linuxdebug/drivers/gpu/drm/i915/display/g4x_dp.c

1405 lines
41 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*
* DisplayPort support for G4x,ILK,SNB,IVB,VLV,CHV (HSW+ handled by the DDI code).
*/
#include <linux/string_helpers.h>
#include "g4x_dp.h"
#include "intel_audio.h"
#include "intel_backlight.h"
#include "intel_connector.h"
#include "intel_crtc.h"
#include "intel_de.h"
#include "intel_display_power.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_dp_link_training.h"
#include "intel_dpio_phy.h"
#include "intel_fifo_underrun.h"
#include "intel_hdmi.h"
#include "intel_hotplug.h"
#include "intel_pch_display.h"
#include "intel_pps.h"
#include "vlv_sideband.h"
static const struct dpll g4x_dpll[] = {
{ .dot = 162000, .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8, },
{ .dot = 270000, .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2, },
};
static const struct dpll pch_dpll[] = {
{ .dot = 162000, .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9, },
{ .dot = 270000, .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8, },
};
static const struct dpll vlv_dpll[] = {
{ .dot = 162000, .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81, },
{ .dot = 270000, .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27, },
};
static const struct dpll chv_dpll[] = {
/* m2 is .22 binary fixed point */
{ .dot = 162000, .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a /* 32.4 */ },
{ .dot = 270000, .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 /* 27.0 */ },
};
const struct dpll *vlv_get_dpll(struct drm_i915_private *i915)
{
return IS_CHERRYVIEW(i915) ? &chv_dpll[0] : &vlv_dpll[0];
}
void g4x_dp_set_clock(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
const struct dpll *divisor = NULL;
int i, count = 0;
if (IS_G4X(dev_priv)) {
divisor = g4x_dpll;
count = ARRAY_SIZE(g4x_dpll);
} else if (HAS_PCH_SPLIT(dev_priv)) {
divisor = pch_dpll;
count = ARRAY_SIZE(pch_dpll);
} else if (IS_CHERRYVIEW(dev_priv)) {
divisor = chv_dpll;
count = ARRAY_SIZE(chv_dpll);
} else if (IS_VALLEYVIEW(dev_priv)) {
divisor = vlv_dpll;
count = ARRAY_SIZE(vlv_dpll);
}
if (divisor && count) {
for (i = 0; i < count; i++) {
if (pipe_config->port_clock == divisor[i].dot) {
pipe_config->dpll = divisor[i];
pipe_config->clock_set = true;
break;
}
}
}
}
static void intel_dp_prepare(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
enum port port = encoder->port;
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
intel_dp_set_link_params(intel_dp,
pipe_config->port_clock,
pipe_config->lane_count);
/*
* There are four kinds of DP registers:
* IBX PCH
* SNB CPU
* IVB CPU
* CPT PCH
*
* IBX PCH and CPU are the same for almost everything,
* except that the CPU DP PLL is configured in this
* register
*
* CPT PCH is quite different, having many bits moved
* to the TRANS_DP_CTL register instead. That
* configuration happens (oddly) in ilk_pch_enable
*/
/* Preserve the BIOS-computed detected bit. This is
* supposed to be read-only.
*/
intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
/* Handle DP bits in common between all three register formats */
intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
/* Split out the IBX/CPU vs CPT settings */
if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
intel_dp->DP |= DP_ENHANCED_FRAMING;
intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
u32 trans_dp;
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
trans_dp |= TRANS_DP_ENH_FRAMING;
else
trans_dp &= ~TRANS_DP_ENH_FRAMING;
intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
} else {
if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
intel_dp->DP |= DP_COLOR_RANGE_16_235;
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
intel_dp->DP |= DP_ENHANCED_FRAMING;
if (IS_CHERRYVIEW(dev_priv))
intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
else
intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
}
}
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
I915_STATE_WARN(cur_state != state,
"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
dig_port->base.base.base.id, dig_port->base.base.name,
str_on_off(state), str_on_off(cur_state));
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)
static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
I915_STATE_WARN(cur_state != state,
"eDP PLL state assertion failure (expected %s, current %s)\n",
str_on_off(state), str_on_off(cur_state));
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
static void ilk_edp_pll_on(struct intel_dp *intel_dp,
const struct intel_crtc_state *pipe_config)
{
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
assert_transcoder_disabled(dev_priv, pipe_config->cpu_transcoder);
assert_dp_port_disabled(intel_dp);
assert_edp_pll_disabled(dev_priv);
drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
pipe_config->port_clock);
intel_dp->DP &= ~DP_PLL_FREQ_MASK;
if (pipe_config->port_clock == 162000)
intel_dp->DP |= DP_PLL_FREQ_162MHZ;
else
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
intel_de_write(dev_priv, DP_A, intel_dp->DP);
intel_de_posting_read(dev_priv, DP_A);
udelay(500);
/*
* [DevILK] Work around required when enabling DP PLL
* while a pipe is enabled going to FDI:
* 1. Wait for the start of vertical blank on the enabled pipe going to FDI
* 2. Program DP PLL enable
*/
if (IS_IRONLAKE(dev_priv))
intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
intel_dp->DP |= DP_PLL_ENABLE;
intel_de_write(dev_priv, DP_A, intel_dp->DP);
intel_de_posting_read(dev_priv, DP_A);
udelay(200);
}
static void ilk_edp_pll_off(struct intel_dp *intel_dp,
const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
assert_transcoder_disabled(dev_priv, old_crtc_state->cpu_transcoder);
assert_dp_port_disabled(intel_dp);
assert_edp_pll_enabled(dev_priv);
drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
intel_dp->DP &= ~DP_PLL_ENABLE;
intel_de_write(dev_priv, DP_A, intel_dp->DP);
intel_de_posting_read(dev_priv, DP_A);
udelay(200);
}
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
enum port port, enum pipe *pipe)
{
enum pipe p;
for_each_pipe(dev_priv, p) {
u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
*pipe = p;
return true;
}
}
drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
port_name(port));
/* must initialize pipe to something for the asserts */
*pipe = PIPE_A;
return false;
}
bool g4x_dp_port_enabled(struct drm_i915_private *dev_priv,
i915_reg_t dp_reg, enum port port,
enum pipe *pipe)
{
bool ret;
u32 val;
val = intel_de_read(dev_priv, dp_reg);
ret = val & DP_PORT_EN;
/* asserts want to know the pipe even if the port is disabled */
if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
ret &= cpt_dp_port_selected(dev_priv, port, pipe);
else if (IS_CHERRYVIEW(dev_priv))
*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
else
*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
return ret;
}
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_wakeref_t wakeref;
bool ret;
wakeref = intel_display_power_get_if_enabled(dev_priv,
encoder->power_domain);
if (!wakeref)
return false;
ret = g4x_dp_port_enabled(dev_priv, intel_dp->output_reg,
encoder->port, pipe);
intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
return ret;
}
static void g4x_dp_get_m_n(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
if (crtc_state->has_pch_encoder) {
intel_pch_transcoder_get_m1_n1(crtc, &crtc_state->dp_m_n);
intel_pch_transcoder_get_m2_n2(crtc, &crtc_state->dp_m2_n2);
} else {
intel_cpu_transcoder_get_m1_n1(crtc, crtc_state->cpu_transcoder,
&crtc_state->dp_m_n);
intel_cpu_transcoder_get_m2_n2(crtc, crtc_state->cpu_transcoder,
&crtc_state->dp_m2_n2);
}
}
static void intel_dp_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
u32 tmp, flags = 0;
enum port port = encoder->port;
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
if (encoder->type == INTEL_OUTPUT_EDP)
pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
else
pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
tmp = intel_de_read(dev_priv, intel_dp->output_reg);
pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
u32 trans_dp = intel_de_read(dev_priv,
TRANS_DP_CTL(crtc->pipe));
if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
} else {
if (tmp & DP_SYNC_HS_HIGH)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (tmp & DP_SYNC_VS_HIGH)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
}
pipe_config->hw.adjusted_mode.flags |= flags;
if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
pipe_config->limited_color_range = true;
pipe_config->lane_count =
((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
g4x_dp_get_m_n(pipe_config);
if (port == PORT_A) {
if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
pipe_config->port_clock = 162000;
else
pipe_config->port_clock = 270000;
}
pipe_config->hw.adjusted_mode.crtc_clock =
intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
if (intel_dp_is_edp(intel_dp))
intel_edp_fixup_vbt_bpp(encoder, pipe_config->pipe_bpp);
}
static void
intel_dp_link_down(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
enum port port = encoder->port;
if (drm_WARN_ON(&dev_priv->drm,
(intel_de_read(dev_priv, intel_dp->output_reg) &
DP_PORT_EN) == 0))
return;
drm_dbg_kms(&dev_priv->drm, "\n");
if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
(HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
intel_dp->DP &= ~DP_LINK_TRAIN_MASK_CPT;
intel_dp->DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
} else {
intel_dp->DP &= ~DP_LINK_TRAIN_MASK;
intel_dp->DP |= DP_LINK_TRAIN_PAT_IDLE;
}
intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
intel_de_posting_read(dev_priv, intel_dp->output_reg);
intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
intel_de_posting_read(dev_priv, intel_dp->output_reg);
/*
* HW workaround for IBX, we need to move the port
* to transcoder A after disabling it to allow the
* matching HDMI port to be enabled on transcoder A.
*/
if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
/*
* We get CPU/PCH FIFO underruns on the other pipe when
* doing the workaround. Sweep them under the rug.
*/
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
/* always enable with pattern 1 (as per spec) */
intel_dp->DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
intel_dp->DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
DP_LINK_TRAIN_PAT_1;
intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
intel_de_posting_read(dev_priv, intel_dp->output_reg);
intel_dp->DP &= ~DP_PORT_EN;
intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
intel_de_posting_read(dev_priv, intel_dp->output_reg);
intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
}
msleep(intel_dp->pps.panel_power_down_delay);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
intel_wakeref_t wakeref;
with_intel_pps_lock(intel_dp, wakeref)
intel_dp->pps.active_pipe = INVALID_PIPE;
}
}
static void intel_disable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_dp->link_trained = false;
intel_audio_codec_disable(encoder, old_crtc_state, old_conn_state);
/*
* Make sure the panel is off before trying to change the mode.
* But also ensure that we have vdd while we switch off the panel.
*/
intel_pps_vdd_on(intel_dp);
intel_edp_backlight_off(old_conn_state);
intel_dp_set_power(intel_dp, DP_SET_POWER_D3);
intel_pps_off(intel_dp);
}
static void g4x_disable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
}
static void vlv_disable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
}
static void g4x_post_disable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
enum port port = encoder->port;
/*
* Bspec does not list a specific disable sequence for g4x DP.
* Follow the ilk+ sequence (disable pipe before the port) for
* g4x DP as it does not suffer from underruns like the normal
* g4x modeset sequence (disable pipe after the port).
*/
intel_dp_link_down(encoder, old_crtc_state);
/* Only ilk+ has port A */
if (port == PORT_A)
ilk_edp_pll_off(intel_dp, old_crtc_state);
}
static void vlv_post_disable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
intel_dp_link_down(encoder, old_crtc_state);
}
static void chv_post_disable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
intel_dp_link_down(encoder, old_crtc_state);
vlv_dpio_get(dev_priv);
/* Assert data lane reset */
chv_data_lane_soft_reset(encoder, old_crtc_state, true);
vlv_dpio_put(dev_priv);
}
static void
cpt_set_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
u8 dp_train_pat)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
intel_dp->DP &= ~DP_LINK_TRAIN_MASK_CPT;
switch (intel_dp_training_pattern_symbol(dp_train_pat)) {
case DP_TRAINING_PATTERN_DISABLE:
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
break;
case DP_TRAINING_PATTERN_1:
intel_dp->DP |= DP_LINK_TRAIN_PAT_1_CPT;
break;
case DP_TRAINING_PATTERN_2:
intel_dp->DP |= DP_LINK_TRAIN_PAT_2_CPT;
break;
default:
MISSING_CASE(intel_dp_training_pattern_symbol(dp_train_pat));
return;
}
intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
intel_de_posting_read(dev_priv, intel_dp->output_reg);
}
static void
g4x_set_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
u8 dp_train_pat)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
intel_dp->DP &= ~DP_LINK_TRAIN_MASK;
switch (intel_dp_training_pattern_symbol(dp_train_pat)) {
case DP_TRAINING_PATTERN_DISABLE:
intel_dp->DP |= DP_LINK_TRAIN_OFF;
break;
case DP_TRAINING_PATTERN_1:
intel_dp->DP |= DP_LINK_TRAIN_PAT_1;
break;
case DP_TRAINING_PATTERN_2:
intel_dp->DP |= DP_LINK_TRAIN_PAT_2;
break;
default:
MISSING_CASE(intel_dp_training_pattern_symbol(dp_train_pat));
return;
}
intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
intel_de_posting_read(dev_priv, intel_dp->output_reg);
}
static void intel_dp_enable_port(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
/* enable with pattern 1 (as per spec) */
intel_dp_program_link_training_pattern(intel_dp, crtc_state,
DP_PHY_DPRX, DP_TRAINING_PATTERN_1);
/*
* Magic for VLV/CHV. We _must_ first set up the register
* without actually enabling the port, and then do another
* write to enable the port. Otherwise link training will
* fail when the power sequencer is freshly used for this port.
*/
intel_dp->DP |= DP_PORT_EN;
if (crtc_state->has_audio)
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
intel_de_posting_read(dev_priv, intel_dp->output_reg);
}
static void intel_enable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
intel_wakeref_t wakeref;
if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
return;
with_intel_pps_lock(intel_dp, wakeref) {
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
vlv_pps_init(encoder, pipe_config);
intel_dp_enable_port(intel_dp, pipe_config);
intel_pps_vdd_on_unlocked(intel_dp);
intel_pps_on_unlocked(intel_dp);
intel_pps_vdd_off_unlocked(intel_dp, true);
}
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
unsigned int lane_mask = 0x0;
if (IS_CHERRYVIEW(dev_priv))
lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
lane_mask);
}
intel_dp_set_power(intel_dp, DP_SET_POWER_D0);
intel_dp_configure_protocol_converter(intel_dp, pipe_config);
intel_dp_check_frl_training(intel_dp);
intel_dp_pcon_dsc_configure(intel_dp, pipe_config);
intel_dp_start_link_train(intel_dp, pipe_config);
intel_dp_stop_link_train(intel_dp, pipe_config);
intel_audio_codec_enable(encoder, pipe_config, conn_state);
}
static void g4x_enable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_enable_dp(state, encoder, pipe_config, conn_state);
intel_edp_backlight_on(pipe_config, conn_state);
}
static void vlv_enable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_edp_backlight_on(pipe_config, conn_state);
}
static void g4x_pre_enable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
enum port port = encoder->port;
intel_dp_prepare(encoder, pipe_config);
/* Only ilk+ has port A */
if (port == PORT_A)
ilk_edp_pll_on(intel_dp, pipe_config);
}
static void vlv_pre_enable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
vlv_phy_pre_encoder_enable(encoder, pipe_config);
intel_enable_dp(state, encoder, pipe_config, conn_state);
}
static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_dp_prepare(encoder, pipe_config);
vlv_phy_pre_pll_enable(encoder, pipe_config);
}
static void chv_pre_enable_dp(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
chv_phy_pre_encoder_enable(encoder, pipe_config);
intel_enable_dp(state, encoder, pipe_config, conn_state);
/* Second common lane will stay alive on its own now */
chv_phy_release_cl2_override(encoder);
}
static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_dp_prepare(encoder, pipe_config);
chv_phy_pre_pll_enable(encoder, pipe_config);
}
static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
chv_phy_post_pll_disable(encoder, old_crtc_state);
}
static u8 intel_dp_voltage_max_2(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
}
static u8 intel_dp_voltage_max_3(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
}
static u8 intel_dp_preemph_max_2(struct intel_dp *intel_dp)
{
return DP_TRAIN_PRE_EMPH_LEVEL_2;
}
static u8 intel_dp_preemph_max_3(struct intel_dp *intel_dp)
{
return DP_TRAIN_PRE_EMPH_LEVEL_3;
}
static void vlv_set_signal_levels(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
unsigned long demph_reg_value, preemph_reg_value,
uniqtranscale_reg_value;
u8 train_set = intel_dp->train_set[0];
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
preemph_reg_value = 0x0004000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x2B405555;
uniqtranscale_reg_value = 0x552AB83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x5548B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
demph_reg_value = 0x2B245555;
uniqtranscale_reg_value = 0x5560B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
demph_reg_value = 0x2B405555;
uniqtranscale_reg_value = 0x5598DA3A;
break;
default:
return;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
preemph_reg_value = 0x0002000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x5552B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
demph_reg_value = 0x2B404848;
uniqtranscale_reg_value = 0x5580B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
preemph_reg_value = 0x0000000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x2B305555;
uniqtranscale_reg_value = 0x5570B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
demph_reg_value = 0x2B2B4040;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
preemph_reg_value = 0x0006000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x1B405555;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return;
}
break;
default:
return;
}
vlv_set_phy_signal_level(encoder, crtc_state,
demph_reg_value, preemph_reg_value,
uniqtranscale_reg_value, 0);
}
static void chv_set_signal_levels(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
u32 deemph_reg_value, margin_reg_value;
bool uniq_trans_scale = false;
u8 train_set = intel_dp->train_set[0];
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 128;
margin_reg_value = 52;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
deemph_reg_value = 128;
margin_reg_value = 77;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
deemph_reg_value = 128;
margin_reg_value = 102;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
deemph_reg_value = 128;
margin_reg_value = 154;
uniq_trans_scale = true;
break;
default:
return;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 85;
margin_reg_value = 78;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
deemph_reg_value = 85;
margin_reg_value = 116;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
deemph_reg_value = 85;
margin_reg_value = 154;
break;
default:
return;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 64;
margin_reg_value = 104;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
deemph_reg_value = 64;
margin_reg_value = 154;
break;
default:
return;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 43;
margin_reg_value = 154;
break;
default:
return;
}
break;
default:
return;
}
chv_set_phy_signal_level(encoder, crtc_state,
deemph_reg_value, margin_reg_value,
uniq_trans_scale);
}
static u32 g4x_signal_levels(u8 train_set)
{
u32 signal_levels = 0;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
default:
signal_levels |= DP_VOLTAGE_0_4;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
signal_levels |= DP_VOLTAGE_0_6;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
signal_levels |= DP_VOLTAGE_0_8;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
signal_levels |= DP_VOLTAGE_1_2;
break;
}
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
default:
signal_levels |= DP_PRE_EMPHASIS_0;
break;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
signal_levels |= DP_PRE_EMPHASIS_3_5;
break;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
signal_levels |= DP_PRE_EMPHASIS_6;
break;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
signal_levels |= DP_PRE_EMPHASIS_9_5;
break;
}
return signal_levels;
}
static void
g4x_set_signal_levels(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
u8 train_set = intel_dp->train_set[0];
u32 signal_levels;
signal_levels = g4x_signal_levels(train_set);
drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
signal_levels);
intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
intel_dp->DP |= signal_levels;
intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
intel_de_posting_read(dev_priv, intel_dp->output_reg);
}
/* SNB CPU eDP voltage swing and pre-emphasis control */
static u32 snb_cpu_edp_signal_levels(u8 train_set)
{
u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
default:
MISSING_CASE(signal_levels);
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
}
}
static void
snb_cpu_edp_set_signal_levels(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
u8 train_set = intel_dp->train_set[0];
u32 signal_levels;
signal_levels = snb_cpu_edp_signal_levels(train_set);
drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
signal_levels);
intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
intel_dp->DP |= signal_levels;
intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
intel_de_posting_read(dev_priv, intel_dp->output_reg);
}
/* IVB CPU eDP voltage swing and pre-emphasis control */
static u32 ivb_cpu_edp_signal_levels(u8 train_set)
{
u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_400MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
return EDP_LINK_TRAIN_400MV_6DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_600MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_800MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
default:
MISSING_CASE(signal_levels);
return EDP_LINK_TRAIN_500MV_0DB_IVB;
}
}
static void
ivb_cpu_edp_set_signal_levels(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
u8 train_set = intel_dp->train_set[0];
u32 signal_levels;
signal_levels = ivb_cpu_edp_signal_levels(train_set);
drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
signal_levels);
intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
intel_dp->DP |= signal_levels;
intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
intel_de_posting_read(dev_priv, intel_dp->output_reg);
}
/*
* If display is now connected check links status,
* there has been known issues of link loss triggering
* long pulse.
*
* Some sinks (eg. ASUS PB287Q) seem to perform some
* weird HPD ping pong during modesets. So we can apparently
* end up with HPD going low during a modeset, and then
* going back up soon after. And once that happens we must
* retrain the link to get a picture. That's in case no
* userspace component reacted to intermittent HPD dip.
*/
static enum intel_hotplug_state
intel_dp_hotplug(struct intel_encoder *encoder,
struct intel_connector *connector)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct drm_modeset_acquire_ctx ctx;
enum intel_hotplug_state state;
int ret;
if (intel_dp->compliance.test_active &&
intel_dp->compliance.test_type == DP_TEST_LINK_PHY_TEST_PATTERN) {
intel_dp_phy_test(encoder);
/* just do the PHY test and nothing else */
return INTEL_HOTPLUG_UNCHANGED;
}
state = intel_encoder_hotplug(encoder, connector);
drm_modeset_acquire_init(&ctx, 0);
for (;;) {
ret = intel_dp_retrain_link(encoder, &ctx);
if (ret == -EDEADLK) {
drm_modeset_backoff(&ctx);
continue;
}
break;
}
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
drm_WARN(encoder->base.dev, ret,
"Acquiring modeset locks failed with %i\n", ret);
/*
* Keeping it consistent with intel_ddi_hotplug() and
* intel_hdmi_hotplug().
*/
if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
state = INTEL_HOTPLUG_RETRY;
return state;
}
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit = dev_priv->display.hotplug.pch_hpd[encoder->hpd_pin];
return intel_de_read(dev_priv, SDEISR) & bit;
}
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit;
switch (encoder->hpd_pin) {
case HPD_PORT_B:
bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
break;
case HPD_PORT_C:
bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
break;
case HPD_PORT_D:
bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
break;
default:
MISSING_CASE(encoder->hpd_pin);
return false;
}
return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
}
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit;
switch (encoder->hpd_pin) {
case HPD_PORT_B:
bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
break;
case HPD_PORT_C:
bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
break;
case HPD_PORT_D:
bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
break;
default:
MISSING_CASE(encoder->hpd_pin);
return false;
}
return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
}
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit = dev_priv->display.hotplug.hpd[encoder->hpd_pin];
return intel_de_read(dev_priv, DEISR) & bit;
}
static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
intel_dp_encoder_flush_work(encoder);
drm_encoder_cleanup(encoder);
kfree(enc_to_dig_port(to_intel_encoder(encoder)));
}
enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
enum pipe pipe;
if (g4x_dp_port_enabled(dev_priv, intel_dp->output_reg,
encoder->port, &pipe))
return pipe;
return INVALID_PIPE;
}
static void intel_dp_encoder_reset(struct drm_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
intel_dp->reset_link_params = true;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
intel_wakeref_t wakeref;
with_intel_pps_lock(intel_dp, wakeref)
intel_dp->pps.active_pipe = vlv_active_pipe(intel_dp);
}
intel_pps_encoder_reset(intel_dp);
}
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
.reset = intel_dp_encoder_reset,
.destroy = intel_dp_encoder_destroy,
};
bool g4x_dp_init(struct drm_i915_private *dev_priv,
i915_reg_t output_reg, enum port port)
{
struct intel_digital_port *dig_port;
struct intel_encoder *intel_encoder;
struct drm_encoder *encoder;
struct intel_connector *intel_connector;
dig_port = kzalloc(sizeof(*dig_port), GFP_KERNEL);
if (!dig_port)
return false;
intel_connector = intel_connector_alloc();
if (!intel_connector)
goto err_connector_alloc;
intel_encoder = &dig_port->base;
encoder = &intel_encoder->base;
mutex_init(&dig_port->hdcp_mutex);
if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
&intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
"DP %c", port_name(port)))
goto err_encoder_init;
intel_encoder->hotplug = intel_dp_hotplug;
intel_encoder->compute_config = intel_dp_compute_config;
intel_encoder->get_hw_state = intel_dp_get_hw_state;
intel_encoder->get_config = intel_dp_get_config;
intel_encoder->sync_state = intel_dp_sync_state;
intel_encoder->initial_fastset_check = intel_dp_initial_fastset_check;
intel_encoder->update_pipe = intel_backlight_update;
intel_encoder->suspend = intel_dp_encoder_suspend;
intel_encoder->shutdown = intel_dp_encoder_shutdown;
if (IS_CHERRYVIEW(dev_priv)) {
intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
intel_encoder->pre_enable = chv_pre_enable_dp;
intel_encoder->enable = vlv_enable_dp;
intel_encoder->disable = vlv_disable_dp;
intel_encoder->post_disable = chv_post_disable_dp;
intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
} else if (IS_VALLEYVIEW(dev_priv)) {
intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
intel_encoder->pre_enable = vlv_pre_enable_dp;
intel_encoder->enable = vlv_enable_dp;
intel_encoder->disable = vlv_disable_dp;
intel_encoder->post_disable = vlv_post_disable_dp;
} else {
intel_encoder->pre_enable = g4x_pre_enable_dp;
intel_encoder->enable = g4x_enable_dp;
intel_encoder->disable = g4x_disable_dp;
intel_encoder->post_disable = g4x_post_disable_dp;
}
if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
(HAS_PCH_CPT(dev_priv) && port != PORT_A))
dig_port->dp.set_link_train = cpt_set_link_train;
else
dig_port->dp.set_link_train = g4x_set_link_train;
if (IS_CHERRYVIEW(dev_priv))
intel_encoder->set_signal_levels = chv_set_signal_levels;
else if (IS_VALLEYVIEW(dev_priv))
intel_encoder->set_signal_levels = vlv_set_signal_levels;
else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
intel_encoder->set_signal_levels = ivb_cpu_edp_set_signal_levels;
else if (IS_SANDYBRIDGE(dev_priv) && port == PORT_A)
intel_encoder->set_signal_levels = snb_cpu_edp_set_signal_levels;
else
intel_encoder->set_signal_levels = g4x_set_signal_levels;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) ||
(HAS_PCH_SPLIT(dev_priv) && port != PORT_A)) {
dig_port->dp.preemph_max = intel_dp_preemph_max_3;
dig_port->dp.voltage_max = intel_dp_voltage_max_3;
} else {
dig_port->dp.preemph_max = intel_dp_preemph_max_2;
dig_port->dp.voltage_max = intel_dp_voltage_max_2;
}
dig_port->dp.output_reg = output_reg;
dig_port->max_lanes = 4;
intel_encoder->type = INTEL_OUTPUT_DP;
intel_encoder->power_domain = intel_display_power_ddi_lanes_domain(dev_priv, port);
if (IS_CHERRYVIEW(dev_priv)) {
if (port == PORT_D)
intel_encoder->pipe_mask = BIT(PIPE_C);
else
intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
} else {
intel_encoder->pipe_mask = ~0;
}
intel_encoder->cloneable = 0;
intel_encoder->port = port;
intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
dig_port->hpd_pulse = intel_dp_hpd_pulse;
if (HAS_GMCH(dev_priv)) {
if (IS_GM45(dev_priv))
dig_port->connected = gm45_digital_port_connected;
else
dig_port->connected = g4x_digital_port_connected;
} else {
if (port == PORT_A)
dig_port->connected = ilk_digital_port_connected;
else
dig_port->connected = ibx_digital_port_connected;
}
if (port != PORT_A)
intel_infoframe_init(dig_port);
dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
if (!intel_dp_init_connector(dig_port, intel_connector))
goto err_init_connector;
return true;
err_init_connector:
drm_encoder_cleanup(encoder);
err_encoder_init:
kfree(intel_connector);
err_connector_alloc:
kfree(dig_port);
return false;
}