linuxdebug/drivers/hwtracing/coresight/coresight-etm-perf.c

886 lines
23 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(C) 2015 Linaro Limited. All rights reserved.
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
*/
#include <linux/coresight.h>
#include <linux/coresight-pmu.h>
#include <linux/cpumask.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/perf_event.h>
#include <linux/percpu-defs.h>
#include <linux/slab.h>
#include <linux/stringhash.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include "coresight-config.h"
#include "coresight-etm-perf.h"
#include "coresight-priv.h"
#include "coresight-syscfg.h"
static struct pmu etm_pmu;
static bool etm_perf_up;
/*
* An ETM context for a running event includes the perf aux handle
* and aux_data. For ETM, the aux_data (etm_event_data), consists of
* the trace path and the sink configuration. The event data is accessible
* via perf_get_aux(handle). However, a sink could "end" a perf output
* handle via the IRQ handler. And if the "sink" encounters a failure
* to "begin" another session (e.g due to lack of space in the buffer),
* the handle will be cleared. Thus, the event_data may not be accessible
* from the handle when we get to the etm_event_stop(), which is required
* for stopping the trace path. The event_data is guaranteed to stay alive
* until "free_aux()", which cannot happen as long as the event is active on
* the ETM. Thus the event_data for the session must be part of the ETM context
* to make sure we can disable the trace path.
*/
struct etm_ctxt {
struct perf_output_handle handle;
struct etm_event_data *event_data;
};
static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt);
static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
/*
* The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
* now take them as general formats and apply on all ETMs.
*/
PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST));
PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC));
/* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
PMU_FORMAT_ATTR(contextid1, "config:" __stringify(ETM_OPT_CTXTID));
/* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
PMU_FORMAT_ATTR(contextid2, "config:" __stringify(ETM_OPT_CTXTID2));
PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS));
PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK));
/* preset - if sink ID is used as a configuration selector */
PMU_FORMAT_ATTR(preset, "config:0-3");
/* Sink ID - same for all ETMs */
PMU_FORMAT_ATTR(sinkid, "config2:0-31");
/* config ID - set if a system configuration is selected */
PMU_FORMAT_ATTR(configid, "config2:32-63");
/*
* contextid always traces the "PID". The PID is in CONTEXTIDR_EL1
* when the kernel is running at EL1; when the kernel is at EL2,
* the PID is in CONTEXTIDR_EL2.
*/
static ssize_t format_attr_contextid_show(struct device *dev,
struct device_attribute *attr,
char *page)
{
int pid_fmt = ETM_OPT_CTXTID;
#if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
#endif
return sprintf(page, "config:%d\n", pid_fmt);
}
static struct device_attribute format_attr_contextid =
__ATTR(contextid, 0444, format_attr_contextid_show, NULL);
static struct attribute *etm_config_formats_attr[] = {
&format_attr_cycacc.attr,
&format_attr_contextid.attr,
&format_attr_contextid1.attr,
&format_attr_contextid2.attr,
&format_attr_timestamp.attr,
&format_attr_retstack.attr,
&format_attr_sinkid.attr,
&format_attr_preset.attr,
&format_attr_configid.attr,
&format_attr_branch_broadcast.attr,
NULL,
};
static const struct attribute_group etm_pmu_format_group = {
.name = "format",
.attrs = etm_config_formats_attr,
};
static struct attribute *etm_config_sinks_attr[] = {
NULL,
};
static const struct attribute_group etm_pmu_sinks_group = {
.name = "sinks",
.attrs = etm_config_sinks_attr,
};
static struct attribute *etm_config_events_attr[] = {
NULL,
};
static const struct attribute_group etm_pmu_events_group = {
.name = "events",
.attrs = etm_config_events_attr,
};
static const struct attribute_group *etm_pmu_attr_groups[] = {
&etm_pmu_format_group,
&etm_pmu_sinks_group,
&etm_pmu_events_group,
NULL,
};
static inline struct list_head **
etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
{
return per_cpu_ptr(data->path, cpu);
}
static inline struct list_head *
etm_event_cpu_path(struct etm_event_data *data, int cpu)
{
return *etm_event_cpu_path_ptr(data, cpu);
}
static void etm_event_read(struct perf_event *event) {}
static int etm_addr_filters_alloc(struct perf_event *event)
{
struct etm_filters *filters;
int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
if (!filters)
return -ENOMEM;
if (event->parent)
memcpy(filters, event->parent->hw.addr_filters,
sizeof(*filters));
event->hw.addr_filters = filters;
return 0;
}
static void etm_event_destroy(struct perf_event *event)
{
kfree(event->hw.addr_filters);
event->hw.addr_filters = NULL;
}
static int etm_event_init(struct perf_event *event)
{
int ret = 0;
if (event->attr.type != etm_pmu.type) {
ret = -ENOENT;
goto out;
}
ret = etm_addr_filters_alloc(event);
if (ret)
goto out;
event->destroy = etm_event_destroy;
out:
return ret;
}
static void free_sink_buffer(struct etm_event_data *event_data)
{
int cpu;
cpumask_t *mask = &event_data->mask;
struct coresight_device *sink;
if (!event_data->snk_config)
return;
if (WARN_ON(cpumask_empty(mask)))
return;
cpu = cpumask_first(mask);
sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
sink_ops(sink)->free_buffer(event_data->snk_config);
}
static void free_event_data(struct work_struct *work)
{
int cpu;
cpumask_t *mask;
struct etm_event_data *event_data;
event_data = container_of(work, struct etm_event_data, work);
mask = &event_data->mask;
/* Free the sink buffers, if there are any */
free_sink_buffer(event_data);
/* clear any configuration we were using */
if (event_data->cfg_hash)
cscfg_deactivate_config(event_data->cfg_hash);
for_each_cpu(cpu, mask) {
struct list_head **ppath;
ppath = etm_event_cpu_path_ptr(event_data, cpu);
if (!(IS_ERR_OR_NULL(*ppath)))
coresight_release_path(*ppath);
*ppath = NULL;
}
free_percpu(event_data->path);
kfree(event_data);
}
static void *alloc_event_data(int cpu)
{
cpumask_t *mask;
struct etm_event_data *event_data;
/* First get memory for the session's data */
event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
if (!event_data)
return NULL;
mask = &event_data->mask;
if (cpu != -1)
cpumask_set_cpu(cpu, mask);
else
cpumask_copy(mask, cpu_present_mask);
/*
* Each CPU has a single path between source and destination. As such
* allocate an array using CPU numbers as indexes. That way a path
* for any CPU can easily be accessed at any given time. We proceed
* the same way for sessions involving a single CPU. The cost of
* unused memory when dealing with single CPU trace scenarios is small
* compared to the cost of searching through an optimized array.
*/
event_data->path = alloc_percpu(struct list_head *);
if (!event_data->path) {
kfree(event_data);
return NULL;
}
return event_data;
}
static void etm_free_aux(void *data)
{
struct etm_event_data *event_data = data;
schedule_work(&event_data->work);
}
/*
* Check if two given sinks are compatible with each other,
* so that they can use the same sink buffers, when an event
* moves around.
*/
static bool sinks_compatible(struct coresight_device *a,
struct coresight_device *b)
{
if (!a || !b)
return false;
/*
* If the sinks are of the same subtype and driven
* by the same driver, we can use the same buffer
* on these sinks.
*/
return (a->subtype.sink_subtype == b->subtype.sink_subtype) &&
(sink_ops(a) == sink_ops(b));
}
static void *etm_setup_aux(struct perf_event *event, void **pages,
int nr_pages, bool overwrite)
{
u32 id, cfg_hash;
int cpu = event->cpu;
cpumask_t *mask;
struct coresight_device *sink = NULL;
struct coresight_device *user_sink = NULL, *last_sink = NULL;
struct etm_event_data *event_data = NULL;
event_data = alloc_event_data(cpu);
if (!event_data)
return NULL;
INIT_WORK(&event_data->work, free_event_data);
/* First get the selected sink from user space. */
if (event->attr.config2 & GENMASK_ULL(31, 0)) {
id = (u32)event->attr.config2;
sink = user_sink = coresight_get_sink_by_id(id);
}
/* check if user wants a coresight configuration selected */
cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32);
if (cfg_hash) {
if (cscfg_activate_config(cfg_hash))
goto err;
event_data->cfg_hash = cfg_hash;
}
mask = &event_data->mask;
/*
* Setup the path for each CPU in a trace session. We try to build
* trace path for each CPU in the mask. If we don't find an ETM
* for the CPU or fail to build a path, we clear the CPU from the
* mask and continue with the rest. If ever we try to trace on those
* CPUs, we can handle it and fail the session.
*/
for_each_cpu(cpu, mask) {
struct list_head *path;
struct coresight_device *csdev;
csdev = per_cpu(csdev_src, cpu);
/*
* If there is no ETM associated with this CPU clear it from
* the mask and continue with the rest. If ever we try to trace
* on this CPU, we handle it accordingly.
*/
if (!csdev) {
cpumask_clear_cpu(cpu, mask);
continue;
}
/*
* No sink provided - look for a default sink for all the ETMs,
* where this event can be scheduled.
* We allocate the sink specific buffers only once for this
* event. If the ETMs have different default sink devices, we
* can only use a single "type" of sink as the event can carry
* only one sink specific buffer. Thus we have to make sure
* that the sinks are of the same type and driven by the same
* driver, as the one we allocate the buffer for. As such
* we choose the first sink and check if the remaining ETMs
* have a compatible default sink. We don't trace on a CPU
* if the sink is not compatible.
*/
if (!user_sink) {
/* Find the default sink for this ETM */
sink = coresight_find_default_sink(csdev);
if (!sink) {
cpumask_clear_cpu(cpu, mask);
continue;
}
/* Check if this sink compatible with the last sink */
if (last_sink && !sinks_compatible(last_sink, sink)) {
cpumask_clear_cpu(cpu, mask);
continue;
}
last_sink = sink;
}
/*
* Building a path doesn't enable it, it simply builds a
* list of devices from source to sink that can be
* referenced later when the path is actually needed.
*/
path = coresight_build_path(csdev, sink);
if (IS_ERR(path)) {
cpumask_clear_cpu(cpu, mask);
continue;
}
*etm_event_cpu_path_ptr(event_data, cpu) = path;
}
/* no sink found for any CPU - cannot trace */
if (!sink)
goto err;
/* If we don't have any CPUs ready for tracing, abort */
cpu = cpumask_first(mask);
if (cpu >= nr_cpu_ids)
goto err;
if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
goto err;
/*
* Allocate the sink buffer for this session. All the sinks
* where this event can be scheduled are ensured to be of the
* same type. Thus the same sink configuration is used by the
* sinks.
*/
event_data->snk_config =
sink_ops(sink)->alloc_buffer(sink, event, pages,
nr_pages, overwrite);
if (!event_data->snk_config)
goto err;
out:
return event_data;
err:
etm_free_aux(event_data);
event_data = NULL;
goto out;
}
static void etm_event_start(struct perf_event *event, int flags)
{
int cpu = smp_processor_id();
struct etm_event_data *event_data;
struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
struct perf_output_handle *handle = &ctxt->handle;
struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
struct list_head *path;
if (!csdev)
goto fail;
/* Have we messed up our tracking ? */
if (WARN_ON(ctxt->event_data))
goto fail;
/*
* Deal with the ring buffer API and get a handle on the
* session's information.
*/
event_data = perf_aux_output_begin(handle, event);
if (!event_data)
goto fail;
/*
* Check if this ETM is allowed to trace, as decided
* at etm_setup_aux(). This could be due to an unreachable
* sink from this ETM. We can't do much in this case if
* the sink was specified or hinted to the driver. For
* now, simply don't record anything on this ETM.
*
* As such we pretend that everything is fine, and let
* it continue without actually tracing. The event could
* continue tracing when it moves to a CPU where it is
* reachable to a sink.
*/
if (!cpumask_test_cpu(cpu, &event_data->mask))
goto out;
path = etm_event_cpu_path(event_data, cpu);
/* We need a sink, no need to continue without one */
sink = coresight_get_sink(path);
if (WARN_ON_ONCE(!sink))
goto fail_end_stop;
/* Nothing will happen without a path */
if (coresight_enable_path(path, CS_MODE_PERF, handle))
goto fail_end_stop;
/* Finally enable the tracer */
if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
goto fail_disable_path;
out:
/* Tell the perf core the event is alive */
event->hw.state = 0;
/* Save the event_data for this ETM */
ctxt->event_data = event_data;
return;
fail_disable_path:
coresight_disable_path(path);
fail_end_stop:
/*
* Check if the handle is still associated with the event,
* to handle cases where if the sink failed to start the
* trace and TRUNCATED the handle already.
*/
if (READ_ONCE(handle->event)) {
perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
perf_aux_output_end(handle, 0);
}
fail:
event->hw.state = PERF_HES_STOPPED;
return;
}
static void etm_event_stop(struct perf_event *event, int mode)
{
int cpu = smp_processor_id();
unsigned long size;
struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
struct perf_output_handle *handle = &ctxt->handle;
struct etm_event_data *event_data;
struct list_head *path;
/*
* If we still have access to the event_data via handle,
* confirm that we haven't messed up the tracking.
*/
if (handle->event &&
WARN_ON(perf_get_aux(handle) != ctxt->event_data))
return;
event_data = ctxt->event_data;
/* Clear the event_data as this ETM is stopping the trace. */
ctxt->event_data = NULL;
if (event->hw.state == PERF_HES_STOPPED)
return;
/* We must have a valid event_data for a running event */
if (WARN_ON(!event_data))
return;
/*
* Check if this ETM was allowed to trace, as decided at
* etm_setup_aux(). If it wasn't allowed to trace, then
* nothing needs to be torn down other than outputting a
* zero sized record.
*/
if (handle->event && (mode & PERF_EF_UPDATE) &&
!cpumask_test_cpu(cpu, &event_data->mask)) {
event->hw.state = PERF_HES_STOPPED;
perf_aux_output_end(handle, 0);
return;
}
if (!csdev)
return;
path = etm_event_cpu_path(event_data, cpu);
if (!path)
return;
sink = coresight_get_sink(path);
if (!sink)
return;
/* stop tracer */
source_ops(csdev)->disable(csdev, event);
/* tell the core */
event->hw.state = PERF_HES_STOPPED;
/*
* If the handle is not bound to an event anymore
* (e.g, the sink driver was unable to restart the
* handle due to lack of buffer space), we don't
* have to do anything here.
*/
if (handle->event && (mode & PERF_EF_UPDATE)) {
if (WARN_ON_ONCE(handle->event != event))
return;
/* update trace information */
if (!sink_ops(sink)->update_buffer)
return;
size = sink_ops(sink)->update_buffer(sink, handle,
event_data->snk_config);
/*
* Make sure the handle is still valid as the
* sink could have closed it from an IRQ.
* The sink driver must handle the race with
* update_buffer() and IRQ. Thus either we
* should get a valid handle and valid size
* (which may be 0).
*
* But we should never get a non-zero size with
* an invalid handle.
*/
if (READ_ONCE(handle->event))
perf_aux_output_end(handle, size);
else
WARN_ON(size);
}
/* Disabling the path make its elements available to other sessions */
coresight_disable_path(path);
}
static int etm_event_add(struct perf_event *event, int mode)
{
int ret = 0;
struct hw_perf_event *hwc = &event->hw;
if (mode & PERF_EF_START) {
etm_event_start(event, 0);
if (hwc->state & PERF_HES_STOPPED)
ret = -EINVAL;
} else {
hwc->state = PERF_HES_STOPPED;
}
return ret;
}
static void etm_event_del(struct perf_event *event, int mode)
{
etm_event_stop(event, PERF_EF_UPDATE);
}
static int etm_addr_filters_validate(struct list_head *filters)
{
bool range = false, address = false;
int index = 0;
struct perf_addr_filter *filter;
list_for_each_entry(filter, filters, entry) {
/*
* No need to go further if there's no more
* room for filters.
*/
if (++index > ETM_ADDR_CMP_MAX)
return -EOPNOTSUPP;
/* filter::size==0 means single address trigger */
if (filter->size) {
/*
* The existing code relies on START/STOP filters
* being address filters.
*/
if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
filter->action == PERF_ADDR_FILTER_ACTION_STOP)
return -EOPNOTSUPP;
range = true;
} else
address = true;
/*
* At this time we don't allow range and start/stop filtering
* to cohabitate, they have to be mutually exclusive.
*/
if (range && address)
return -EOPNOTSUPP;
}
return 0;
}
static void etm_addr_filters_sync(struct perf_event *event)
{
struct perf_addr_filters_head *head = perf_event_addr_filters(event);
unsigned long start, stop;
struct perf_addr_filter_range *fr = event->addr_filter_ranges;
struct etm_filters *filters = event->hw.addr_filters;
struct etm_filter *etm_filter;
struct perf_addr_filter *filter;
int i = 0;
list_for_each_entry(filter, &head->list, entry) {
start = fr[i].start;
stop = start + fr[i].size;
etm_filter = &filters->etm_filter[i];
switch (filter->action) {
case PERF_ADDR_FILTER_ACTION_FILTER:
etm_filter->start_addr = start;
etm_filter->stop_addr = stop;
etm_filter->type = ETM_ADDR_TYPE_RANGE;
break;
case PERF_ADDR_FILTER_ACTION_START:
etm_filter->start_addr = start;
etm_filter->type = ETM_ADDR_TYPE_START;
break;
case PERF_ADDR_FILTER_ACTION_STOP:
etm_filter->stop_addr = stop;
etm_filter->type = ETM_ADDR_TYPE_STOP;
break;
}
i++;
}
filters->nr_filters = i;
}
int etm_perf_symlink(struct coresight_device *csdev, bool link)
{
char entry[sizeof("cpu9999999")];
int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
struct device *pmu_dev = etm_pmu.dev;
struct device *cs_dev = &csdev->dev;
sprintf(entry, "cpu%d", cpu);
if (!etm_perf_up)
return -EPROBE_DEFER;
if (link) {
ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
if (ret)
return ret;
per_cpu(csdev_src, cpu) = csdev;
} else {
sysfs_remove_link(&pmu_dev->kobj, entry);
per_cpu(csdev_src, cpu) = NULL;
}
return 0;
}
EXPORT_SYMBOL_GPL(etm_perf_symlink);
static ssize_t etm_perf_sink_name_show(struct device *dev,
struct device_attribute *dattr,
char *buf)
{
struct dev_ext_attribute *ea;
ea = container_of(dattr, struct dev_ext_attribute, attr);
return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
}
static struct dev_ext_attribute *
etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name)
{
struct dev_ext_attribute *ea;
unsigned long hash;
int ret;
struct device *pmu_dev = etm_pmu.dev;
if (!etm_perf_up)
return ERR_PTR(-EPROBE_DEFER);
ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
if (!ea)
return ERR_PTR(-ENOMEM);
/*
* If this function is called adding a sink then the hash is used for
* sink selection - see function coresight_get_sink_by_id().
* If adding a configuration then the hash is used for selection in
* cscfg_activate_config()
*/
hash = hashlen_hash(hashlen_string(NULL, name));
sysfs_attr_init(&ea->attr.attr);
ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
if (!ea->attr.attr.name)
return ERR_PTR(-ENOMEM);
ea->attr.attr.mode = 0444;
ea->var = (unsigned long *)hash;
ret = sysfs_add_file_to_group(&pmu_dev->kobj,
&ea->attr.attr, group_name);
return ret ? ERR_PTR(ret) : ea;
}
int etm_perf_add_symlink_sink(struct coresight_device *csdev)
{
const char *name;
struct device *dev = &csdev->dev;
int err = 0;
if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
return -EINVAL;
if (csdev->ea != NULL)
return -EINVAL;
name = dev_name(dev);
csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks");
if (IS_ERR(csdev->ea)) {
err = PTR_ERR(csdev->ea);
csdev->ea = NULL;
} else
csdev->ea->attr.show = etm_perf_sink_name_show;
return err;
}
static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name)
{
struct device *pmu_dev = etm_pmu.dev;
sysfs_remove_file_from_group(&pmu_dev->kobj,
&ea->attr.attr, group_name);
}
void etm_perf_del_symlink_sink(struct coresight_device *csdev)
{
if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
return;
if (!csdev->ea)
return;
etm_perf_del_symlink_group(csdev->ea, "sinks");
csdev->ea = NULL;
}
static ssize_t etm_perf_cscfg_event_show(struct device *dev,
struct device_attribute *dattr,
char *buf)
{
struct dev_ext_attribute *ea;
ea = container_of(dattr, struct dev_ext_attribute, attr);
return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var));
}
int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc)
{
int err = 0;
if (config_desc->event_ea != NULL)
return 0;
config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events");
/* set the show function to the custom cscfg event */
if (!IS_ERR(config_desc->event_ea))
config_desc->event_ea->attr.show = etm_perf_cscfg_event_show;
else {
err = PTR_ERR(config_desc->event_ea);
config_desc->event_ea = NULL;
}
return err;
}
void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc)
{
if (!config_desc->event_ea)
return;
etm_perf_del_symlink_group(config_desc->event_ea, "events");
config_desc->event_ea = NULL;
}
int __init etm_perf_init(void)
{
int ret;
etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE |
PERF_PMU_CAP_ITRACE);
etm_pmu.attr_groups = etm_pmu_attr_groups;
etm_pmu.task_ctx_nr = perf_sw_context;
etm_pmu.read = etm_event_read;
etm_pmu.event_init = etm_event_init;
etm_pmu.setup_aux = etm_setup_aux;
etm_pmu.free_aux = etm_free_aux;
etm_pmu.start = etm_event_start;
etm_pmu.stop = etm_event_stop;
etm_pmu.add = etm_event_add;
etm_pmu.del = etm_event_del;
etm_pmu.addr_filters_sync = etm_addr_filters_sync;
etm_pmu.addr_filters_validate = etm_addr_filters_validate;
etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX;
etm_pmu.module = THIS_MODULE;
ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
if (ret == 0)
etm_perf_up = true;
return ret;
}
void etm_perf_exit(void)
{
perf_pmu_unregister(&etm_pmu);
}