260 lines
6.3 KiB
C
260 lines
6.3 KiB
C
|
// TODO VM_EXEC flag work-around, cache aliasing
|
||
|
/*
|
||
|
* arch/xtensa/mm/fault.c
|
||
|
*
|
||
|
* This file is subject to the terms and conditions of the GNU General Public
|
||
|
* License. See the file "COPYING" in the main directory of this archive
|
||
|
* for more details.
|
||
|
*
|
||
|
* Copyright (C) 2001 - 2010 Tensilica Inc.
|
||
|
*
|
||
|
* Chris Zankel <chris@zankel.net>
|
||
|
* Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
|
||
|
*/
|
||
|
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/extable.h>
|
||
|
#include <linux/hardirq.h>
|
||
|
#include <linux/perf_event.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/hardirq.h>
|
||
|
|
||
|
void bad_page_fault(struct pt_regs*, unsigned long, int);
|
||
|
|
||
|
static void vmalloc_fault(struct pt_regs *regs, unsigned int address)
|
||
|
{
|
||
|
#ifdef CONFIG_MMU
|
||
|
/* Synchronize this task's top level page-table
|
||
|
* with the 'reference' page table.
|
||
|
*/
|
||
|
struct mm_struct *act_mm = current->active_mm;
|
||
|
int index = pgd_index(address);
|
||
|
pgd_t *pgd, *pgd_k;
|
||
|
p4d_t *p4d, *p4d_k;
|
||
|
pud_t *pud, *pud_k;
|
||
|
pmd_t *pmd, *pmd_k;
|
||
|
pte_t *pte_k;
|
||
|
|
||
|
if (act_mm == NULL)
|
||
|
goto bad_page_fault;
|
||
|
|
||
|
pgd = act_mm->pgd + index;
|
||
|
pgd_k = init_mm.pgd + index;
|
||
|
|
||
|
if (!pgd_present(*pgd_k))
|
||
|
goto bad_page_fault;
|
||
|
|
||
|
pgd_val(*pgd) = pgd_val(*pgd_k);
|
||
|
|
||
|
p4d = p4d_offset(pgd, address);
|
||
|
p4d_k = p4d_offset(pgd_k, address);
|
||
|
if (!p4d_present(*p4d) || !p4d_present(*p4d_k))
|
||
|
goto bad_page_fault;
|
||
|
|
||
|
pud = pud_offset(p4d, address);
|
||
|
pud_k = pud_offset(p4d_k, address);
|
||
|
if (!pud_present(*pud) || !pud_present(*pud_k))
|
||
|
goto bad_page_fault;
|
||
|
|
||
|
pmd = pmd_offset(pud, address);
|
||
|
pmd_k = pmd_offset(pud_k, address);
|
||
|
if (!pmd_present(*pmd) || !pmd_present(*pmd_k))
|
||
|
goto bad_page_fault;
|
||
|
|
||
|
pmd_val(*pmd) = pmd_val(*pmd_k);
|
||
|
pte_k = pte_offset_kernel(pmd_k, address);
|
||
|
|
||
|
if (!pte_present(*pte_k))
|
||
|
goto bad_page_fault;
|
||
|
return;
|
||
|
|
||
|
bad_page_fault:
|
||
|
bad_page_fault(regs, address, SIGKILL);
|
||
|
#else
|
||
|
WARN_ONCE(1, "%s in noMMU configuration\n", __func__);
|
||
|
#endif
|
||
|
}
|
||
|
/*
|
||
|
* This routine handles page faults. It determines the address,
|
||
|
* and the problem, and then passes it off to one of the appropriate
|
||
|
* routines.
|
||
|
*
|
||
|
* Note: does not handle Miss and MultiHit.
|
||
|
*/
|
||
|
|
||
|
void do_page_fault(struct pt_regs *regs)
|
||
|
{
|
||
|
struct vm_area_struct * vma;
|
||
|
struct mm_struct *mm = current->mm;
|
||
|
unsigned int exccause = regs->exccause;
|
||
|
unsigned int address = regs->excvaddr;
|
||
|
int code;
|
||
|
|
||
|
int is_write, is_exec;
|
||
|
vm_fault_t fault;
|
||
|
unsigned int flags = FAULT_FLAG_DEFAULT;
|
||
|
|
||
|
code = SEGV_MAPERR;
|
||
|
|
||
|
/* We fault-in kernel-space virtual memory on-demand. The
|
||
|
* 'reference' page table is init_mm.pgd.
|
||
|
*/
|
||
|
if (address >= TASK_SIZE && !user_mode(regs)) {
|
||
|
vmalloc_fault(regs, address);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* If we're in an interrupt or have no user
|
||
|
* context, we must not take the fault..
|
||
|
*/
|
||
|
if (faulthandler_disabled() || !mm) {
|
||
|
bad_page_fault(regs, address, SIGSEGV);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
is_write = (exccause == EXCCAUSE_STORE_CACHE_ATTRIBUTE) ? 1 : 0;
|
||
|
is_exec = (exccause == EXCCAUSE_ITLB_PRIVILEGE ||
|
||
|
exccause == EXCCAUSE_ITLB_MISS ||
|
||
|
exccause == EXCCAUSE_FETCH_CACHE_ATTRIBUTE) ? 1 : 0;
|
||
|
|
||
|
pr_debug("[%s:%d:%08x:%d:%08lx:%s%s]\n",
|
||
|
current->comm, current->pid,
|
||
|
address, exccause, regs->pc,
|
||
|
is_write ? "w" : "", is_exec ? "x" : "");
|
||
|
|
||
|
if (user_mode(regs))
|
||
|
flags |= FAULT_FLAG_USER;
|
||
|
|
||
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
|
||
|
|
||
|
retry:
|
||
|
vma = lock_mm_and_find_vma(mm, address, regs);
|
||
|
if (!vma)
|
||
|
goto bad_area_nosemaphore;
|
||
|
|
||
|
/* Ok, we have a good vm_area for this memory access, so
|
||
|
* we can handle it..
|
||
|
*/
|
||
|
|
||
|
code = SEGV_ACCERR;
|
||
|
|
||
|
if (is_write) {
|
||
|
if (!(vma->vm_flags & VM_WRITE))
|
||
|
goto bad_area;
|
||
|
flags |= FAULT_FLAG_WRITE;
|
||
|
} else if (is_exec) {
|
||
|
if (!(vma->vm_flags & VM_EXEC))
|
||
|
goto bad_area;
|
||
|
} else /* Allow read even from write-only pages. */
|
||
|
if (!(vma->vm_flags & (VM_READ | VM_WRITE)))
|
||
|
goto bad_area;
|
||
|
|
||
|
/* If for any reason at all we couldn't handle the fault,
|
||
|
* make sure we exit gracefully rather than endlessly redo
|
||
|
* the fault.
|
||
|
*/
|
||
|
fault = handle_mm_fault(vma, address, flags, regs);
|
||
|
|
||
|
if (fault_signal_pending(fault, regs)) {
|
||
|
if (!user_mode(regs))
|
||
|
bad_page_fault(regs, address, SIGKILL);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* The fault is fully completed (including releasing mmap lock) */
|
||
|
if (fault & VM_FAULT_COMPLETED)
|
||
|
return;
|
||
|
|
||
|
if (unlikely(fault & VM_FAULT_ERROR)) {
|
||
|
if (fault & VM_FAULT_OOM)
|
||
|
goto out_of_memory;
|
||
|
else if (fault & VM_FAULT_SIGSEGV)
|
||
|
goto bad_area;
|
||
|
else if (fault & VM_FAULT_SIGBUS)
|
||
|
goto do_sigbus;
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
if (fault & VM_FAULT_RETRY) {
|
||
|
flags |= FAULT_FLAG_TRIED;
|
||
|
|
||
|
/* No need to mmap_read_unlock(mm) as we would
|
||
|
* have already released it in __lock_page_or_retry
|
||
|
* in mm/filemap.c.
|
||
|
*/
|
||
|
|
||
|
goto retry;
|
||
|
}
|
||
|
|
||
|
mmap_read_unlock(mm);
|
||
|
return;
|
||
|
|
||
|
/* Something tried to access memory that isn't in our memory map..
|
||
|
* Fix it, but check if it's kernel or user first..
|
||
|
*/
|
||
|
bad_area:
|
||
|
mmap_read_unlock(mm);
|
||
|
bad_area_nosemaphore:
|
||
|
if (user_mode(regs)) {
|
||
|
current->thread.bad_vaddr = address;
|
||
|
current->thread.error_code = is_write;
|
||
|
force_sig_fault(SIGSEGV, code, (void *) address);
|
||
|
return;
|
||
|
}
|
||
|
bad_page_fault(regs, address, SIGSEGV);
|
||
|
return;
|
||
|
|
||
|
|
||
|
/* We ran out of memory, or some other thing happened to us that made
|
||
|
* us unable to handle the page fault gracefully.
|
||
|
*/
|
||
|
out_of_memory:
|
||
|
mmap_read_unlock(mm);
|
||
|
if (!user_mode(regs))
|
||
|
bad_page_fault(regs, address, SIGKILL);
|
||
|
else
|
||
|
pagefault_out_of_memory();
|
||
|
return;
|
||
|
|
||
|
do_sigbus:
|
||
|
mmap_read_unlock(mm);
|
||
|
|
||
|
/* Send a sigbus, regardless of whether we were in kernel
|
||
|
* or user mode.
|
||
|
*/
|
||
|
current->thread.bad_vaddr = address;
|
||
|
force_sig_fault(SIGBUS, BUS_ADRERR, (void *) address);
|
||
|
|
||
|
/* Kernel mode? Handle exceptions or die */
|
||
|
if (!user_mode(regs))
|
||
|
bad_page_fault(regs, address, SIGBUS);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
|
||
|
{
|
||
|
extern void __noreturn die(const char*, struct pt_regs*, long);
|
||
|
const struct exception_table_entry *entry;
|
||
|
|
||
|
/* Are we prepared to handle this kernel fault? */
|
||
|
if ((entry = search_exception_tables(regs->pc)) != NULL) {
|
||
|
pr_debug("%s: Exception at pc=%#010lx (%lx)\n",
|
||
|
current->comm, regs->pc, entry->fixup);
|
||
|
current->thread.bad_uaddr = address;
|
||
|
regs->pc = entry->fixup;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Oops. The kernel tried to access some bad page. We'll have to
|
||
|
* terminate things with extreme prejudice.
|
||
|
*/
|
||
|
pr_alert("Unable to handle kernel paging request at virtual "
|
||
|
"address %08lx\n pc = %08lx, ra = %08lx\n",
|
||
|
address, regs->pc, regs->areg[0]);
|
||
|
die("Oops", regs, sig);
|
||
|
}
|