)arg;
if (skb == NULL) {
fmerr("Invalid SKB received from ST\n");
return -EFAULT;
}
if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
return -EINVAL;
}
memcpy(skb_push(skb, 1), &skb->cb[0], 1);
skb_queue_tail(&fmdev->rx_q, skb);
tasklet_schedule(&fmdev->rx_task);
return 0;
}
/*
* Called by ST layer to indicate protocol registration completion
* status.
*/
static void fm_st_reg_comp_cb(void *arg, int data)
{
struct fmdev *fmdev;
fmdev = (struct fmdev *)arg;
fmdev->streg_cbdata = data;
complete(&wait_for_fmdrv_reg_comp);
}
/*
* This function will be called from FM V4L2 open function.
* Register with ST driver and initialize driver data.
*/
int fmc_prepare(struct fmdev *fmdev)
{
static struct st_proto_s fm_st_proto;
int ret;
if (test_bit(FM_CORE_READY, &fmdev->flag)) {
fmdbg("FM Core is already up\n");
return 0;
}
memset(&fm_st_proto, 0, sizeof(fm_st_proto));
fm_st_proto.recv = fm_st_receive;
fm_st_proto.match_packet = NULL;
fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
fm_st_proto.priv_data = fmdev;
fm_st_proto.chnl_id = 0x08;
fm_st_proto.max_frame_size = 0xff;
fm_st_proto.hdr_len = 1;
fm_st_proto.offset_len_in_hdr = 0;
fm_st_proto.len_size = 1;
fm_st_proto.reserve = 1;
ret = st_register(&fm_st_proto);
if (ret == -EINPROGRESS) {
init_completion(&wait_for_fmdrv_reg_comp);
fmdev->streg_cbdata = -EINPROGRESS;
fmdbg("%s waiting for ST reg completion signal\n", __func__);
if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
FM_ST_REG_TIMEOUT)) {
fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
return -ETIMEDOUT;
}
if (fmdev->streg_cbdata != 0) {
fmerr("ST reg comp CB called with error status %d\n",
fmdev->streg_cbdata);
return -EAGAIN;
}
ret = 0;
} else if (ret < 0) {
fmerr("st_register failed %d\n", ret);
return -EAGAIN;
}
if (fm_st_proto.write != NULL) {
g_st_write = fm_st_proto.write;
} else {
fmerr("Failed to get ST write func pointer\n");
ret = st_unregister(&fm_st_proto);
if (ret < 0)
fmerr("st_unregister failed %d\n", ret);
return -EAGAIN;
}
spin_lock_init(&fmdev->rds_buff_lock);
spin_lock_init(&fmdev->resp_skb_lock);
/* Initialize TX queue and TX tasklet */
skb_queue_head_init(&fmdev->tx_q);
tasklet_setup(&fmdev->tx_task, send_tasklet);
/* Initialize RX Queue and RX tasklet */
skb_queue_head_init(&fmdev->rx_q);
tasklet_setup(&fmdev->rx_task, recv_tasklet);
fmdev->irq_info.stage = 0;
atomic_set(&fmdev->tx_cnt, 1);
fmdev->resp_comp = NULL;
timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0);
/*TODO: add FM_STIC_EVENT later */
fmdev->irq_info.mask = FM_MAL_EVENT;
/* Region info */
fmdev->rx.region = region_configs[default_radio_region];
fmdev->rx.mute_mode = FM_MUTE_OFF;
fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
fmdev->rx.rds.flag = FM_RDS_DISABLE;
fmdev->rx.freq = FM_UNDEFINED_FREQ;
fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
fmdev->irq_info.retry = 0;
fm_rx_reset_rds_cache(fmdev);
init_waitqueue_head(&fmdev->rx.rds.read_queue);
fm_rx_reset_station_info(fmdev);
set_bit(FM_CORE_READY, &fmdev->flag);
return ret;
}
/*
* This function will be called from FM V4L2 release function.
* Unregister from ST driver.
*/
int fmc_release(struct fmdev *fmdev)
{
static struct st_proto_s fm_st_proto;
int ret;
if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
fmdbg("FM Core is already down\n");
return 0;
}
/* Service pending read */
wake_up_interruptible(&fmdev->rx.rds.read_queue);
tasklet_kill(&fmdev->tx_task);
tasklet_kill(&fmdev->rx_task);
skb_queue_purge(&fmdev->tx_q);
skb_queue_purge(&fmdev->rx_q);
fmdev->resp_comp = NULL;
fmdev->rx.freq = 0;
memset(&fm_st_proto, 0, sizeof(fm_st_proto));
fm_st_proto.chnl_id = 0x08;
ret = st_unregister(&fm_st_proto);
if (ret < 0)
fmerr("Failed to de-register FM from ST %d\n", ret);
else
fmdbg("Successfully unregistered from ST\n");
clear_bit(FM_CORE_READY, &fmdev->flag);
return ret;
}
/*
* Module init function. Ask FM V4L module to register video device.
* Allocate memory for FM driver context and RX RDS buffer.
*/
static int __init fm_drv_init(void)
{
struct fmdev *fmdev = NULL;
int ret = -ENOMEM;
fmdbg("FM driver version %s\n", FM_DRV_VERSION);
fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
if (NULL == fmdev) {
fmerr("Can't allocate operation structure memory\n");
return ret;
}
fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
if (NULL == fmdev->rx.rds.buff) {
fmerr("Can't allocate rds ring buffer\n");
goto rel_dev;
}
ret = fm_v4l2_init_video_device(fmdev, radio_nr);
if (ret < 0)
goto rel_rdsbuf;
fmdev->irq_info.handlers = int_handler_table;
fmdev->curr_fmmode = FM_MODE_OFF;
fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
return ret;
rel_rdsbuf:
kfree(fmdev->rx.rds.buff);
rel_dev:
kfree(fmdev);
return ret;
}
/* Module exit function. Ask FM V4L module to unregister video device */
static void __exit fm_drv_exit(void)
{
struct fmdev *fmdev = NULL;
fmdev = fm_v4l2_deinit_video_device();
if (fmdev != NULL) {
kfree(fmdev->rx.rds.buff);
kfree(fmdev);
}
}
module_init(fm_drv_init);
module_exit(fm_drv_exit);
/* ------------- Module Info ------------- */
MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
MODULE_VERSION(FM_DRV_VERSION);
MODULE_LICENSE("GPL");