linuxdebug/drivers/gpu/drm/hisilicon/kirin/dw_drm_dsi.c

909 lines
22 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* DesignWare MIPI DSI Host Controller v1.02 driver
*
* Copyright (c) 2016 Linaro Limited.
* Copyright (c) 2014-2016 HiSilicon Limited.
*
* Author:
* Xinliang Liu <z.liuxinliang@hisilicon.com>
* Xinliang Liu <xinliang.liu@linaro.org>
* Xinwei Kong <kong.kongxinwei@hisilicon.com>
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/delay.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_device.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_simple_kms_helper.h>
#include "dw_dsi_reg.h"
#define MAX_TX_ESC_CLK 10
#define ROUND(x, y) ((x) / (y) + \
((x) % (y) * 10 / (y) >= 5 ? 1 : 0))
#define PHY_REF_CLK_RATE 19200000
#define PHY_REF_CLK_PERIOD_PS (1000000000 / (PHY_REF_CLK_RATE / 1000))
#define encoder_to_dsi(encoder) \
container_of(encoder, struct dw_dsi, encoder)
#define host_to_dsi(host) \
container_of(host, struct dw_dsi, host)
struct mipi_phy_params {
u32 clk_t_lpx;
u32 clk_t_hs_prepare;
u32 clk_t_hs_zero;
u32 clk_t_hs_trial;
u32 clk_t_wakeup;
u32 data_t_lpx;
u32 data_t_hs_prepare;
u32 data_t_hs_zero;
u32 data_t_hs_trial;
u32 data_t_ta_go;
u32 data_t_ta_get;
u32 data_t_wakeup;
u32 hstx_ckg_sel;
u32 pll_fbd_div5f;
u32 pll_fbd_div1f;
u32 pll_fbd_2p;
u32 pll_enbwt;
u32 pll_fbd_p;
u32 pll_fbd_s;
u32 pll_pre_div1p;
u32 pll_pre_p;
u32 pll_vco_750M;
u32 pll_lpf_rs;
u32 pll_lpf_cs;
u32 clklp2hs_time;
u32 clkhs2lp_time;
u32 lp2hs_time;
u32 hs2lp_time;
u32 clk_to_data_delay;
u32 data_to_clk_delay;
u32 lane_byte_clk_kHz;
u32 clk_division;
};
struct dsi_hw_ctx {
void __iomem *base;
struct clk *pclk;
};
struct dw_dsi {
struct drm_encoder encoder;
struct device *dev;
struct mipi_dsi_host host;
struct drm_display_mode cur_mode;
struct dsi_hw_ctx *ctx;
struct mipi_phy_params phy;
u32 lanes;
enum mipi_dsi_pixel_format format;
unsigned long mode_flags;
bool enable;
};
struct dsi_data {
struct dw_dsi dsi;
struct dsi_hw_ctx ctx;
};
struct dsi_phy_range {
u32 min_range_kHz;
u32 max_range_kHz;
u32 pll_vco_750M;
u32 hstx_ckg_sel;
};
static const struct dsi_phy_range dphy_range_info[] = {
{ 46875, 62500, 1, 7 },
{ 62500, 93750, 0, 7 },
{ 93750, 125000, 1, 6 },
{ 125000, 187500, 0, 6 },
{ 187500, 250000, 1, 5 },
{ 250000, 375000, 0, 5 },
{ 375000, 500000, 1, 4 },
{ 500000, 750000, 0, 4 },
{ 750000, 1000000, 1, 0 },
{ 1000000, 1500000, 0, 0 }
};
static u32 dsi_calc_phy_rate(u32 req_kHz, struct mipi_phy_params *phy)
{
u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS;
u32 tmp_kHz = req_kHz;
u32 i = 0;
u32 q_pll = 1;
u32 m_pll = 0;
u32 n_pll = 0;
u32 r_pll = 1;
u32 m_n = 0;
u32 m_n_int = 0;
u32 f_kHz = 0;
u64 temp;
/*
* Find a rate >= req_kHz.
*/
do {
f_kHz = tmp_kHz;
for (i = 0; i < ARRAY_SIZE(dphy_range_info); i++)
if (f_kHz >= dphy_range_info[i].min_range_kHz &&
f_kHz <= dphy_range_info[i].max_range_kHz)
break;
if (i == ARRAY_SIZE(dphy_range_info)) {
DRM_ERROR("%dkHz out of range\n", f_kHz);
return 0;
}
phy->pll_vco_750M = dphy_range_info[i].pll_vco_750M;
phy->hstx_ckg_sel = dphy_range_info[i].hstx_ckg_sel;
if (phy->hstx_ckg_sel <= 7 &&
phy->hstx_ckg_sel >= 4)
q_pll = 0x10 >> (7 - phy->hstx_ckg_sel);
temp = f_kHz * (u64)q_pll * (u64)ref_clk_ps;
m_n_int = temp / (u64)1000000000;
m_n = (temp % (u64)1000000000) / (u64)100000000;
if (m_n_int % 2 == 0) {
if (m_n * 6 >= 50) {
n_pll = 2;
m_pll = (m_n_int + 1) * n_pll;
} else if (m_n * 6 >= 30) {
n_pll = 3;
m_pll = m_n_int * n_pll + 2;
} else {
n_pll = 1;
m_pll = m_n_int * n_pll;
}
} else {
if (m_n * 6 >= 50) {
n_pll = 1;
m_pll = (m_n_int + 1) * n_pll;
} else if (m_n * 6 >= 30) {
n_pll = 1;
m_pll = (m_n_int + 1) * n_pll;
} else if (m_n * 6 >= 10) {
n_pll = 3;
m_pll = m_n_int * n_pll + 1;
} else {
n_pll = 2;
m_pll = m_n_int * n_pll;
}
}
if (n_pll == 1) {
phy->pll_fbd_p = 0;
phy->pll_pre_div1p = 1;
} else {
phy->pll_fbd_p = n_pll;
phy->pll_pre_div1p = 0;
}
if (phy->pll_fbd_2p <= 7 && phy->pll_fbd_2p >= 4)
r_pll = 0x10 >> (7 - phy->pll_fbd_2p);
if (m_pll == 2) {
phy->pll_pre_p = 0;
phy->pll_fbd_s = 0;
phy->pll_fbd_div1f = 0;
phy->pll_fbd_div5f = 1;
} else if (m_pll >= 2 * 2 * r_pll && m_pll <= 2 * 4 * r_pll) {
phy->pll_pre_p = m_pll / (2 * r_pll);
phy->pll_fbd_s = 0;
phy->pll_fbd_div1f = 1;
phy->pll_fbd_div5f = 0;
} else if (m_pll >= 2 * 5 * r_pll && m_pll <= 2 * 150 * r_pll) {
if (((m_pll / (2 * r_pll)) % 2) == 0) {
phy->pll_pre_p =
(m_pll / (2 * r_pll)) / 2 - 1;
phy->pll_fbd_s =
(m_pll / (2 * r_pll)) % 2 + 2;
} else {
phy->pll_pre_p =
(m_pll / (2 * r_pll)) / 2;
phy->pll_fbd_s =
(m_pll / (2 * r_pll)) % 2;
}
phy->pll_fbd_div1f = 0;
phy->pll_fbd_div5f = 0;
} else {
phy->pll_pre_p = 0;
phy->pll_fbd_s = 0;
phy->pll_fbd_div1f = 0;
phy->pll_fbd_div5f = 1;
}
f_kHz = (u64)1000000000 * (u64)m_pll /
((u64)ref_clk_ps * (u64)n_pll * (u64)q_pll);
if (f_kHz >= req_kHz)
break;
tmp_kHz += 10;
} while (true);
return f_kHz;
}
static void dsi_get_phy_params(u32 phy_req_kHz,
struct mipi_phy_params *phy)
{
u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS;
u32 phy_rate_kHz;
u32 ui;
memset(phy, 0, sizeof(*phy));
phy_rate_kHz = dsi_calc_phy_rate(phy_req_kHz, phy);
if (!phy_rate_kHz)
return;
ui = 1000000 / phy_rate_kHz;
phy->clk_t_lpx = ROUND(50, 8 * ui);
phy->clk_t_hs_prepare = ROUND(133, 16 * ui) - 1;
phy->clk_t_hs_zero = ROUND(262, 8 * ui);
phy->clk_t_hs_trial = 2 * (ROUND(60, 8 * ui) - 1);
phy->clk_t_wakeup = ROUND(1000000, (ref_clk_ps / 1000) - 1);
if (phy->clk_t_wakeup > 0xff)
phy->clk_t_wakeup = 0xff;
phy->data_t_wakeup = phy->clk_t_wakeup;
phy->data_t_lpx = phy->clk_t_lpx;
phy->data_t_hs_prepare = ROUND(125 + 10 * ui, 16 * ui) - 1;
phy->data_t_hs_zero = ROUND(105 + 6 * ui, 8 * ui);
phy->data_t_hs_trial = 2 * (ROUND(60 + 4 * ui, 8 * ui) - 1);
phy->data_t_ta_go = 3;
phy->data_t_ta_get = 4;
phy->pll_enbwt = 1;
phy->clklp2hs_time = ROUND(407, 8 * ui) + 12;
phy->clkhs2lp_time = ROUND(105 + 12 * ui, 8 * ui);
phy->lp2hs_time = ROUND(240 + 12 * ui, 8 * ui) + 1;
phy->hs2lp_time = phy->clkhs2lp_time;
phy->clk_to_data_delay = 1 + phy->clklp2hs_time;
phy->data_to_clk_delay = ROUND(60 + 52 * ui, 8 * ui) +
phy->clkhs2lp_time;
phy->lane_byte_clk_kHz = phy_rate_kHz / 8;
phy->clk_division =
DIV_ROUND_UP(phy->lane_byte_clk_kHz, MAX_TX_ESC_CLK);
}
static u32 dsi_get_dpi_color_coding(enum mipi_dsi_pixel_format format)
{
u32 val;
/*
* TODO: only support RGB888 now, to support more
*/
switch (format) {
case MIPI_DSI_FMT_RGB888:
val = DSI_24BITS_1;
break;
default:
val = DSI_24BITS_1;
break;
}
return val;
}
/*
* dsi phy reg write function
*/
static void dsi_phy_tst_set(void __iomem *base, u32 reg, u32 val)
{
u32 reg_write = 0x10000 + reg;
/*
* latch reg first
*/
writel(reg_write, base + PHY_TST_CTRL1);
writel(0x02, base + PHY_TST_CTRL0);
writel(0x00, base + PHY_TST_CTRL0);
/*
* then latch value
*/
writel(val, base + PHY_TST_CTRL1);
writel(0x02, base + PHY_TST_CTRL0);
writel(0x00, base + PHY_TST_CTRL0);
}
static void dsi_set_phy_timer(void __iomem *base,
struct mipi_phy_params *phy,
u32 lanes)
{
u32 val;
/*
* Set lane value and phy stop wait time.
*/
val = (lanes - 1) | (PHY_STOP_WAIT_TIME << 8);
writel(val, base + PHY_IF_CFG);
/*
* Set phy clk division.
*/
val = readl(base + CLKMGR_CFG) | phy->clk_division;
writel(val, base + CLKMGR_CFG);
/*
* Set lp and hs switching params.
*/
dw_update_bits(base + PHY_TMR_CFG, 24, MASK(8), phy->hs2lp_time);
dw_update_bits(base + PHY_TMR_CFG, 16, MASK(8), phy->lp2hs_time);
dw_update_bits(base + PHY_TMR_LPCLK_CFG, 16, MASK(10),
phy->clkhs2lp_time);
dw_update_bits(base + PHY_TMR_LPCLK_CFG, 0, MASK(10),
phy->clklp2hs_time);
dw_update_bits(base + CLK_DATA_TMR_CFG, 8, MASK(8),
phy->data_to_clk_delay);
dw_update_bits(base + CLK_DATA_TMR_CFG, 0, MASK(8),
phy->clk_to_data_delay);
}
static void dsi_set_mipi_phy(void __iomem *base,
struct mipi_phy_params *phy,
u32 lanes)
{
u32 delay_count;
u32 val;
u32 i;
/* phy timer setting */
dsi_set_phy_timer(base, phy, lanes);
/*
* Reset to clean up phy tst params.
*/
writel(0, base + PHY_RSTZ);
writel(0, base + PHY_TST_CTRL0);
writel(1, base + PHY_TST_CTRL0);
writel(0, base + PHY_TST_CTRL0);
/*
* Clock lane timing control setting: TLPX, THS-PREPARE,
* THS-ZERO, THS-TRAIL, TWAKEUP.
*/
dsi_phy_tst_set(base, CLK_TLPX, phy->clk_t_lpx);
dsi_phy_tst_set(base, CLK_THS_PREPARE, phy->clk_t_hs_prepare);
dsi_phy_tst_set(base, CLK_THS_ZERO, phy->clk_t_hs_zero);
dsi_phy_tst_set(base, CLK_THS_TRAIL, phy->clk_t_hs_trial);
dsi_phy_tst_set(base, CLK_TWAKEUP, phy->clk_t_wakeup);
/*
* Data lane timing control setting: TLPX, THS-PREPARE,
* THS-ZERO, THS-TRAIL, TTA-GO, TTA-GET, TWAKEUP.
*/
for (i = 0; i < lanes; i++) {
dsi_phy_tst_set(base, DATA_TLPX(i), phy->data_t_lpx);
dsi_phy_tst_set(base, DATA_THS_PREPARE(i),
phy->data_t_hs_prepare);
dsi_phy_tst_set(base, DATA_THS_ZERO(i), phy->data_t_hs_zero);
dsi_phy_tst_set(base, DATA_THS_TRAIL(i), phy->data_t_hs_trial);
dsi_phy_tst_set(base, DATA_TTA_GO(i), phy->data_t_ta_go);
dsi_phy_tst_set(base, DATA_TTA_GET(i), phy->data_t_ta_get);
dsi_phy_tst_set(base, DATA_TWAKEUP(i), phy->data_t_wakeup);
}
/*
* physical configuration: I, pll I, pll II, pll III,
* pll IV, pll V.
*/
dsi_phy_tst_set(base, PHY_CFG_I, phy->hstx_ckg_sel);
val = (phy->pll_fbd_div5f << 5) + (phy->pll_fbd_div1f << 4) +
(phy->pll_fbd_2p << 1) + phy->pll_enbwt;
dsi_phy_tst_set(base, PHY_CFG_PLL_I, val);
dsi_phy_tst_set(base, PHY_CFG_PLL_II, phy->pll_fbd_p);
dsi_phy_tst_set(base, PHY_CFG_PLL_III, phy->pll_fbd_s);
val = (phy->pll_pre_div1p << 7) + phy->pll_pre_p;
dsi_phy_tst_set(base, PHY_CFG_PLL_IV, val);
val = (5 << 5) + (phy->pll_vco_750M << 4) + (phy->pll_lpf_rs << 2) +
phy->pll_lpf_cs;
dsi_phy_tst_set(base, PHY_CFG_PLL_V, val);
writel(PHY_ENABLECLK, base + PHY_RSTZ);
udelay(1);
writel(PHY_ENABLECLK | PHY_UNSHUTDOWNZ, base + PHY_RSTZ);
udelay(1);
writel(PHY_ENABLECLK | PHY_UNRSTZ | PHY_UNSHUTDOWNZ, base + PHY_RSTZ);
usleep_range(1000, 1500);
/*
* wait for phy's clock ready
*/
delay_count = 100;
while (delay_count) {
val = readl(base + PHY_STATUS);
if ((BIT(0) | BIT(2)) & val)
break;
udelay(1);
delay_count--;
}
if (!delay_count)
DRM_INFO("phylock and phystopstateclklane is not ready.\n");
}
static void dsi_set_mode_timing(void __iomem *base,
u32 lane_byte_clk_kHz,
struct drm_display_mode *mode,
enum mipi_dsi_pixel_format format)
{
u32 hfp, hbp, hsw, vfp, vbp, vsw;
u32 hline_time;
u32 hsa_time;
u32 hbp_time;
u32 pixel_clk_kHz;
int htot, vtot;
u32 val;
u64 tmp;
val = dsi_get_dpi_color_coding(format);
writel(val, base + DPI_COLOR_CODING);
val = (mode->flags & DRM_MODE_FLAG_NHSYNC ? 1 : 0) << 2;
val |= (mode->flags & DRM_MODE_FLAG_NVSYNC ? 1 : 0) << 1;
writel(val, base + DPI_CFG_POL);
/*
* The DSI IP accepts vertical timing using lines as normal,
* but horizontal timing is a mixture of pixel-clocks for the
* active region and byte-lane clocks for the blanking-related
* timings. hfp is specified as the total hline_time in byte-
* lane clocks minus hsa, hbp and active.
*/
pixel_clk_kHz = mode->clock;
htot = mode->htotal;
vtot = mode->vtotal;
hfp = mode->hsync_start - mode->hdisplay;
hbp = mode->htotal - mode->hsync_end;
hsw = mode->hsync_end - mode->hsync_start;
vfp = mode->vsync_start - mode->vdisplay;
vbp = mode->vtotal - mode->vsync_end;
vsw = mode->vsync_end - mode->vsync_start;
if (vsw > 15) {
DRM_DEBUG_DRIVER("vsw exceeded 15\n");
vsw = 15;
}
hsa_time = (hsw * lane_byte_clk_kHz) / pixel_clk_kHz;
hbp_time = (hbp * lane_byte_clk_kHz) / pixel_clk_kHz;
tmp = (u64)htot * (u64)lane_byte_clk_kHz;
hline_time = DIV_ROUND_UP(tmp, pixel_clk_kHz);
/* all specified in byte-lane clocks */
writel(hsa_time, base + VID_HSA_TIME);
writel(hbp_time, base + VID_HBP_TIME);
writel(hline_time, base + VID_HLINE_TIME);
writel(vsw, base + VID_VSA_LINES);
writel(vbp, base + VID_VBP_LINES);
writel(vfp, base + VID_VFP_LINES);
writel(mode->vdisplay, base + VID_VACTIVE_LINES);
writel(mode->hdisplay, base + VID_PKT_SIZE);
DRM_DEBUG_DRIVER("htot=%d, hfp=%d, hbp=%d, hsw=%d\n",
htot, hfp, hbp, hsw);
DRM_DEBUG_DRIVER("vtol=%d, vfp=%d, vbp=%d, vsw=%d\n",
vtot, vfp, vbp, vsw);
DRM_DEBUG_DRIVER("hsa_time=%d, hbp_time=%d, hline_time=%d\n",
hsa_time, hbp_time, hline_time);
}
static void dsi_set_video_mode(void __iomem *base, unsigned long flags)
{
u32 val;
u32 mode_mask = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
u32 non_burst_sync_pulse = MIPI_DSI_MODE_VIDEO |
MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
u32 non_burst_sync_event = MIPI_DSI_MODE_VIDEO;
/*
* choose video mode type
*/
if ((flags & mode_mask) == non_burst_sync_pulse)
val = DSI_NON_BURST_SYNC_PULSES;
else if ((flags & mode_mask) == non_burst_sync_event)
val = DSI_NON_BURST_SYNC_EVENTS;
else
val = DSI_BURST_SYNC_PULSES_1;
writel(val, base + VID_MODE_CFG);
writel(PHY_TXREQUESTCLKHS, base + LPCLK_CTRL);
writel(DSI_VIDEO_MODE, base + MODE_CFG);
}
static void dsi_mipi_init(struct dw_dsi *dsi)
{
struct dsi_hw_ctx *ctx = dsi->ctx;
struct mipi_phy_params *phy = &dsi->phy;
struct drm_display_mode *mode = &dsi->cur_mode;
u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
void __iomem *base = ctx->base;
u32 dphy_req_kHz;
/*
* count phy params
*/
dphy_req_kHz = mode->clock * bpp / dsi->lanes;
dsi_get_phy_params(dphy_req_kHz, phy);
/* reset Core */
writel(RESET, base + PWR_UP);
/* set dsi phy params */
dsi_set_mipi_phy(base, phy, dsi->lanes);
/* set dsi mode timing */
dsi_set_mode_timing(base, phy->lane_byte_clk_kHz, mode, dsi->format);
/* set dsi video mode */
dsi_set_video_mode(base, dsi->mode_flags);
/* dsi wake up */
writel(POWERUP, base + PWR_UP);
DRM_DEBUG_DRIVER("lanes=%d, pixel_clk=%d kHz, bytes_freq=%d kHz\n",
dsi->lanes, mode->clock, phy->lane_byte_clk_kHz);
}
static void dsi_encoder_disable(struct drm_encoder *encoder)
{
struct dw_dsi *dsi = encoder_to_dsi(encoder);
struct dsi_hw_ctx *ctx = dsi->ctx;
void __iomem *base = ctx->base;
if (!dsi->enable)
return;
writel(0, base + PWR_UP);
writel(0, base + LPCLK_CTRL);
writel(0, base + PHY_RSTZ);
clk_disable_unprepare(ctx->pclk);
dsi->enable = false;
}
static void dsi_encoder_enable(struct drm_encoder *encoder)
{
struct dw_dsi *dsi = encoder_to_dsi(encoder);
struct dsi_hw_ctx *ctx = dsi->ctx;
int ret;
if (dsi->enable)
return;
ret = clk_prepare_enable(ctx->pclk);
if (ret) {
DRM_ERROR("fail to enable pclk: %d\n", ret);
return;
}
dsi_mipi_init(dsi);
dsi->enable = true;
}
static enum drm_mode_status dsi_encoder_phy_mode_valid(
struct drm_encoder *encoder,
const struct drm_display_mode *mode)
{
struct dw_dsi *dsi = encoder_to_dsi(encoder);
struct mipi_phy_params phy;
u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
u32 req_kHz, act_kHz, lane_byte_clk_kHz;
/* Calculate the lane byte clk using the adjusted mode clk */
memset(&phy, 0, sizeof(phy));
req_kHz = mode->clock * bpp / dsi->lanes;
act_kHz = dsi_calc_phy_rate(req_kHz, &phy);
lane_byte_clk_kHz = act_kHz / 8;
DRM_DEBUG_DRIVER("Checking mode %ix%i-%i@%i clock: %i...",
mode->hdisplay, mode->vdisplay, bpp,
drm_mode_vrefresh(mode), mode->clock);
/*
* Make sure the adjusted mode clock and the lane byte clk
* have a common denominator base frequency
*/
if (mode->clock/dsi->lanes == lane_byte_clk_kHz/3) {
DRM_DEBUG_DRIVER("OK!\n");
return MODE_OK;
}
DRM_DEBUG_DRIVER("BAD!\n");
return MODE_BAD;
}
static enum drm_mode_status dsi_encoder_mode_valid(struct drm_encoder *encoder,
const struct drm_display_mode *mode)
{
const struct drm_crtc_helper_funcs *crtc_funcs = NULL;
struct drm_crtc *crtc = NULL;
struct drm_display_mode adj_mode;
enum drm_mode_status ret;
/*
* The crtc might adjust the mode, so go through the
* possible crtcs (technically just one) and call
* mode_fixup to figure out the adjusted mode before we
* validate it.
*/
drm_for_each_crtc(crtc, encoder->dev) {
/*
* reset adj_mode to the mode value each time,
* so we don't adjust the mode twice
*/
drm_mode_copy(&adj_mode, mode);
crtc_funcs = crtc->helper_private;
if (crtc_funcs && crtc_funcs->mode_fixup)
if (!crtc_funcs->mode_fixup(crtc, mode, &adj_mode))
return MODE_BAD;
ret = dsi_encoder_phy_mode_valid(encoder, &adj_mode);
if (ret != MODE_OK)
return ret;
}
return MODE_OK;
}
static void dsi_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adj_mode)
{
struct dw_dsi *dsi = encoder_to_dsi(encoder);
drm_mode_copy(&dsi->cur_mode, adj_mode);
}
static int dsi_encoder_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
/* do nothing */
return 0;
}
static const struct drm_encoder_helper_funcs dw_encoder_helper_funcs = {
.atomic_check = dsi_encoder_atomic_check,
.mode_valid = dsi_encoder_mode_valid,
.mode_set = dsi_encoder_mode_set,
.enable = dsi_encoder_enable,
.disable = dsi_encoder_disable
};
static int dw_drm_encoder_init(struct device *dev,
struct drm_device *drm_dev,
struct drm_encoder *encoder)
{
int ret;
u32 crtc_mask = drm_of_find_possible_crtcs(drm_dev, dev->of_node);
if (!crtc_mask) {
DRM_ERROR("failed to find crtc mask\n");
return -EINVAL;
}
encoder->possible_crtcs = crtc_mask;
ret = drm_simple_encoder_init(drm_dev, encoder, DRM_MODE_ENCODER_DSI);
if (ret) {
DRM_ERROR("failed to init dsi encoder\n");
return ret;
}
drm_encoder_helper_add(encoder, &dw_encoder_helper_funcs);
return 0;
}
static const struct component_ops dsi_ops;
static int dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *mdsi)
{
struct dw_dsi *dsi = host_to_dsi(host);
struct device *dev = host->dev;
int ret;
if (mdsi->lanes < 1 || mdsi->lanes > 4) {
DRM_ERROR("dsi device params invalid\n");
return -EINVAL;
}
dsi->lanes = mdsi->lanes;
dsi->format = mdsi->format;
dsi->mode_flags = mdsi->mode_flags;
ret = component_add(dev, &dsi_ops);
if (ret)
return ret;
return 0;
}
static int dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *mdsi)
{
struct device *dev = host->dev;
component_del(dev, &dsi_ops);
return 0;
}
static const struct mipi_dsi_host_ops dsi_host_ops = {
.attach = dsi_host_attach,
.detach = dsi_host_detach,
};
static int dsi_host_init(struct device *dev, struct dw_dsi *dsi)
{
struct mipi_dsi_host *host = &dsi->host;
int ret;
host->dev = dev;
host->ops = &dsi_host_ops;
ret = mipi_dsi_host_register(host);
if (ret) {
DRM_ERROR("failed to register dsi host\n");
return ret;
}
return 0;
}
static int dsi_bridge_init(struct drm_device *dev, struct dw_dsi *dsi)
{
struct drm_encoder *encoder = &dsi->encoder;
struct drm_bridge *bridge;
struct device_node *np = dsi->dev->of_node;
int ret;
/*
* Get the endpoint node. In our case, dsi has one output port1
* to which the external HDMI bridge is connected.
*/
ret = drm_of_find_panel_or_bridge(np, 1, 0, NULL, &bridge);
if (ret)
return ret;
/* associate the bridge to dsi encoder */
return drm_bridge_attach(encoder, bridge, NULL, 0);
}
static int dsi_bind(struct device *dev, struct device *master, void *data)
{
struct dsi_data *ddata = dev_get_drvdata(dev);
struct dw_dsi *dsi = &ddata->dsi;
struct drm_device *drm_dev = data;
int ret;
ret = dw_drm_encoder_init(dev, drm_dev, &dsi->encoder);
if (ret)
return ret;
ret = dsi_bridge_init(drm_dev, dsi);
if (ret)
return ret;
return 0;
}
static void dsi_unbind(struct device *dev, struct device *master, void *data)
{
/* do nothing */
}
static const struct component_ops dsi_ops = {
.bind = dsi_bind,
.unbind = dsi_unbind,
};
static int dsi_parse_dt(struct platform_device *pdev, struct dw_dsi *dsi)
{
struct dsi_hw_ctx *ctx = dsi->ctx;
struct resource *res;
ctx->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(ctx->pclk)) {
DRM_ERROR("failed to get pclk clock\n");
return PTR_ERR(ctx->pclk);
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ctx->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ctx->base)) {
DRM_ERROR("failed to remap dsi io region\n");
return PTR_ERR(ctx->base);
}
return 0;
}
static int dsi_probe(struct platform_device *pdev)
{
struct dsi_data *data;
struct dw_dsi *dsi;
struct dsi_hw_ctx *ctx;
int ret;
data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
if (!data) {
DRM_ERROR("failed to allocate dsi data.\n");
return -ENOMEM;
}
dsi = &data->dsi;
ctx = &data->ctx;
dsi->ctx = ctx;
dsi->dev = &pdev->dev;
ret = dsi_parse_dt(pdev, dsi);
if (ret)
return ret;
platform_set_drvdata(pdev, data);
ret = dsi_host_init(&pdev->dev, dsi);
if (ret)
return ret;
return 0;
}
static int dsi_remove(struct platform_device *pdev)
{
struct dsi_data *data = platform_get_drvdata(pdev);
struct dw_dsi *dsi = &data->dsi;
mipi_dsi_host_unregister(&dsi->host);
return 0;
}
static const struct of_device_id dsi_of_match[] = {
{.compatible = "hisilicon,hi6220-dsi"},
{ }
};
MODULE_DEVICE_TABLE(of, dsi_of_match);
static struct platform_driver dsi_driver = {
.probe = dsi_probe,
.remove = dsi_remove,
.driver = {
.name = "dw-dsi",
.of_match_table = dsi_of_match,
},
};
module_platform_driver(dsi_driver);
MODULE_AUTHOR("Xinliang Liu <xinliang.liu@linaro.org>");
MODULE_AUTHOR("Xinliang Liu <z.liuxinliang@hisilicon.com>");
MODULE_AUTHOR("Xinwei Kong <kong.kongxinwei@hisilicon.com>");
MODULE_DESCRIPTION("DesignWare MIPI DSI Host Controller v1.02 driver");
MODULE_LICENSE("GPL v2");