749 lines
20 KiB
C
749 lines
20 KiB
C
|
// SPDX-License-Identifier: GPL-2.0+
|
||
|
//
|
||
|
// Copyright (c) 2013-2014 Freescale Semiconductor, Inc
|
||
|
// Copyright (c) 2017 Sysam, Angelo Dureghello <angelo@sysam.it>
|
||
|
|
||
|
#include <linux/dmapool.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
|
||
|
#include "fsl-edma-common.h"
|
||
|
|
||
|
#define EDMA_CR 0x00
|
||
|
#define EDMA_ES 0x04
|
||
|
#define EDMA_ERQ 0x0C
|
||
|
#define EDMA_EEI 0x14
|
||
|
#define EDMA_SERQ 0x1B
|
||
|
#define EDMA_CERQ 0x1A
|
||
|
#define EDMA_SEEI 0x19
|
||
|
#define EDMA_CEEI 0x18
|
||
|
#define EDMA_CINT 0x1F
|
||
|
#define EDMA_CERR 0x1E
|
||
|
#define EDMA_SSRT 0x1D
|
||
|
#define EDMA_CDNE 0x1C
|
||
|
#define EDMA_INTR 0x24
|
||
|
#define EDMA_ERR 0x2C
|
||
|
|
||
|
#define EDMA64_ERQH 0x08
|
||
|
#define EDMA64_EEIH 0x10
|
||
|
#define EDMA64_SERQ 0x18
|
||
|
#define EDMA64_CERQ 0x19
|
||
|
#define EDMA64_SEEI 0x1a
|
||
|
#define EDMA64_CEEI 0x1b
|
||
|
#define EDMA64_CINT 0x1c
|
||
|
#define EDMA64_CERR 0x1d
|
||
|
#define EDMA64_SSRT 0x1e
|
||
|
#define EDMA64_CDNE 0x1f
|
||
|
#define EDMA64_INTH 0x20
|
||
|
#define EDMA64_INTL 0x24
|
||
|
#define EDMA64_ERRH 0x28
|
||
|
#define EDMA64_ERRL 0x2c
|
||
|
|
||
|
#define EDMA_TCD 0x1000
|
||
|
|
||
|
static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan)
|
||
|
{
|
||
|
struct edma_regs *regs = &fsl_chan->edma->regs;
|
||
|
u32 ch = fsl_chan->vchan.chan.chan_id;
|
||
|
|
||
|
if (fsl_chan->edma->drvdata->version == v1) {
|
||
|
edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), regs->seei);
|
||
|
edma_writeb(fsl_chan->edma, ch, regs->serq);
|
||
|
} else {
|
||
|
/* ColdFire is big endian, and accesses natively
|
||
|
* big endian I/O peripherals
|
||
|
*/
|
||
|
iowrite8(EDMA_SEEI_SEEI(ch), regs->seei);
|
||
|
iowrite8(ch, regs->serq);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan)
|
||
|
{
|
||
|
struct edma_regs *regs = &fsl_chan->edma->regs;
|
||
|
u32 ch = fsl_chan->vchan.chan.chan_id;
|
||
|
|
||
|
if (fsl_chan->edma->drvdata->version == v1) {
|
||
|
edma_writeb(fsl_chan->edma, ch, regs->cerq);
|
||
|
edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), regs->ceei);
|
||
|
} else {
|
||
|
/* ColdFire is big endian, and accesses natively
|
||
|
* big endian I/O peripherals
|
||
|
*/
|
||
|
iowrite8(ch, regs->cerq);
|
||
|
iowrite8(EDMA_CEEI_CEEI(ch), regs->ceei);
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_disable_request);
|
||
|
|
||
|
static void mux_configure8(struct fsl_edma_chan *fsl_chan, void __iomem *addr,
|
||
|
u32 off, u32 slot, bool enable)
|
||
|
{
|
||
|
u8 val8;
|
||
|
|
||
|
if (enable)
|
||
|
val8 = EDMAMUX_CHCFG_ENBL | slot;
|
||
|
else
|
||
|
val8 = EDMAMUX_CHCFG_DIS;
|
||
|
|
||
|
iowrite8(val8, addr + off);
|
||
|
}
|
||
|
|
||
|
static void mux_configure32(struct fsl_edma_chan *fsl_chan, void __iomem *addr,
|
||
|
u32 off, u32 slot, bool enable)
|
||
|
{
|
||
|
u32 val;
|
||
|
|
||
|
if (enable)
|
||
|
val = EDMAMUX_CHCFG_ENBL << 24 | slot;
|
||
|
else
|
||
|
val = EDMAMUX_CHCFG_DIS;
|
||
|
|
||
|
iowrite32(val, addr + off * 4);
|
||
|
}
|
||
|
|
||
|
void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan,
|
||
|
unsigned int slot, bool enable)
|
||
|
{
|
||
|
u32 ch = fsl_chan->vchan.chan.chan_id;
|
||
|
void __iomem *muxaddr;
|
||
|
unsigned int chans_per_mux, ch_off;
|
||
|
int endian_diff[4] = {3, 1, -1, -3};
|
||
|
u32 dmamux_nr = fsl_chan->edma->drvdata->dmamuxs;
|
||
|
|
||
|
chans_per_mux = fsl_chan->edma->n_chans / dmamux_nr;
|
||
|
ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux;
|
||
|
|
||
|
if (fsl_chan->edma->drvdata->mux_swap)
|
||
|
ch_off += endian_diff[ch_off % 4];
|
||
|
|
||
|
muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux];
|
||
|
slot = EDMAMUX_CHCFG_SOURCE(slot);
|
||
|
|
||
|
if (fsl_chan->edma->drvdata->version == v3)
|
||
|
mux_configure32(fsl_chan, muxaddr, ch_off, slot, enable);
|
||
|
else
|
||
|
mux_configure8(fsl_chan, muxaddr, ch_off, slot, enable);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_chan_mux);
|
||
|
|
||
|
static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width)
|
||
|
{
|
||
|
switch (addr_width) {
|
||
|
case 1:
|
||
|
return EDMA_TCD_ATTR_SSIZE_8BIT | EDMA_TCD_ATTR_DSIZE_8BIT;
|
||
|
case 2:
|
||
|
return EDMA_TCD_ATTR_SSIZE_16BIT | EDMA_TCD_ATTR_DSIZE_16BIT;
|
||
|
case 4:
|
||
|
return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
|
||
|
case 8:
|
||
|
return EDMA_TCD_ATTR_SSIZE_64BIT | EDMA_TCD_ATTR_DSIZE_64BIT;
|
||
|
default:
|
||
|
return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void fsl_edma_free_desc(struct virt_dma_desc *vdesc)
|
||
|
{
|
||
|
struct fsl_edma_desc *fsl_desc;
|
||
|
int i;
|
||
|
|
||
|
fsl_desc = to_fsl_edma_desc(vdesc);
|
||
|
for (i = 0; i < fsl_desc->n_tcds; i++)
|
||
|
dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd,
|
||
|
fsl_desc->tcd[i].ptcd);
|
||
|
kfree(fsl_desc);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_free_desc);
|
||
|
|
||
|
int fsl_edma_terminate_all(struct dma_chan *chan)
|
||
|
{
|
||
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
||
|
unsigned long flags;
|
||
|
LIST_HEAD(head);
|
||
|
|
||
|
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
|
||
|
fsl_edma_disable_request(fsl_chan);
|
||
|
fsl_chan->edesc = NULL;
|
||
|
fsl_chan->idle = true;
|
||
|
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
|
||
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
||
|
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_terminate_all);
|
||
|
|
||
|
int fsl_edma_pause(struct dma_chan *chan)
|
||
|
{
|
||
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
|
||
|
if (fsl_chan->edesc) {
|
||
|
fsl_edma_disable_request(fsl_chan);
|
||
|
fsl_chan->status = DMA_PAUSED;
|
||
|
fsl_chan->idle = true;
|
||
|
}
|
||
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_pause);
|
||
|
|
||
|
int fsl_edma_resume(struct dma_chan *chan)
|
||
|
{
|
||
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
|
||
|
if (fsl_chan->edesc) {
|
||
|
fsl_edma_enable_request(fsl_chan);
|
||
|
fsl_chan->status = DMA_IN_PROGRESS;
|
||
|
fsl_chan->idle = false;
|
||
|
}
|
||
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_resume);
|
||
|
|
||
|
static void fsl_edma_unprep_slave_dma(struct fsl_edma_chan *fsl_chan)
|
||
|
{
|
||
|
if (fsl_chan->dma_dir != DMA_NONE)
|
||
|
dma_unmap_resource(fsl_chan->vchan.chan.device->dev,
|
||
|
fsl_chan->dma_dev_addr,
|
||
|
fsl_chan->dma_dev_size,
|
||
|
fsl_chan->dma_dir, 0);
|
||
|
fsl_chan->dma_dir = DMA_NONE;
|
||
|
}
|
||
|
|
||
|
static bool fsl_edma_prep_slave_dma(struct fsl_edma_chan *fsl_chan,
|
||
|
enum dma_transfer_direction dir)
|
||
|
{
|
||
|
struct device *dev = fsl_chan->vchan.chan.device->dev;
|
||
|
enum dma_data_direction dma_dir;
|
||
|
phys_addr_t addr = 0;
|
||
|
u32 size = 0;
|
||
|
|
||
|
switch (dir) {
|
||
|
case DMA_MEM_TO_DEV:
|
||
|
dma_dir = DMA_FROM_DEVICE;
|
||
|
addr = fsl_chan->cfg.dst_addr;
|
||
|
size = fsl_chan->cfg.dst_maxburst;
|
||
|
break;
|
||
|
case DMA_DEV_TO_MEM:
|
||
|
dma_dir = DMA_TO_DEVICE;
|
||
|
addr = fsl_chan->cfg.src_addr;
|
||
|
size = fsl_chan->cfg.src_maxburst;
|
||
|
break;
|
||
|
default:
|
||
|
dma_dir = DMA_NONE;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Already mapped for this config? */
|
||
|
if (fsl_chan->dma_dir == dma_dir)
|
||
|
return true;
|
||
|
|
||
|
fsl_edma_unprep_slave_dma(fsl_chan);
|
||
|
|
||
|
fsl_chan->dma_dev_addr = dma_map_resource(dev, addr, size, dma_dir, 0);
|
||
|
if (dma_mapping_error(dev, fsl_chan->dma_dev_addr))
|
||
|
return false;
|
||
|
fsl_chan->dma_dev_size = size;
|
||
|
fsl_chan->dma_dir = dma_dir;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
int fsl_edma_slave_config(struct dma_chan *chan,
|
||
|
struct dma_slave_config *cfg)
|
||
|
{
|
||
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
||
|
|
||
|
memcpy(&fsl_chan->cfg, cfg, sizeof(*cfg));
|
||
|
fsl_edma_unprep_slave_dma(fsl_chan);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_slave_config);
|
||
|
|
||
|
static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan,
|
||
|
struct virt_dma_desc *vdesc, bool in_progress)
|
||
|
{
|
||
|
struct fsl_edma_desc *edesc = fsl_chan->edesc;
|
||
|
struct edma_regs *regs = &fsl_chan->edma->regs;
|
||
|
u32 ch = fsl_chan->vchan.chan.chan_id;
|
||
|
enum dma_transfer_direction dir = edesc->dirn;
|
||
|
dma_addr_t cur_addr, dma_addr;
|
||
|
size_t len, size;
|
||
|
int i;
|
||
|
|
||
|
/* calculate the total size in this desc */
|
||
|
for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++)
|
||
|
len += le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
|
||
|
* le16_to_cpu(edesc->tcd[i].vtcd->biter);
|
||
|
|
||
|
if (!in_progress)
|
||
|
return len;
|
||
|
|
||
|
if (dir == DMA_MEM_TO_DEV)
|
||
|
cur_addr = edma_readl(fsl_chan->edma, ®s->tcd[ch].saddr);
|
||
|
else
|
||
|
cur_addr = edma_readl(fsl_chan->edma, ®s->tcd[ch].daddr);
|
||
|
|
||
|
/* figure out the finished and calculate the residue */
|
||
|
for (i = 0; i < fsl_chan->edesc->n_tcds; i++) {
|
||
|
size = le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
|
||
|
* le16_to_cpu(edesc->tcd[i].vtcd->biter);
|
||
|
if (dir == DMA_MEM_TO_DEV)
|
||
|
dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->saddr);
|
||
|
else
|
||
|
dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->daddr);
|
||
|
|
||
|
len -= size;
|
||
|
if (cur_addr >= dma_addr && cur_addr < dma_addr + size) {
|
||
|
len += dma_addr + size - cur_addr;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
|
||
|
dma_cookie_t cookie, struct dma_tx_state *txstate)
|
||
|
{
|
||
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
||
|
struct virt_dma_desc *vdesc;
|
||
|
enum dma_status status;
|
||
|
unsigned long flags;
|
||
|
|
||
|
status = dma_cookie_status(chan, cookie, txstate);
|
||
|
if (status == DMA_COMPLETE)
|
||
|
return status;
|
||
|
|
||
|
if (!txstate)
|
||
|
return fsl_chan->status;
|
||
|
|
||
|
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
|
||
|
vdesc = vchan_find_desc(&fsl_chan->vchan, cookie);
|
||
|
if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie)
|
||
|
txstate->residue =
|
||
|
fsl_edma_desc_residue(fsl_chan, vdesc, true);
|
||
|
else if (vdesc)
|
||
|
txstate->residue =
|
||
|
fsl_edma_desc_residue(fsl_chan, vdesc, false);
|
||
|
else
|
||
|
txstate->residue = 0;
|
||
|
|
||
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
||
|
|
||
|
return fsl_chan->status;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_tx_status);
|
||
|
|
||
|
static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan,
|
||
|
struct fsl_edma_hw_tcd *tcd)
|
||
|
{
|
||
|
struct fsl_edma_engine *edma = fsl_chan->edma;
|
||
|
struct edma_regs *regs = &fsl_chan->edma->regs;
|
||
|
u32 ch = fsl_chan->vchan.chan.chan_id;
|
||
|
u16 csr = 0;
|
||
|
|
||
|
/*
|
||
|
* TCD parameters are stored in struct fsl_edma_hw_tcd in little
|
||
|
* endian format. However, we need to load the TCD registers in
|
||
|
* big- or little-endian obeying the eDMA engine model endian,
|
||
|
* and this is performed from specific edma_write functions
|
||
|
*/
|
||
|
edma_writew(edma, 0, ®s->tcd[ch].csr);
|
||
|
|
||
|
edma_writel(edma, (s32)tcd->saddr, ®s->tcd[ch].saddr);
|
||
|
edma_writel(edma, (s32)tcd->daddr, ®s->tcd[ch].daddr);
|
||
|
|
||
|
edma_writew(edma, (s16)tcd->attr, ®s->tcd[ch].attr);
|
||
|
edma_writew(edma, tcd->soff, ®s->tcd[ch].soff);
|
||
|
|
||
|
edma_writel(edma, (s32)tcd->nbytes, ®s->tcd[ch].nbytes);
|
||
|
edma_writel(edma, (s32)tcd->slast, ®s->tcd[ch].slast);
|
||
|
|
||
|
edma_writew(edma, (s16)tcd->citer, ®s->tcd[ch].citer);
|
||
|
edma_writew(edma, (s16)tcd->biter, ®s->tcd[ch].biter);
|
||
|
edma_writew(edma, (s16)tcd->doff, ®s->tcd[ch].doff);
|
||
|
|
||
|
edma_writel(edma, (s32)tcd->dlast_sga,
|
||
|
®s->tcd[ch].dlast_sga);
|
||
|
|
||
|
if (fsl_chan->is_sw) {
|
||
|
csr = le16_to_cpu(tcd->csr);
|
||
|
csr |= EDMA_TCD_CSR_START;
|
||
|
tcd->csr = cpu_to_le16(csr);
|
||
|
}
|
||
|
|
||
|
edma_writew(edma, (s16)tcd->csr, ®s->tcd[ch].csr);
|
||
|
}
|
||
|
|
||
|
static inline
|
||
|
void fsl_edma_fill_tcd(struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst,
|
||
|
u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer,
|
||
|
u16 biter, u16 doff, u32 dlast_sga, bool major_int,
|
||
|
bool disable_req, bool enable_sg)
|
||
|
{
|
||
|
u16 csr = 0;
|
||
|
|
||
|
/*
|
||
|
* eDMA hardware SGs require the TCDs to be stored in little
|
||
|
* endian format irrespective of the register endian model.
|
||
|
* So we put the value in little endian in memory, waiting
|
||
|
* for fsl_edma_set_tcd_regs doing the swap.
|
||
|
*/
|
||
|
tcd->saddr = cpu_to_le32(src);
|
||
|
tcd->daddr = cpu_to_le32(dst);
|
||
|
|
||
|
tcd->attr = cpu_to_le16(attr);
|
||
|
|
||
|
tcd->soff = cpu_to_le16(soff);
|
||
|
|
||
|
tcd->nbytes = cpu_to_le32(nbytes);
|
||
|
tcd->slast = cpu_to_le32(slast);
|
||
|
|
||
|
tcd->citer = cpu_to_le16(EDMA_TCD_CITER_CITER(citer));
|
||
|
tcd->doff = cpu_to_le16(doff);
|
||
|
|
||
|
tcd->dlast_sga = cpu_to_le32(dlast_sga);
|
||
|
|
||
|
tcd->biter = cpu_to_le16(EDMA_TCD_BITER_BITER(biter));
|
||
|
if (major_int)
|
||
|
csr |= EDMA_TCD_CSR_INT_MAJOR;
|
||
|
|
||
|
if (disable_req)
|
||
|
csr |= EDMA_TCD_CSR_D_REQ;
|
||
|
|
||
|
if (enable_sg)
|
||
|
csr |= EDMA_TCD_CSR_E_SG;
|
||
|
|
||
|
tcd->csr = cpu_to_le16(csr);
|
||
|
}
|
||
|
|
||
|
static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan,
|
||
|
int sg_len)
|
||
|
{
|
||
|
struct fsl_edma_desc *fsl_desc;
|
||
|
int i;
|
||
|
|
||
|
fsl_desc = kzalloc(struct_size(fsl_desc, tcd, sg_len), GFP_NOWAIT);
|
||
|
if (!fsl_desc)
|
||
|
return NULL;
|
||
|
|
||
|
fsl_desc->echan = fsl_chan;
|
||
|
fsl_desc->n_tcds = sg_len;
|
||
|
for (i = 0; i < sg_len; i++) {
|
||
|
fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool,
|
||
|
GFP_NOWAIT, &fsl_desc->tcd[i].ptcd);
|
||
|
if (!fsl_desc->tcd[i].vtcd)
|
||
|
goto err;
|
||
|
}
|
||
|
return fsl_desc;
|
||
|
|
||
|
err:
|
||
|
while (--i >= 0)
|
||
|
dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd,
|
||
|
fsl_desc->tcd[i].ptcd);
|
||
|
kfree(fsl_desc);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(
|
||
|
struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
|
||
|
size_t period_len, enum dma_transfer_direction direction,
|
||
|
unsigned long flags)
|
||
|
{
|
||
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
||
|
struct fsl_edma_desc *fsl_desc;
|
||
|
dma_addr_t dma_buf_next;
|
||
|
int sg_len, i;
|
||
|
u32 src_addr, dst_addr, last_sg, nbytes;
|
||
|
u16 soff, doff, iter;
|
||
|
|
||
|
if (!is_slave_direction(direction))
|
||
|
return NULL;
|
||
|
|
||
|
if (!fsl_edma_prep_slave_dma(fsl_chan, direction))
|
||
|
return NULL;
|
||
|
|
||
|
sg_len = buf_len / period_len;
|
||
|
fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
|
||
|
if (!fsl_desc)
|
||
|
return NULL;
|
||
|
fsl_desc->iscyclic = true;
|
||
|
fsl_desc->dirn = direction;
|
||
|
|
||
|
dma_buf_next = dma_addr;
|
||
|
if (direction == DMA_MEM_TO_DEV) {
|
||
|
fsl_chan->attr =
|
||
|
fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width);
|
||
|
nbytes = fsl_chan->cfg.dst_addr_width *
|
||
|
fsl_chan->cfg.dst_maxburst;
|
||
|
} else {
|
||
|
fsl_chan->attr =
|
||
|
fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width);
|
||
|
nbytes = fsl_chan->cfg.src_addr_width *
|
||
|
fsl_chan->cfg.src_maxburst;
|
||
|
}
|
||
|
|
||
|
iter = period_len / nbytes;
|
||
|
|
||
|
for (i = 0; i < sg_len; i++) {
|
||
|
if (dma_buf_next >= dma_addr + buf_len)
|
||
|
dma_buf_next = dma_addr;
|
||
|
|
||
|
/* get next sg's physical address */
|
||
|
last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
|
||
|
|
||
|
if (direction == DMA_MEM_TO_DEV) {
|
||
|
src_addr = dma_buf_next;
|
||
|
dst_addr = fsl_chan->dma_dev_addr;
|
||
|
soff = fsl_chan->cfg.dst_addr_width;
|
||
|
doff = 0;
|
||
|
} else {
|
||
|
src_addr = fsl_chan->dma_dev_addr;
|
||
|
dst_addr = dma_buf_next;
|
||
|
soff = 0;
|
||
|
doff = fsl_chan->cfg.src_addr_width;
|
||
|
}
|
||
|
|
||
|
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr, dst_addr,
|
||
|
fsl_chan->attr, soff, nbytes, 0, iter,
|
||
|
iter, doff, last_sg, true, false, true);
|
||
|
dma_buf_next += period_len;
|
||
|
}
|
||
|
|
||
|
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_prep_dma_cyclic);
|
||
|
|
||
|
struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg(
|
||
|
struct dma_chan *chan, struct scatterlist *sgl,
|
||
|
unsigned int sg_len, enum dma_transfer_direction direction,
|
||
|
unsigned long flags, void *context)
|
||
|
{
|
||
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
||
|
struct fsl_edma_desc *fsl_desc;
|
||
|
struct scatterlist *sg;
|
||
|
u32 src_addr, dst_addr, last_sg, nbytes;
|
||
|
u16 soff, doff, iter;
|
||
|
int i;
|
||
|
|
||
|
if (!is_slave_direction(direction))
|
||
|
return NULL;
|
||
|
|
||
|
if (!fsl_edma_prep_slave_dma(fsl_chan, direction))
|
||
|
return NULL;
|
||
|
|
||
|
fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
|
||
|
if (!fsl_desc)
|
||
|
return NULL;
|
||
|
fsl_desc->iscyclic = false;
|
||
|
fsl_desc->dirn = direction;
|
||
|
|
||
|
if (direction == DMA_MEM_TO_DEV) {
|
||
|
fsl_chan->attr =
|
||
|
fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width);
|
||
|
nbytes = fsl_chan->cfg.dst_addr_width *
|
||
|
fsl_chan->cfg.dst_maxburst;
|
||
|
} else {
|
||
|
fsl_chan->attr =
|
||
|
fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width);
|
||
|
nbytes = fsl_chan->cfg.src_addr_width *
|
||
|
fsl_chan->cfg.src_maxburst;
|
||
|
}
|
||
|
|
||
|
for_each_sg(sgl, sg, sg_len, i) {
|
||
|
if (direction == DMA_MEM_TO_DEV) {
|
||
|
src_addr = sg_dma_address(sg);
|
||
|
dst_addr = fsl_chan->dma_dev_addr;
|
||
|
soff = fsl_chan->cfg.dst_addr_width;
|
||
|
doff = 0;
|
||
|
} else {
|
||
|
src_addr = fsl_chan->dma_dev_addr;
|
||
|
dst_addr = sg_dma_address(sg);
|
||
|
soff = 0;
|
||
|
doff = fsl_chan->cfg.src_addr_width;
|
||
|
}
|
||
|
|
||
|
iter = sg_dma_len(sg) / nbytes;
|
||
|
if (i < sg_len - 1) {
|
||
|
last_sg = fsl_desc->tcd[(i + 1)].ptcd;
|
||
|
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
|
||
|
dst_addr, fsl_chan->attr, soff,
|
||
|
nbytes, 0, iter, iter, doff, last_sg,
|
||
|
false, false, true);
|
||
|
} else {
|
||
|
last_sg = 0;
|
||
|
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
|
||
|
dst_addr, fsl_chan->attr, soff,
|
||
|
nbytes, 0, iter, iter, doff, last_sg,
|
||
|
true, true, false);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_prep_slave_sg);
|
||
|
|
||
|
struct dma_async_tx_descriptor *fsl_edma_prep_memcpy(struct dma_chan *chan,
|
||
|
dma_addr_t dma_dst, dma_addr_t dma_src,
|
||
|
size_t len, unsigned long flags)
|
||
|
{
|
||
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
||
|
struct fsl_edma_desc *fsl_desc;
|
||
|
|
||
|
fsl_desc = fsl_edma_alloc_desc(fsl_chan, 1);
|
||
|
if (!fsl_desc)
|
||
|
return NULL;
|
||
|
fsl_desc->iscyclic = false;
|
||
|
|
||
|
fsl_chan->is_sw = true;
|
||
|
|
||
|
/* To match with copy_align and max_seg_size so 1 tcd is enough */
|
||
|
fsl_edma_fill_tcd(fsl_desc->tcd[0].vtcd, dma_src, dma_dst,
|
||
|
EDMA_TCD_ATTR_SSIZE_32BYTE | EDMA_TCD_ATTR_DSIZE_32BYTE,
|
||
|
32, len, 0, 1, 1, 32, 0, true, true, false);
|
||
|
|
||
|
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_prep_memcpy);
|
||
|
|
||
|
void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan)
|
||
|
{
|
||
|
struct virt_dma_desc *vdesc;
|
||
|
|
||
|
lockdep_assert_held(&fsl_chan->vchan.lock);
|
||
|
|
||
|
vdesc = vchan_next_desc(&fsl_chan->vchan);
|
||
|
if (!vdesc)
|
||
|
return;
|
||
|
fsl_chan->edesc = to_fsl_edma_desc(vdesc);
|
||
|
fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd);
|
||
|
fsl_edma_enable_request(fsl_chan);
|
||
|
fsl_chan->status = DMA_IN_PROGRESS;
|
||
|
fsl_chan->idle = false;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_xfer_desc);
|
||
|
|
||
|
void fsl_edma_issue_pending(struct dma_chan *chan)
|
||
|
{
|
||
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
|
||
|
|
||
|
if (unlikely(fsl_chan->pm_state != RUNNING)) {
|
||
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
||
|
/* cannot submit due to suspend */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc)
|
||
|
fsl_edma_xfer_desc(fsl_chan);
|
||
|
|
||
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_issue_pending);
|
||
|
|
||
|
int fsl_edma_alloc_chan_resources(struct dma_chan *chan)
|
||
|
{
|
||
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
||
|
|
||
|
fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev,
|
||
|
sizeof(struct fsl_edma_hw_tcd),
|
||
|
32, 0);
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_alloc_chan_resources);
|
||
|
|
||
|
void fsl_edma_free_chan_resources(struct dma_chan *chan)
|
||
|
{
|
||
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
||
|
struct fsl_edma_engine *edma = fsl_chan->edma;
|
||
|
unsigned long flags;
|
||
|
LIST_HEAD(head);
|
||
|
|
||
|
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
|
||
|
fsl_edma_disable_request(fsl_chan);
|
||
|
if (edma->drvdata->dmamuxs)
|
||
|
fsl_edma_chan_mux(fsl_chan, 0, false);
|
||
|
fsl_chan->edesc = NULL;
|
||
|
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
|
||
|
fsl_edma_unprep_slave_dma(fsl_chan);
|
||
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
||
|
|
||
|
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
|
||
|
dma_pool_destroy(fsl_chan->tcd_pool);
|
||
|
fsl_chan->tcd_pool = NULL;
|
||
|
fsl_chan->is_sw = false;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_free_chan_resources);
|
||
|
|
||
|
void fsl_edma_cleanup_vchan(struct dma_device *dmadev)
|
||
|
{
|
||
|
struct fsl_edma_chan *chan, *_chan;
|
||
|
|
||
|
list_for_each_entry_safe(chan, _chan,
|
||
|
&dmadev->channels, vchan.chan.device_node) {
|
||
|
list_del(&chan->vchan.chan.device_node);
|
||
|
tasklet_kill(&chan->vchan.task);
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_cleanup_vchan);
|
||
|
|
||
|
/*
|
||
|
* On the 32 channels Vybrid/mpc577x edma version (here called "v1"),
|
||
|
* register offsets are different compared to ColdFire mcf5441x 64 channels
|
||
|
* edma (here called "v2").
|
||
|
*
|
||
|
* This function sets up register offsets as per proper declared version
|
||
|
* so must be called in xxx_edma_probe() just after setting the
|
||
|
* edma "version" and "membase" appropriately.
|
||
|
*/
|
||
|
void fsl_edma_setup_regs(struct fsl_edma_engine *edma)
|
||
|
{
|
||
|
edma->regs.cr = edma->membase + EDMA_CR;
|
||
|
edma->regs.es = edma->membase + EDMA_ES;
|
||
|
edma->regs.erql = edma->membase + EDMA_ERQ;
|
||
|
edma->regs.eeil = edma->membase + EDMA_EEI;
|
||
|
|
||
|
edma->regs.serq = edma->membase + ((edma->drvdata->version == v2) ?
|
||
|
EDMA64_SERQ : EDMA_SERQ);
|
||
|
edma->regs.cerq = edma->membase + ((edma->drvdata->version == v2) ?
|
||
|
EDMA64_CERQ : EDMA_CERQ);
|
||
|
edma->regs.seei = edma->membase + ((edma->drvdata->version == v2) ?
|
||
|
EDMA64_SEEI : EDMA_SEEI);
|
||
|
edma->regs.ceei = edma->membase + ((edma->drvdata->version == v2) ?
|
||
|
EDMA64_CEEI : EDMA_CEEI);
|
||
|
edma->regs.cint = edma->membase + ((edma->drvdata->version == v2) ?
|
||
|
EDMA64_CINT : EDMA_CINT);
|
||
|
edma->regs.cerr = edma->membase + ((edma->drvdata->version == v2) ?
|
||
|
EDMA64_CERR : EDMA_CERR);
|
||
|
edma->regs.ssrt = edma->membase + ((edma->drvdata->version == v2) ?
|
||
|
EDMA64_SSRT : EDMA_SSRT);
|
||
|
edma->regs.cdne = edma->membase + ((edma->drvdata->version == v2) ?
|
||
|
EDMA64_CDNE : EDMA_CDNE);
|
||
|
edma->regs.intl = edma->membase + ((edma->drvdata->version == v2) ?
|
||
|
EDMA64_INTL : EDMA_INTR);
|
||
|
edma->regs.errl = edma->membase + ((edma->drvdata->version == v2) ?
|
||
|
EDMA64_ERRL : EDMA_ERR);
|
||
|
|
||
|
if (edma->drvdata->version == v2) {
|
||
|
edma->regs.erqh = edma->membase + EDMA64_ERQH;
|
||
|
edma->regs.eeih = edma->membase + EDMA64_EEIH;
|
||
|
edma->regs.errh = edma->membase + EDMA64_ERRH;
|
||
|
edma->regs.inth = edma->membase + EDMA64_INTH;
|
||
|
}
|
||
|
|
||
|
edma->regs.tcd = edma->membase + EDMA_TCD;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(fsl_edma_setup_regs);
|
||
|
|
||
|
MODULE_LICENSE("GPL v2");
|