linuxdebug/drivers/hwmon/occ/common.c

1252 lines
28 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0+
// Copyright IBM Corp 2019
#include <linux/device.h>
#include <linux/export.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/property.h>
#include <linux/sysfs.h>
#include <asm/unaligned.h>
#include "common.h"
#define EXTN_FLAG_SENSOR_ID BIT(7)
#define OCC_ERROR_COUNT_THRESHOLD 2 /* required by OCC spec */
#define OCC_STATE_SAFE 4
#define OCC_SAFE_TIMEOUT msecs_to_jiffies(60000) /* 1 min */
#define OCC_UPDATE_FREQUENCY msecs_to_jiffies(1000)
#define OCC_TEMP_SENSOR_FAULT 0xFF
#define OCC_FRU_TYPE_VRM 3
/* OCC sensor type and version definitions */
struct temp_sensor_1 {
u16 sensor_id;
u16 value;
} __packed;
struct temp_sensor_2 {
u32 sensor_id;
u8 fru_type;
u8 value;
} __packed;
struct temp_sensor_10 {
u32 sensor_id;
u8 fru_type;
u8 value;
u8 throttle;
u8 reserved;
} __packed;
struct freq_sensor_1 {
u16 sensor_id;
u16 value;
} __packed;
struct freq_sensor_2 {
u32 sensor_id;
u16 value;
} __packed;
struct power_sensor_1 {
u16 sensor_id;
u32 update_tag;
u32 accumulator;
u16 value;
} __packed;
struct power_sensor_2 {
u32 sensor_id;
u8 function_id;
u8 apss_channel;
u16 reserved;
u32 update_tag;
u64 accumulator;
u16 value;
} __packed;
struct power_sensor_data {
u16 value;
u32 update_tag;
u64 accumulator;
} __packed;
struct power_sensor_data_and_time {
u16 update_time;
u16 value;
u32 update_tag;
u64 accumulator;
} __packed;
struct power_sensor_a0 {
u32 sensor_id;
struct power_sensor_data_and_time system;
u32 reserved;
struct power_sensor_data_and_time proc;
struct power_sensor_data vdd;
struct power_sensor_data vdn;
} __packed;
struct caps_sensor_2 {
u16 cap;
u16 system_power;
u16 n_cap;
u16 max;
u16 min;
u16 user;
u8 user_source;
} __packed;
struct caps_sensor_3 {
u16 cap;
u16 system_power;
u16 n_cap;
u16 max;
u16 hard_min;
u16 soft_min;
u16 user;
u8 user_source;
} __packed;
struct extended_sensor {
union {
u8 name[4];
u32 sensor_id;
};
u8 flags;
u8 reserved;
u8 data[6];
} __packed;
static int occ_poll(struct occ *occ)
{
int rc;
u8 cmd[7];
struct occ_poll_response_header *header;
/* big endian */
cmd[0] = 0; /* sequence number */
cmd[1] = 0; /* cmd type */
cmd[2] = 0; /* data length msb */
cmd[3] = 1; /* data length lsb */
cmd[4] = occ->poll_cmd_data; /* data */
cmd[5] = 0; /* checksum msb */
cmd[6] = 0; /* checksum lsb */
/* mutex should already be locked if necessary */
rc = occ->send_cmd(occ, cmd, sizeof(cmd), &occ->resp, sizeof(occ->resp));
if (rc) {
occ->last_error = rc;
if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
occ->error = rc;
goto done;
}
/* clear error since communication was successful */
occ->error_count = 0;
occ->last_error = 0;
occ->error = 0;
/* check for safe state */
header = (struct occ_poll_response_header *)occ->resp.data;
if (header->occ_state == OCC_STATE_SAFE) {
if (occ->last_safe) {
if (time_after(jiffies,
occ->last_safe + OCC_SAFE_TIMEOUT))
occ->error = -EHOSTDOWN;
} else {
occ->last_safe = jiffies;
}
} else {
occ->last_safe = 0;
}
done:
occ_sysfs_poll_done(occ);
return rc;
}
static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
{
int rc;
u8 cmd[8];
u8 resp[8];
__be16 user_power_cap_be = cpu_to_be16(user_power_cap);
cmd[0] = 0; /* sequence number */
cmd[1] = 0x22; /* cmd type */
cmd[2] = 0; /* data length msb */
cmd[3] = 2; /* data length lsb */
memcpy(&cmd[4], &user_power_cap_be, 2);
cmd[6] = 0; /* checksum msb */
cmd[7] = 0; /* checksum lsb */
rc = mutex_lock_interruptible(&occ->lock);
if (rc)
return rc;
rc = occ->send_cmd(occ, cmd, sizeof(cmd), resp, sizeof(resp));
mutex_unlock(&occ->lock);
return rc;
}
int occ_update_response(struct occ *occ)
{
int rc = mutex_lock_interruptible(&occ->lock);
if (rc)
return rc;
/* limit the maximum rate of polling the OCC */
if (time_after(jiffies, occ->next_update)) {
rc = occ_poll(occ);
occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
} else {
rc = occ->last_error;
}
mutex_unlock(&occ->lock);
return rc;
}
static ssize_t occ_show_temp_1(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc;
u32 val = 0;
struct temp_sensor_1 *temp;
struct occ *occ = dev_get_drvdata(dev);
struct occ_sensors *sensors = &occ->sensors;
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
rc = occ_update_response(occ);
if (rc)
return rc;
temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
switch (sattr->nr) {
case 0:
val = get_unaligned_be16(&temp->sensor_id);
break;
case 1:
/*
* If a sensor reading has expired and couldn't be refreshed,
* OCC returns 0xFFFF for that sensor.
*/
if (temp->value == 0xFFFF)
return -EREMOTEIO;
val = get_unaligned_be16(&temp->value) * 1000;
break;
default:
return -EINVAL;
}
return sysfs_emit(buf, "%u\n", val);
}
static ssize_t occ_show_temp_2(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc;
u32 val = 0;
struct temp_sensor_2 *temp;
struct occ *occ = dev_get_drvdata(dev);
struct occ_sensors *sensors = &occ->sensors;
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
rc = occ_update_response(occ);
if (rc)
return rc;
temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
switch (sattr->nr) {
case 0:
val = get_unaligned_be32(&temp->sensor_id);
break;
case 1:
val = temp->value;
if (val == OCC_TEMP_SENSOR_FAULT)
return -EREMOTEIO;
/*
* VRM doesn't return temperature, only alarm bit. This
* attribute maps to tempX_alarm instead of tempX_input for
* VRM
*/
if (temp->fru_type != OCC_FRU_TYPE_VRM) {
/* sensor not ready */
if (val == 0)
return -EAGAIN;
val *= 1000;
}
break;
case 2:
val = temp->fru_type;
break;
case 3:
val = temp->value == OCC_TEMP_SENSOR_FAULT;
break;
default:
return -EINVAL;
}
return sysfs_emit(buf, "%u\n", val);
}
static ssize_t occ_show_temp_10(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc;
u32 val = 0;
struct temp_sensor_10 *temp;
struct occ *occ = dev_get_drvdata(dev);
struct occ_sensors *sensors = &occ->sensors;
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
rc = occ_update_response(occ);
if (rc)
return rc;
temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
switch (sattr->nr) {
case 0:
val = get_unaligned_be32(&temp->sensor_id);
break;
case 1:
val = temp->value;
if (val == OCC_TEMP_SENSOR_FAULT)
return -EREMOTEIO;
/* sensor not ready */
if (val == 0)
return -EAGAIN;
val *= 1000;
break;
case 2:
val = temp->fru_type;
break;
case 3:
val = temp->value == OCC_TEMP_SENSOR_FAULT;
break;
case 4:
val = temp->throttle * 1000;
break;
default:
return -EINVAL;
}
return sysfs_emit(buf, "%u\n", val);
}
static ssize_t occ_show_freq_1(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc;
u16 val = 0;
struct freq_sensor_1 *freq;
struct occ *occ = dev_get_drvdata(dev);
struct occ_sensors *sensors = &occ->sensors;
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
rc = occ_update_response(occ);
if (rc)
return rc;
freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
switch (sattr->nr) {
case 0:
val = get_unaligned_be16(&freq->sensor_id);
break;
case 1:
val = get_unaligned_be16(&freq->value);
break;
default:
return -EINVAL;
}
return sysfs_emit(buf, "%u\n", val);
}
static ssize_t occ_show_freq_2(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc;
u32 val = 0;
struct freq_sensor_2 *freq;
struct occ *occ = dev_get_drvdata(dev);
struct occ_sensors *sensors = &occ->sensors;
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
rc = occ_update_response(occ);
if (rc)
return rc;
freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
switch (sattr->nr) {
case 0:
val = get_unaligned_be32(&freq->sensor_id);
break;
case 1:
val = get_unaligned_be16(&freq->value);
break;
default:
return -EINVAL;
}
return sysfs_emit(buf, "%u\n", val);
}
static ssize_t occ_show_power_1(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc;
u64 val = 0;
struct power_sensor_1 *power;
struct occ *occ = dev_get_drvdata(dev);
struct occ_sensors *sensors = &occ->sensors;
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
rc = occ_update_response(occ);
if (rc)
return rc;
power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
switch (sattr->nr) {
case 0:
val = get_unaligned_be16(&power->sensor_id);
break;
case 1:
val = get_unaligned_be32(&power->accumulator) /
get_unaligned_be32(&power->update_tag);
val *= 1000000ULL;
break;
case 2:
val = (u64)get_unaligned_be32(&power->update_tag) *
occ->powr_sample_time_us;
break;
case 3:
val = get_unaligned_be16(&power->value) * 1000000ULL;
break;
default:
return -EINVAL;
}
return sysfs_emit(buf, "%llu\n", val);
}
static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
{
u64 divisor = get_unaligned_be32(samples);
return (divisor == 0) ? 0 :
div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
}
static ssize_t occ_show_power_2(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc;
u64 val = 0;
struct power_sensor_2 *power;
struct occ *occ = dev_get_drvdata(dev);
struct occ_sensors *sensors = &occ->sensors;
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
rc = occ_update_response(occ);
if (rc)
return rc;
power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
switch (sattr->nr) {
case 0:
return sysfs_emit(buf, "%u_%u_%u\n",
get_unaligned_be32(&power->sensor_id),
power->function_id, power->apss_channel);
case 1:
val = occ_get_powr_avg(&power->accumulator,
&power->update_tag);
break;
case 2:
val = (u64)get_unaligned_be32(&power->update_tag) *
occ->powr_sample_time_us;
break;
case 3:
val = get_unaligned_be16(&power->value) * 1000000ULL;
break;
default:
return -EINVAL;
}
return sysfs_emit(buf, "%llu\n", val);
}
static ssize_t occ_show_power_a0(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc;
u64 val = 0;
struct power_sensor_a0 *power;
struct occ *occ = dev_get_drvdata(dev);
struct occ_sensors *sensors = &occ->sensors;
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
rc = occ_update_response(occ);
if (rc)
return rc;
power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
switch (sattr->nr) {
case 0:
return sysfs_emit(buf, "%u_system\n",
get_unaligned_be32(&power->sensor_id));
case 1:
val = occ_get_powr_avg(&power->system.accumulator,
&power->system.update_tag);
break;
case 2:
val = (u64)get_unaligned_be32(&power->system.update_tag) *
occ->powr_sample_time_us;
break;
case 3:
val = get_unaligned_be16(&power->system.value) * 1000000ULL;
break;
case 4:
return sysfs_emit(buf, "%u_proc\n",
get_unaligned_be32(&power->sensor_id));
case 5:
val = occ_get_powr_avg(&power->proc.accumulator,
&power->proc.update_tag);
break;
case 6:
val = (u64)get_unaligned_be32(&power->proc.update_tag) *
occ->powr_sample_time_us;
break;
case 7:
val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
break;
case 8:
return sysfs_emit(buf, "%u_vdd\n",
get_unaligned_be32(&power->sensor_id));
case 9:
val = occ_get_powr_avg(&power->vdd.accumulator,
&power->vdd.update_tag);
break;
case 10:
val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
occ->powr_sample_time_us;
break;
case 11:
val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
break;
case 12:
return sysfs_emit(buf, "%u_vdn\n",
get_unaligned_be32(&power->sensor_id));
case 13:
val = occ_get_powr_avg(&power->vdn.accumulator,
&power->vdn.update_tag);
break;
case 14:
val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
occ->powr_sample_time_us;
break;
case 15:
val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
break;
default:
return -EINVAL;
}
return sysfs_emit(buf, "%llu\n", val);
}
static ssize_t occ_show_caps_1_2(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc;
u64 val = 0;
struct caps_sensor_2 *caps;
struct occ *occ = dev_get_drvdata(dev);
struct occ_sensors *sensors = &occ->sensors;
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
rc = occ_update_response(occ);
if (rc)
return rc;
caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
switch (sattr->nr) {
case 0:
return sysfs_emit(buf, "system\n");
case 1:
val = get_unaligned_be16(&caps->cap) * 1000000ULL;
break;
case 2:
val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
break;
case 3:
val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
break;
case 4:
val = get_unaligned_be16(&caps->max) * 1000000ULL;
break;
case 5:
val = get_unaligned_be16(&caps->min) * 1000000ULL;
break;
case 6:
val = get_unaligned_be16(&caps->user) * 1000000ULL;
break;
case 7:
if (occ->sensors.caps.version == 1)
return -EINVAL;
val = caps->user_source;
break;
default:
return -EINVAL;
}
return sysfs_emit(buf, "%llu\n", val);
}
static ssize_t occ_show_caps_3(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc;
u64 val = 0;
struct caps_sensor_3 *caps;
struct occ *occ = dev_get_drvdata(dev);
struct occ_sensors *sensors = &occ->sensors;
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
rc = occ_update_response(occ);
if (rc)
return rc;
caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
switch (sattr->nr) {
case 0:
return sysfs_emit(buf, "system\n");
case 1:
val = get_unaligned_be16(&caps->cap) * 1000000ULL;
break;
case 2:
val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
break;
case 3:
val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
break;
case 4:
val = get_unaligned_be16(&caps->max) * 1000000ULL;
break;
case 5:
val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
break;
case 6:
val = get_unaligned_be16(&caps->user) * 1000000ULL;
break;
case 7:
val = caps->user_source;
break;
case 8:
val = get_unaligned_be16(&caps->soft_min) * 1000000ULL;
break;
default:
return -EINVAL;
}
return sysfs_emit(buf, "%llu\n", val);
}
static ssize_t occ_store_caps_user(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int rc;
u16 user_power_cap;
unsigned long long value;
struct occ *occ = dev_get_drvdata(dev);
rc = kstrtoull(buf, 0, &value);
if (rc)
return rc;
user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
rc = occ_set_user_power_cap(occ, user_power_cap);
if (rc)
return rc;
return count;
}
static ssize_t occ_show_extended(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc;
struct extended_sensor *extn;
struct occ *occ = dev_get_drvdata(dev);
struct occ_sensors *sensors = &occ->sensors;
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
rc = occ_update_response(occ);
if (rc)
return rc;
extn = ((struct extended_sensor *)sensors->extended.data) +
sattr->index;
switch (sattr->nr) {
case 0:
if (extn->flags & EXTN_FLAG_SENSOR_ID) {
rc = sysfs_emit(buf, "%u",
get_unaligned_be32(&extn->sensor_id));
} else {
rc = sysfs_emit(buf, "%4phN\n", extn->name);
}
break;
case 1:
rc = sysfs_emit(buf, "%02x\n", extn->flags);
break;
case 2:
rc = sysfs_emit(buf, "%6phN\n", extn->data);
break;
default:
return -EINVAL;
}
return rc;
}
/*
* Some helper macros to make it easier to define an occ_attribute. Since these
* are dynamically allocated, we shouldn't use the existing kernel macros which
* stringify the name argument.
*/
#define ATTR_OCC(_name, _mode, _show, _store) { \
.attr = { \
.name = _name, \
.mode = VERIFY_OCTAL_PERMISSIONS(_mode), \
}, \
.show = _show, \
.store = _store, \
}
#define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) { \
.dev_attr = ATTR_OCC(_name, _mode, _show, _store), \
.index = _index, \
.nr = _nr, \
}
#define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index) \
((struct sensor_device_attribute_2) \
SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
/*
* Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
* use our own instead of the built-in hwmon attribute types.
*/
static int occ_setup_sensor_attrs(struct occ *occ)
{
unsigned int i, s, num_attrs = 0;
struct device *dev = occ->bus_dev;
struct occ_sensors *sensors = &occ->sensors;
struct occ_attribute *attr;
struct temp_sensor_2 *temp;
ssize_t (*show_temp)(struct device *, struct device_attribute *,
char *) = occ_show_temp_1;
ssize_t (*show_freq)(struct device *, struct device_attribute *,
char *) = occ_show_freq_1;
ssize_t (*show_power)(struct device *, struct device_attribute *,
char *) = occ_show_power_1;
ssize_t (*show_caps)(struct device *, struct device_attribute *,
char *) = occ_show_caps_1_2;
switch (sensors->temp.version) {
case 1:
num_attrs += (sensors->temp.num_sensors * 2);
break;
case 2:
num_attrs += (sensors->temp.num_sensors * 4);
show_temp = occ_show_temp_2;
break;
case 0x10:
num_attrs += (sensors->temp.num_sensors * 5);
show_temp = occ_show_temp_10;
break;
default:
sensors->temp.num_sensors = 0;
}
switch (sensors->freq.version) {
case 2:
show_freq = occ_show_freq_2;
fallthrough;
case 1:
num_attrs += (sensors->freq.num_sensors * 2);
break;
default:
sensors->freq.num_sensors = 0;
}
switch (sensors->power.version) {
case 2:
show_power = occ_show_power_2;
fallthrough;
case 1:
num_attrs += (sensors->power.num_sensors * 4);
break;
case 0xA0:
num_attrs += (sensors->power.num_sensors * 16);
show_power = occ_show_power_a0;
break;
default:
sensors->power.num_sensors = 0;
}
switch (sensors->caps.version) {
case 1:
num_attrs += (sensors->caps.num_sensors * 7);
break;
case 2:
num_attrs += (sensors->caps.num_sensors * 8);
break;
case 3:
show_caps = occ_show_caps_3;
num_attrs += (sensors->caps.num_sensors * 9);
break;
default:
sensors->caps.num_sensors = 0;
}
switch (sensors->extended.version) {
case 1:
num_attrs += (sensors->extended.num_sensors * 3);
break;
default:
sensors->extended.num_sensors = 0;
}
occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
GFP_KERNEL);
if (!occ->attrs)
return -ENOMEM;
/* null-terminated list */
occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
num_attrs + 1, GFP_KERNEL);
if (!occ->group.attrs)
return -ENOMEM;
attr = occ->attrs;
for (i = 0; i < sensors->temp.num_sensors; ++i) {
s = i + 1;
temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
0, i);
attr++;
if (sensors->temp.version == 2 &&
temp->fru_type == OCC_FRU_TYPE_VRM) {
snprintf(attr->name, sizeof(attr->name),
"temp%d_alarm", s);
} else {
snprintf(attr->name, sizeof(attr->name),
"temp%d_input", s);
}
attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
1, i);
attr++;
if (sensors->temp.version > 1) {
snprintf(attr->name, sizeof(attr->name),
"temp%d_fru_type", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
show_temp, NULL, 2, i);
attr++;
snprintf(attr->name, sizeof(attr->name),
"temp%d_fault", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
show_temp, NULL, 3, i);
attr++;
if (sensors->temp.version == 0x10) {
snprintf(attr->name, sizeof(attr->name),
"temp%d_max", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
show_temp, NULL,
4, i);
attr++;
}
}
}
for (i = 0; i < sensors->freq.num_sensors; ++i) {
s = i + 1;
snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
0, i);
attr++;
snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
1, i);
attr++;
}
if (sensors->power.version == 0xA0) {
/*
* Special case for many-attribute power sensor. Split it into
* a sensor number per power type, emulating several sensors.
*/
for (i = 0; i < sensors->power.num_sensors; ++i) {
unsigned int j;
unsigned int nr = 0;
s = (i * 4) + 1;
for (j = 0; j < 4; ++j) {
snprintf(attr->name, sizeof(attr->name),
"power%d_label", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
show_power, NULL,
nr++, i);
attr++;
snprintf(attr->name, sizeof(attr->name),
"power%d_average", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
show_power, NULL,
nr++, i);
attr++;
snprintf(attr->name, sizeof(attr->name),
"power%d_average_interval", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
show_power, NULL,
nr++, i);
attr++;
snprintf(attr->name, sizeof(attr->name),
"power%d_input", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
show_power, NULL,
nr++, i);
attr++;
s++;
}
}
s = (sensors->power.num_sensors * 4) + 1;
} else {
for (i = 0; i < sensors->power.num_sensors; ++i) {
s = i + 1;
snprintf(attr->name, sizeof(attr->name),
"power%d_label", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
show_power, NULL, 0, i);
attr++;
snprintf(attr->name, sizeof(attr->name),
"power%d_average", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
show_power, NULL, 1, i);
attr++;
snprintf(attr->name, sizeof(attr->name),
"power%d_average_interval", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
show_power, NULL, 2, i);
attr++;
snprintf(attr->name, sizeof(attr->name),
"power%d_input", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
show_power, NULL, 3, i);
attr++;
}
s = sensors->power.num_sensors + 1;
}
if (sensors->caps.num_sensors >= 1) {
snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
0, 0);
attr++;
snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1, 0);
attr++;
snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
2, 0);
attr++;
snprintf(attr->name, sizeof(attr->name),
"power%d_cap_not_redundant", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
3, 0);
attr++;
snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
4, 0);
attr++;
snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
5, 0);
attr++;
snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
occ_store_caps_user, 6, 0);
attr++;
if (sensors->caps.version > 1) {
snprintf(attr->name, sizeof(attr->name),
"power%d_cap_user_source", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
show_caps, NULL, 7, 0);
attr++;
if (sensors->caps.version > 2) {
snprintf(attr->name, sizeof(attr->name),
"power%d_cap_min_soft", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
show_caps, NULL,
8, 0);
attr++;
}
}
}
for (i = 0; i < sensors->extended.num_sensors; ++i) {
s = i + 1;
snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
occ_show_extended, NULL, 0, i);
attr++;
snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
occ_show_extended, NULL, 1, i);
attr++;
snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
occ_show_extended, NULL, 2, i);
attr++;
}
/* put the sensors in the group */
for (i = 0; i < num_attrs; ++i) {
sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
}
return 0;
}
/* only need to do this once at startup, as OCC won't change sensors on us */
static void occ_parse_poll_response(struct occ *occ)
{
unsigned int i, old_offset, offset = 0, size = 0;
struct occ_sensor *sensor;
struct occ_sensors *sensors = &occ->sensors;
struct occ_response *resp = &occ->resp;
struct occ_poll_response *poll =
(struct occ_poll_response *)&resp->data[0];
struct occ_poll_response_header *header = &poll->header;
struct occ_sensor_data_block *block = &poll->block;
dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
header->occ_code_level);
for (i = 0; i < header->num_sensor_data_blocks; ++i) {
block = (struct occ_sensor_data_block *)((u8 *)block + offset);
old_offset = offset;
offset = (block->header.num_sensors *
block->header.sensor_length) + sizeof(block->header);
size += offset;
/* validate all the length/size fields */
if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
dev_warn(occ->bus_dev, "exceeded response buffer\n");
return;
}
dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
old_offset, offset - 1, block->header.eye_catcher,
block->header.num_sensors);
/* match sensor block type */
if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
sensor = &sensors->temp;
else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
sensor = &sensors->freq;
else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
sensor = &sensors->power;
else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
sensor = &sensors->caps;
else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
sensor = &sensors->extended;
else {
dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
block->header.eye_catcher);
continue;
}
sensor->num_sensors = block->header.num_sensors;
sensor->version = block->header.sensor_format;
sensor->data = &block->data;
}
dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
sizeof(*header), size + sizeof(*header));
}
int occ_active(struct occ *occ, bool active)
{
int rc = mutex_lock_interruptible(&occ->lock);
if (rc)
return rc;
if (active) {
if (occ->active) {
rc = -EALREADY;
goto unlock;
}
occ->error_count = 0;
occ->last_safe = 0;
rc = occ_poll(occ);
if (rc < 0) {
dev_err(occ->bus_dev,
"failed to get OCC poll response=%02x: %d\n",
occ->resp.return_status, rc);
goto unlock;
}
occ->active = true;
occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
occ_parse_poll_response(occ);
rc = occ_setup_sensor_attrs(occ);
if (rc) {
dev_err(occ->bus_dev,
"failed to setup sensor attrs: %d\n", rc);
goto unlock;
}
occ->hwmon = hwmon_device_register_with_groups(occ->bus_dev,
"occ", occ,
occ->groups);
if (IS_ERR(occ->hwmon)) {
rc = PTR_ERR(occ->hwmon);
occ->hwmon = NULL;
dev_err(occ->bus_dev,
"failed to register hwmon device: %d\n", rc);
goto unlock;
}
} else {
if (!occ->active) {
rc = -EALREADY;
goto unlock;
}
if (occ->hwmon)
hwmon_device_unregister(occ->hwmon);
occ->active = false;
occ->hwmon = NULL;
}
unlock:
mutex_unlock(&occ->lock);
return rc;
}
int occ_setup(struct occ *occ)
{
int rc;
mutex_init(&occ->lock);
occ->groups[0] = &occ->group;
rc = occ_setup_sysfs(occ);
if (rc) {
dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
return rc;
}
if (!device_property_read_bool(occ->bus_dev, "ibm,no-poll-on-init")) {
rc = occ_active(occ, true);
if (rc)
occ_shutdown_sysfs(occ);
}
return rc;
}
EXPORT_SYMBOL_GPL(occ_setup);
void occ_shutdown(struct occ *occ)
{
mutex_lock(&occ->lock);
occ_shutdown_sysfs(occ);
if (occ->hwmon)
hwmon_device_unregister(occ->hwmon);
occ->hwmon = NULL;
mutex_unlock(&occ->lock);
}
EXPORT_SYMBOL_GPL(occ_shutdown);
MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
MODULE_DESCRIPTION("Common OCC hwmon code");
MODULE_LICENSE("GPL");