linuxdebug/sound/soc/amd/acp-pcm-dma.c

1445 lines
42 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* AMD ALSA SoC PCM Driver for ACP 2.x
*
* Copyright 2014-2015 Advanced Micro Devices, Inc.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/sizes.h>
#include <linux/pm_runtime.h>
#include <sound/soc.h>
#include <drm/amd_asic_type.h>
#include "acp.h"
#define DRV_NAME "acp_audio_dma"
#define PLAYBACK_MIN_NUM_PERIODS 2
#define PLAYBACK_MAX_NUM_PERIODS 2
#define PLAYBACK_MAX_PERIOD_SIZE 16384
#define PLAYBACK_MIN_PERIOD_SIZE 1024
#define CAPTURE_MIN_NUM_PERIODS 2
#define CAPTURE_MAX_NUM_PERIODS 2
#define CAPTURE_MAX_PERIOD_SIZE 16384
#define CAPTURE_MIN_PERIOD_SIZE 1024
#define MAX_BUFFER (PLAYBACK_MAX_PERIOD_SIZE * PLAYBACK_MAX_NUM_PERIODS)
#define MIN_BUFFER MAX_BUFFER
#define ST_PLAYBACK_MAX_PERIOD_SIZE 4096
#define ST_CAPTURE_MAX_PERIOD_SIZE ST_PLAYBACK_MAX_PERIOD_SIZE
#define ST_MAX_BUFFER (ST_PLAYBACK_MAX_PERIOD_SIZE * PLAYBACK_MAX_NUM_PERIODS)
#define ST_MIN_BUFFER ST_MAX_BUFFER
#define DRV_NAME "acp_audio_dma"
bool acp_bt_uart_enable = true;
EXPORT_SYMBOL(acp_bt_uart_enable);
static const struct snd_pcm_hardware acp_pcm_hardware_playback = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH |
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 1,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_8000_96000,
.rate_min = 8000,
.rate_max = 96000,
.buffer_bytes_max = PLAYBACK_MAX_NUM_PERIODS * PLAYBACK_MAX_PERIOD_SIZE,
.period_bytes_min = PLAYBACK_MIN_PERIOD_SIZE,
.period_bytes_max = PLAYBACK_MAX_PERIOD_SIZE,
.periods_min = PLAYBACK_MIN_NUM_PERIODS,
.periods_max = PLAYBACK_MAX_NUM_PERIODS,
};
static const struct snd_pcm_hardware acp_pcm_hardware_capture = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH |
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_48000,
.rate_min = 8000,
.rate_max = 48000,
.buffer_bytes_max = CAPTURE_MAX_NUM_PERIODS * CAPTURE_MAX_PERIOD_SIZE,
.period_bytes_min = CAPTURE_MIN_PERIOD_SIZE,
.period_bytes_max = CAPTURE_MAX_PERIOD_SIZE,
.periods_min = CAPTURE_MIN_NUM_PERIODS,
.periods_max = CAPTURE_MAX_NUM_PERIODS,
};
static const struct snd_pcm_hardware acp_st_pcm_hardware_playback = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH |
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 1,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_8000_96000,
.rate_min = 8000,
.rate_max = 96000,
.buffer_bytes_max = ST_MAX_BUFFER,
.period_bytes_min = PLAYBACK_MIN_PERIOD_SIZE,
.period_bytes_max = ST_PLAYBACK_MAX_PERIOD_SIZE,
.periods_min = PLAYBACK_MIN_NUM_PERIODS,
.periods_max = PLAYBACK_MAX_NUM_PERIODS,
};
static const struct snd_pcm_hardware acp_st_pcm_hardware_capture = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH |
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_48000,
.rate_min = 8000,
.rate_max = 48000,
.buffer_bytes_max = ST_MAX_BUFFER,
.period_bytes_min = CAPTURE_MIN_PERIOD_SIZE,
.period_bytes_max = ST_CAPTURE_MAX_PERIOD_SIZE,
.periods_min = CAPTURE_MIN_NUM_PERIODS,
.periods_max = CAPTURE_MAX_NUM_PERIODS,
};
static u32 acp_reg_read(void __iomem *acp_mmio, u32 reg)
{
return readl(acp_mmio + (reg * 4));
}
static void acp_reg_write(u32 val, void __iomem *acp_mmio, u32 reg)
{
writel(val, acp_mmio + (reg * 4));
}
/*
* Configure a given dma channel parameters - enable/disable,
* number of descriptors, priority
*/
static void config_acp_dma_channel(void __iomem *acp_mmio, u8 ch_num,
u16 dscr_strt_idx, u16 num_dscrs,
enum acp_dma_priority_level priority_level)
{
u32 dma_ctrl;
/* disable the channel run field */
dma_ctrl = acp_reg_read(acp_mmio, mmACP_DMA_CNTL_0 + ch_num);
dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChRun_MASK;
acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num);
/* program a DMA channel with first descriptor to be processed. */
acp_reg_write((ACP_DMA_DSCR_STRT_IDX_0__DMAChDscrStrtIdx_MASK
& dscr_strt_idx),
acp_mmio, mmACP_DMA_DSCR_STRT_IDX_0 + ch_num);
/*
* program a DMA channel with the number of descriptors to be
* processed in the transfer
*/
acp_reg_write(ACP_DMA_DSCR_CNT_0__DMAChDscrCnt_MASK & num_dscrs,
acp_mmio, mmACP_DMA_DSCR_CNT_0 + ch_num);
/* set DMA channel priority */
acp_reg_write(priority_level, acp_mmio, mmACP_DMA_PRIO_0 + ch_num);
}
/* Initialize a dma descriptor in SRAM based on descriptor information passed */
static void config_dma_descriptor_in_sram(void __iomem *acp_mmio,
u16 descr_idx,
acp_dma_dscr_transfer_t *descr_info)
{
u32 sram_offset;
sram_offset = (descr_idx * sizeof(acp_dma_dscr_transfer_t));
/* program the source base address. */
acp_reg_write(sram_offset, acp_mmio, mmACP_SRBM_Targ_Idx_Addr);
acp_reg_write(descr_info->src, acp_mmio, mmACP_SRBM_Targ_Idx_Data);
/* program the destination base address. */
acp_reg_write(sram_offset + 4, acp_mmio, mmACP_SRBM_Targ_Idx_Addr);
acp_reg_write(descr_info->dest, acp_mmio, mmACP_SRBM_Targ_Idx_Data);
/* program the number of bytes to be transferred for this descriptor. */
acp_reg_write(sram_offset + 8, acp_mmio, mmACP_SRBM_Targ_Idx_Addr);
acp_reg_write(descr_info->xfer_val, acp_mmio, mmACP_SRBM_Targ_Idx_Data);
}
static void pre_config_reset(void __iomem *acp_mmio, u16 ch_num)
{
u32 dma_ctrl;
int ret;
/* clear the reset bit */
dma_ctrl = acp_reg_read(acp_mmio, mmACP_DMA_CNTL_0 + ch_num);
dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChRst_MASK;
acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num);
/* check the reset bit before programming configuration registers */
ret = readl_poll_timeout(acp_mmio + ((mmACP_DMA_CNTL_0 + ch_num) * 4),
dma_ctrl,
!(dma_ctrl & ACP_DMA_CNTL_0__DMAChRst_MASK),
100, ACP_DMA_RESET_TIME);
if (ret < 0)
pr_err("Failed to clear reset of channel : %d\n", ch_num);
}
/*
* Initialize the DMA descriptor information for transfer between
* system memory <-> ACP SRAM
*/
static void set_acp_sysmem_dma_descriptors(void __iomem *acp_mmio,
u32 size, int direction,
u32 pte_offset, u16 ch,
u32 sram_bank, u16 dma_dscr_idx,
u32 asic_type)
{
u16 i;
acp_dma_dscr_transfer_t dmadscr[NUM_DSCRS_PER_CHANNEL];
for (i = 0; i < NUM_DSCRS_PER_CHANNEL; i++) {
dmadscr[i].xfer_val = 0;
if (direction == SNDRV_PCM_STREAM_PLAYBACK) {
dma_dscr_idx = dma_dscr_idx + i;
dmadscr[i].dest = sram_bank + (i * (size / 2));
dmadscr[i].src = ACP_INTERNAL_APERTURE_WINDOW_0_ADDRESS
+ (pte_offset * SZ_4K) + (i * (size / 2));
switch (asic_type) {
case CHIP_STONEY:
dmadscr[i].xfer_val |=
(ACP_DMA_ATTR_DAGB_GARLIC_TO_SHAREDMEM << 16) |
(size / 2);
break;
default:
dmadscr[i].xfer_val |=
(ACP_DMA_ATTR_DAGB_ONION_TO_SHAREDMEM << 16) |
(size / 2);
}
} else {
dma_dscr_idx = dma_dscr_idx + i;
dmadscr[i].src = sram_bank + (i * (size / 2));
dmadscr[i].dest =
ACP_INTERNAL_APERTURE_WINDOW_0_ADDRESS +
(pte_offset * SZ_4K) + (i * (size / 2));
switch (asic_type) {
case CHIP_STONEY:
dmadscr[i].xfer_val |=
(ACP_DMA_ATTR_SHARED_MEM_TO_DAGB_GARLIC << 16) |
(size / 2);
break;
default:
dmadscr[i].xfer_val |=
(ACP_DMA_ATTR_SHAREDMEM_TO_DAGB_ONION << 16) |
(size / 2);
}
}
config_dma_descriptor_in_sram(acp_mmio, dma_dscr_idx,
&dmadscr[i]);
}
pre_config_reset(acp_mmio, ch);
config_acp_dma_channel(acp_mmio, ch,
dma_dscr_idx - 1,
NUM_DSCRS_PER_CHANNEL,
ACP_DMA_PRIORITY_LEVEL_NORMAL);
}
/*
* Initialize the DMA descriptor information for transfer between
* ACP SRAM <-> I2S
*/
static void set_acp_to_i2s_dma_descriptors(void __iomem *acp_mmio, u32 size,
int direction, u32 sram_bank,
u16 destination, u16 ch,
u16 dma_dscr_idx, u32 asic_type)
{
u16 i;
acp_dma_dscr_transfer_t dmadscr[NUM_DSCRS_PER_CHANNEL];
for (i = 0; i < NUM_DSCRS_PER_CHANNEL; i++) {
dmadscr[i].xfer_val = 0;
if (direction == SNDRV_PCM_STREAM_PLAYBACK) {
dma_dscr_idx = dma_dscr_idx + i;
dmadscr[i].src = sram_bank + (i * (size / 2));
/* dmadscr[i].dest is unused by hardware. */
dmadscr[i].dest = 0;
dmadscr[i].xfer_val |= BIT(22) | (destination << 16) |
(size / 2);
} else {
dma_dscr_idx = dma_dscr_idx + i;
/* dmadscr[i].src is unused by hardware. */
dmadscr[i].src = 0;
dmadscr[i].dest =
sram_bank + (i * (size / 2));
dmadscr[i].xfer_val |= BIT(22) |
(destination << 16) | (size / 2);
}
config_dma_descriptor_in_sram(acp_mmio, dma_dscr_idx,
&dmadscr[i]);
}
pre_config_reset(acp_mmio, ch);
/* Configure the DMA channel with the above descriptor */
config_acp_dma_channel(acp_mmio, ch, dma_dscr_idx - 1,
NUM_DSCRS_PER_CHANNEL,
ACP_DMA_PRIORITY_LEVEL_NORMAL);
}
/* Create page table entries in ACP SRAM for the allocated memory */
static void acp_pte_config(void __iomem *acp_mmio, dma_addr_t addr,
u16 num_of_pages, u32 pte_offset)
{
u16 page_idx;
u32 low;
u32 high;
u32 offset;
offset = ACP_DAGB_GRP_SRBM_SRAM_BASE_OFFSET + (pte_offset * 8);
for (page_idx = 0; page_idx < (num_of_pages); page_idx++) {
/* Load the low address of page int ACP SRAM through SRBM */
acp_reg_write((offset + (page_idx * 8)),
acp_mmio, mmACP_SRBM_Targ_Idx_Addr);
low = lower_32_bits(addr);
high = upper_32_bits(addr);
acp_reg_write(low, acp_mmio, mmACP_SRBM_Targ_Idx_Data);
/* Load the High address of page int ACP SRAM through SRBM */
acp_reg_write((offset + (page_idx * 8) + 4),
acp_mmio, mmACP_SRBM_Targ_Idx_Addr);
/* page enable in ACP */
high |= BIT(31);
acp_reg_write(high, acp_mmio, mmACP_SRBM_Targ_Idx_Data);
/* Move to next physically contiguous page */
addr += PAGE_SIZE;
}
}
static void config_acp_dma(void __iomem *acp_mmio,
struct audio_substream_data *rtd,
u32 asic_type)
{
u16 ch_acp_sysmem, ch_acp_i2s;
acp_pte_config(acp_mmio, rtd->dma_addr, rtd->num_of_pages,
rtd->pte_offset);
if (rtd->direction == SNDRV_PCM_STREAM_PLAYBACK) {
ch_acp_sysmem = rtd->ch1;
ch_acp_i2s = rtd->ch2;
} else {
ch_acp_i2s = rtd->ch1;
ch_acp_sysmem = rtd->ch2;
}
/* Configure System memory <-> ACP SRAM DMA descriptors */
set_acp_sysmem_dma_descriptors(acp_mmio, rtd->size,
rtd->direction, rtd->pte_offset,
ch_acp_sysmem, rtd->sram_bank,
rtd->dma_dscr_idx_1, asic_type);
/* Configure ACP SRAM <-> I2S DMA descriptors */
set_acp_to_i2s_dma_descriptors(acp_mmio, rtd->size,
rtd->direction, rtd->sram_bank,
rtd->destination, ch_acp_i2s,
rtd->dma_dscr_idx_2, asic_type);
}
static void acp_dma_cap_channel_enable(void __iomem *acp_mmio,
u16 cap_channel)
{
u32 val, ch_reg, imr_reg, res_reg;
switch (cap_channel) {
case CAP_CHANNEL1:
ch_reg = mmACP_I2SMICSP_RER1;
res_reg = mmACP_I2SMICSP_RCR1;
imr_reg = mmACP_I2SMICSP_IMR1;
break;
case CAP_CHANNEL0:
default:
ch_reg = mmACP_I2SMICSP_RER0;
res_reg = mmACP_I2SMICSP_RCR0;
imr_reg = mmACP_I2SMICSP_IMR0;
break;
}
val = acp_reg_read(acp_mmio,
mmACP_I2S_16BIT_RESOLUTION_EN);
if (val & ACP_I2S_MIC_16BIT_RESOLUTION_EN) {
acp_reg_write(0x0, acp_mmio, ch_reg);
/* Set 16bit resolution on capture */
acp_reg_write(0x2, acp_mmio, res_reg);
}
val = acp_reg_read(acp_mmio, imr_reg);
val &= ~ACP_I2SMICSP_IMR1__I2SMICSP_RXDAM_MASK;
val &= ~ACP_I2SMICSP_IMR1__I2SMICSP_RXFOM_MASK;
acp_reg_write(val, acp_mmio, imr_reg);
acp_reg_write(0x1, acp_mmio, ch_reg);
}
static void acp_dma_cap_channel_disable(void __iomem *acp_mmio,
u16 cap_channel)
{
u32 val, ch_reg, imr_reg;
switch (cap_channel) {
case CAP_CHANNEL1:
imr_reg = mmACP_I2SMICSP_IMR1;
ch_reg = mmACP_I2SMICSP_RER1;
break;
case CAP_CHANNEL0:
default:
imr_reg = mmACP_I2SMICSP_IMR0;
ch_reg = mmACP_I2SMICSP_RER0;
break;
}
val = acp_reg_read(acp_mmio, imr_reg);
val |= ACP_I2SMICSP_IMR1__I2SMICSP_RXDAM_MASK;
val |= ACP_I2SMICSP_IMR1__I2SMICSP_RXFOM_MASK;
acp_reg_write(val, acp_mmio, imr_reg);
acp_reg_write(0x0, acp_mmio, ch_reg);
}
/* Start a given DMA channel transfer */
static void acp_dma_start(void __iomem *acp_mmio, u16 ch_num, bool is_circular)
{
u32 dma_ctrl;
/* read the dma control register and disable the channel run field */
dma_ctrl = acp_reg_read(acp_mmio, mmACP_DMA_CNTL_0 + ch_num);
/* Invalidating the DAGB cache */
acp_reg_write(1, acp_mmio, mmACP_DAGB_ATU_CTRL);
/*
* configure the DMA channel and start the DMA transfer
* set dmachrun bit to start the transfer and enable the
* interrupt on completion of the dma transfer
*/
dma_ctrl |= ACP_DMA_CNTL_0__DMAChRun_MASK;
switch (ch_num) {
case ACP_TO_I2S_DMA_CH_NUM:
case I2S_TO_ACP_DMA_CH_NUM:
case ACP_TO_I2S_DMA_BT_INSTANCE_CH_NUM:
case I2S_TO_ACP_DMA_BT_INSTANCE_CH_NUM:
case ACP_TO_I2S_DMA_MICSP_INSTANCE_CH_NUM:
dma_ctrl |= ACP_DMA_CNTL_0__DMAChIOCEn_MASK;
break;
default:
dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChIOCEn_MASK;
break;
}
/* enable for ACP to SRAM DMA channel */
if (is_circular == true)
dma_ctrl |= ACP_DMA_CNTL_0__Circular_DMA_En_MASK;
else
dma_ctrl &= ~ACP_DMA_CNTL_0__Circular_DMA_En_MASK;
acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num);
}
/* Stop a given DMA channel transfer */
static int acp_dma_stop(void __iomem *acp_mmio, u8 ch_num)
{
u32 dma_ctrl;
u32 dma_ch_sts;
u32 count = ACP_DMA_RESET_TIME;
dma_ctrl = acp_reg_read(acp_mmio, mmACP_DMA_CNTL_0 + ch_num);
/*
* clear the dma control register fields before writing zero
* in reset bit
*/
dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChRun_MASK;
dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChIOCEn_MASK;
acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num);
dma_ch_sts = acp_reg_read(acp_mmio, mmACP_DMA_CH_STS);
if (dma_ch_sts & BIT(ch_num)) {
/*
* set the reset bit for this channel to stop the dma
* transfer
*/
dma_ctrl |= ACP_DMA_CNTL_0__DMAChRst_MASK;
acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num);
}
/* check the channel status bit for some time and return the status */
while (true) {
dma_ch_sts = acp_reg_read(acp_mmio, mmACP_DMA_CH_STS);
if (!(dma_ch_sts & BIT(ch_num))) {
/*
* clear the reset flag after successfully stopping
* the dma transfer and break from the loop
*/
dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChRst_MASK;
acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0
+ ch_num);
break;
}
if (--count == 0) {
pr_err("Failed to stop ACP DMA channel : %d\n", ch_num);
return -ETIMEDOUT;
}
udelay(100);
}
return 0;
}
static void acp_set_sram_bank_state(void __iomem *acp_mmio, u16 bank,
bool power_on)
{
u32 val, req_reg, sts_reg, sts_reg_mask;
u32 loops = 1000;
if (bank < 32) {
req_reg = mmACP_MEM_SHUT_DOWN_REQ_LO;
sts_reg = mmACP_MEM_SHUT_DOWN_STS_LO;
sts_reg_mask = 0xFFFFFFFF;
} else {
bank -= 32;
req_reg = mmACP_MEM_SHUT_DOWN_REQ_HI;
sts_reg = mmACP_MEM_SHUT_DOWN_STS_HI;
sts_reg_mask = 0x0000FFFF;
}
val = acp_reg_read(acp_mmio, req_reg);
if (val & (1 << bank)) {
/* bank is in off state */
if (power_on == true)
/* request to on */
val &= ~(1 << bank);
else
/* request to off */
return;
} else {
/* bank is in on state */
if (power_on == false)
/* request to off */
val |= 1 << bank;
else
/* request to on */
return;
}
acp_reg_write(val, acp_mmio, req_reg);
while (acp_reg_read(acp_mmio, sts_reg) != sts_reg_mask) {
if (!loops--) {
pr_err("ACP SRAM bank %d state change failed\n", bank);
break;
}
cpu_relax();
}
}
/* Initialize and bring ACP hardware to default state. */
static int acp_init(void __iomem *acp_mmio, u32 asic_type)
{
u16 bank;
u32 val, count, sram_pte_offset;
/* Assert Soft reset of ACP */
val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET);
val |= ACP_SOFT_RESET__SoftResetAud_MASK;
acp_reg_write(val, acp_mmio, mmACP_SOFT_RESET);
count = ACP_SOFT_RESET_DONE_TIME_OUT_VALUE;
while (true) {
val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET);
if (ACP_SOFT_RESET__SoftResetAudDone_MASK ==
(val & ACP_SOFT_RESET__SoftResetAudDone_MASK))
break;
if (--count == 0) {
pr_err("Failed to reset ACP\n");
return -ETIMEDOUT;
}
udelay(100);
}
/* Enable clock to ACP and wait until the clock is enabled */
val = acp_reg_read(acp_mmio, mmACP_CONTROL);
val = val | ACP_CONTROL__ClkEn_MASK;
acp_reg_write(val, acp_mmio, mmACP_CONTROL);
count = ACP_CLOCK_EN_TIME_OUT_VALUE;
while (true) {
val = acp_reg_read(acp_mmio, mmACP_STATUS);
if (val & (u32)0x1)
break;
if (--count == 0) {
pr_err("Failed to reset ACP\n");
return -ETIMEDOUT;
}
udelay(100);
}
/* Deassert the SOFT RESET flags */
val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET);
val &= ~ACP_SOFT_RESET__SoftResetAud_MASK;
acp_reg_write(val, acp_mmio, mmACP_SOFT_RESET);
/* For BT instance change pins from UART to BT */
if (!acp_bt_uart_enable) {
val = acp_reg_read(acp_mmio, mmACP_BT_UART_PAD_SEL);
val |= ACP_BT_UART_PAD_SELECT_MASK;
acp_reg_write(val, acp_mmio, mmACP_BT_UART_PAD_SEL);
}
/* initialize Onion control DAGB register */
acp_reg_write(ACP_ONION_CNTL_DEFAULT, acp_mmio,
mmACP_AXI2DAGB_ONION_CNTL);
/* initialize Garlic control DAGB registers */
acp_reg_write(ACP_GARLIC_CNTL_DEFAULT, acp_mmio,
mmACP_AXI2DAGB_GARLIC_CNTL);
sram_pte_offset = ACP_DAGB_GRP_SRAM_BASE_ADDRESS |
ACP_DAGB_BASE_ADDR_GRP_1__AXI2DAGBSnoopSel_MASK |
ACP_DAGB_BASE_ADDR_GRP_1__AXI2DAGBTargetMemSel_MASK |
ACP_DAGB_BASE_ADDR_GRP_1__AXI2DAGBGrpEnable_MASK;
acp_reg_write(sram_pte_offset, acp_mmio, mmACP_DAGB_BASE_ADDR_GRP_1);
acp_reg_write(ACP_PAGE_SIZE_4K_ENABLE, acp_mmio,
mmACP_DAGB_PAGE_SIZE_GRP_1);
acp_reg_write(ACP_SRAM_BASE_ADDRESS, acp_mmio,
mmACP_DMA_DESC_BASE_ADDR);
/* Num of descriptors in SRAM 0x4, means 256 descriptors;(64 * 4) */
acp_reg_write(0x4, acp_mmio, mmACP_DMA_DESC_MAX_NUM_DSCR);
acp_reg_write(ACP_EXTERNAL_INTR_CNTL__DMAIOCMask_MASK,
acp_mmio, mmACP_EXTERNAL_INTR_CNTL);
/*
* When ACP_TILE_P1 is turned on, all SRAM banks get turned on.
* Now, turn off all of them. This can't be done in 'poweron' of
* ACP pm domain, as this requires ACP to be initialized.
* For Stoney, Memory gating is disabled,i.e SRAM Banks
* won't be turned off. The default state for SRAM banks is ON.
* Setting SRAM bank state code skipped for STONEY platform.
*/
if (asic_type != CHIP_STONEY) {
for (bank = 1; bank < 48; bank++)
acp_set_sram_bank_state(acp_mmio, bank, false);
}
return 0;
}
/* Deinitialize ACP */
static int acp_deinit(void __iomem *acp_mmio)
{
u32 val;
u32 count;
/* Assert Soft reset of ACP */
val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET);
val |= ACP_SOFT_RESET__SoftResetAud_MASK;
acp_reg_write(val, acp_mmio, mmACP_SOFT_RESET);
count = ACP_SOFT_RESET_DONE_TIME_OUT_VALUE;
while (true) {
val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET);
if (ACP_SOFT_RESET__SoftResetAudDone_MASK ==
(val & ACP_SOFT_RESET__SoftResetAudDone_MASK))
break;
if (--count == 0) {
pr_err("Failed to reset ACP\n");
return -ETIMEDOUT;
}
udelay(100);
}
/* Disable ACP clock */
val = acp_reg_read(acp_mmio, mmACP_CONTROL);
val &= ~ACP_CONTROL__ClkEn_MASK;
acp_reg_write(val, acp_mmio, mmACP_CONTROL);
count = ACP_CLOCK_EN_TIME_OUT_VALUE;
while (true) {
val = acp_reg_read(acp_mmio, mmACP_STATUS);
if (!(val & (u32)0x1))
break;
if (--count == 0) {
pr_err("Failed to reset ACP\n");
return -ETIMEDOUT;
}
udelay(100);
}
return 0;
}
/* ACP DMA irq handler routine for playback, capture usecases */
static irqreturn_t dma_irq_handler(int irq, void *arg)
{
u16 dscr_idx;
u32 intr_flag, ext_intr_status;
struct audio_drv_data *irq_data;
void __iomem *acp_mmio;
struct device *dev = arg;
bool valid_irq = false;
irq_data = dev_get_drvdata(dev);
acp_mmio = irq_data->acp_mmio;
ext_intr_status = acp_reg_read(acp_mmio, mmACP_EXTERNAL_INTR_STAT);
intr_flag = (((ext_intr_status &
ACP_EXTERNAL_INTR_STAT__DMAIOCStat_MASK) >>
ACP_EXTERNAL_INTR_STAT__DMAIOCStat__SHIFT));
if ((intr_flag & BIT(ACP_TO_I2S_DMA_CH_NUM)) != 0) {
valid_irq = true;
snd_pcm_period_elapsed(irq_data->play_i2ssp_stream);
acp_reg_write((intr_flag & BIT(ACP_TO_I2S_DMA_CH_NUM)) << 16,
acp_mmio, mmACP_EXTERNAL_INTR_STAT);
}
if ((intr_flag & BIT(ACP_TO_I2S_DMA_MICSP_INSTANCE_CH_NUM)) != 0) {
valid_irq = true;
snd_pcm_period_elapsed(irq_data->play_i2s_micsp_stream);
acp_reg_write((intr_flag & BIT(ACP_TO_I2S_DMA_MICSP_INSTANCE_CH_NUM)) << 16,
acp_mmio, mmACP_EXTERNAL_INTR_STAT);
}
if ((intr_flag & BIT(ACP_TO_I2S_DMA_BT_INSTANCE_CH_NUM)) != 0) {
valid_irq = true;
snd_pcm_period_elapsed(irq_data->play_i2sbt_stream);
acp_reg_write((intr_flag &
BIT(ACP_TO_I2S_DMA_BT_INSTANCE_CH_NUM)) << 16,
acp_mmio, mmACP_EXTERNAL_INTR_STAT);
}
if ((intr_flag & BIT(I2S_TO_ACP_DMA_CH_NUM)) != 0) {
valid_irq = true;
if (acp_reg_read(acp_mmio, mmACP_DMA_CUR_DSCR_14) ==
CAPTURE_START_DMA_DESCR_CH15)
dscr_idx = CAPTURE_END_DMA_DESCR_CH14;
else
dscr_idx = CAPTURE_START_DMA_DESCR_CH14;
config_acp_dma_channel(acp_mmio, ACP_TO_SYSRAM_CH_NUM, dscr_idx,
1, 0);
acp_dma_start(acp_mmio, ACP_TO_SYSRAM_CH_NUM, false);
snd_pcm_period_elapsed(irq_data->capture_i2ssp_stream);
acp_reg_write((intr_flag & BIT(I2S_TO_ACP_DMA_CH_NUM)) << 16,
acp_mmio, mmACP_EXTERNAL_INTR_STAT);
}
if ((intr_flag & BIT(I2S_TO_ACP_DMA_BT_INSTANCE_CH_NUM)) != 0) {
valid_irq = true;
if (acp_reg_read(acp_mmio, mmACP_DMA_CUR_DSCR_10) ==
CAPTURE_START_DMA_DESCR_CH11)
dscr_idx = CAPTURE_END_DMA_DESCR_CH10;
else
dscr_idx = CAPTURE_START_DMA_DESCR_CH10;
config_acp_dma_channel(acp_mmio,
ACP_TO_SYSRAM_BT_INSTANCE_CH_NUM,
dscr_idx, 1, 0);
acp_dma_start(acp_mmio, ACP_TO_SYSRAM_BT_INSTANCE_CH_NUM,
false);
snd_pcm_period_elapsed(irq_data->capture_i2sbt_stream);
acp_reg_write((intr_flag &
BIT(I2S_TO_ACP_DMA_BT_INSTANCE_CH_NUM)) << 16,
acp_mmio, mmACP_EXTERNAL_INTR_STAT);
}
if (valid_irq)
return IRQ_HANDLED;
else
return IRQ_NONE;
}
static int acp_dma_open(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
u16 bank;
int ret = 0;
struct snd_pcm_runtime *runtime = substream->runtime;
struct audio_drv_data *intr_data = dev_get_drvdata(component->dev);
struct audio_substream_data *adata =
kzalloc(sizeof(struct audio_substream_data), GFP_KERNEL);
if (!adata)
return -ENOMEM;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
switch (intr_data->asic_type) {
case CHIP_STONEY:
runtime->hw = acp_st_pcm_hardware_playback;
break;
default:
runtime->hw = acp_pcm_hardware_playback;
}
} else {
switch (intr_data->asic_type) {
case CHIP_STONEY:
runtime->hw = acp_st_pcm_hardware_capture;
break;
default:
runtime->hw = acp_pcm_hardware_capture;
}
}
ret = snd_pcm_hw_constraint_integer(runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
if (ret < 0) {
dev_err(component->dev, "set integer constraint failed\n");
kfree(adata);
return ret;
}
adata->acp_mmio = intr_data->acp_mmio;
runtime->private_data = adata;
/*
* Enable ACP irq, when neither playback or capture streams are
* active by the time when a new stream is being opened.
* This enablement is not required for another stream, if current
* stream is not closed
*/
if (!intr_data->play_i2ssp_stream && !intr_data->capture_i2ssp_stream &&
!intr_data->play_i2sbt_stream && !intr_data->capture_i2sbt_stream &&
!intr_data->play_i2s_micsp_stream)
acp_reg_write(1, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
/*
* For Stoney, Memory gating is disabled,i.e SRAM Banks
* won't be turned off. The default state for SRAM banks is ON.
* Setting SRAM bank state code skipped for STONEY platform.
*/
if (intr_data->asic_type != CHIP_STONEY) {
for (bank = 1; bank <= 4; bank++)
acp_set_sram_bank_state(intr_data->acp_mmio,
bank, true);
}
} else {
if (intr_data->asic_type != CHIP_STONEY) {
for (bank = 5; bank <= 8; bank++)
acp_set_sram_bank_state(intr_data->acp_mmio,
bank, true);
}
}
return 0;
}
static int acp_dma_hw_params(struct snd_soc_component *component,
struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
uint64_t size;
u32 val = 0;
struct snd_pcm_runtime *runtime;
struct audio_substream_data *rtd;
struct snd_soc_pcm_runtime *prtd = asoc_substream_to_rtd(substream);
struct audio_drv_data *adata = dev_get_drvdata(component->dev);
struct snd_soc_card *card = prtd->card;
struct acp_platform_info *pinfo = snd_soc_card_get_drvdata(card);
runtime = substream->runtime;
rtd = runtime->private_data;
if (WARN_ON(!rtd))
return -EINVAL;
if (pinfo) {
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
rtd->i2s_instance = pinfo->play_i2s_instance;
} else {
rtd->i2s_instance = pinfo->cap_i2s_instance;
rtd->capture_channel = pinfo->capture_channel;
}
}
if (adata->asic_type == CHIP_STONEY) {
val = acp_reg_read(adata->acp_mmio,
mmACP_I2S_16BIT_RESOLUTION_EN);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
switch (rtd->i2s_instance) {
case I2S_BT_INSTANCE:
val |= ACP_I2S_BT_16BIT_RESOLUTION_EN;
break;
case I2S_MICSP_INSTANCE:
val |= ACP_I2S_MICSP_16BIT_RESOLUTION_EN;
break;
case I2S_SP_INSTANCE:
default:
val |= ACP_I2S_SP_16BIT_RESOLUTION_EN;
}
} else {
switch (rtd->i2s_instance) {
case I2S_BT_INSTANCE:
val |= ACP_I2S_BT_16BIT_RESOLUTION_EN;
break;
case I2S_MICSP_INSTANCE:
case I2S_SP_INSTANCE:
default:
val |= ACP_I2S_MIC_16BIT_RESOLUTION_EN;
}
}
acp_reg_write(val, adata->acp_mmio,
mmACP_I2S_16BIT_RESOLUTION_EN);
}
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
switch (rtd->i2s_instance) {
case I2S_BT_INSTANCE:
rtd->pte_offset = ACP_ST_BT_PLAYBACK_PTE_OFFSET;
rtd->ch1 = SYSRAM_TO_ACP_BT_INSTANCE_CH_NUM;
rtd->ch2 = ACP_TO_I2S_DMA_BT_INSTANCE_CH_NUM;
rtd->sram_bank = ACP_SRAM_BANK_3_ADDRESS;
rtd->destination = TO_BLUETOOTH;
rtd->dma_dscr_idx_1 = PLAYBACK_START_DMA_DESCR_CH8;
rtd->dma_dscr_idx_2 = PLAYBACK_START_DMA_DESCR_CH9;
rtd->byte_cnt_high_reg_offset =
mmACP_I2S_BT_TRANSMIT_BYTE_CNT_HIGH;
rtd->byte_cnt_low_reg_offset =
mmACP_I2S_BT_TRANSMIT_BYTE_CNT_LOW;
adata->play_i2sbt_stream = substream;
break;
case I2S_MICSP_INSTANCE:
switch (adata->asic_type) {
case CHIP_STONEY:
rtd->pte_offset = ACP_ST_PLAYBACK_PTE_OFFSET;
break;
default:
rtd->pte_offset = ACP_PLAYBACK_PTE_OFFSET;
}
rtd->ch1 = SYSRAM_TO_ACP_MICSP_INSTANCE_CH_NUM;
rtd->ch2 = ACP_TO_I2S_DMA_MICSP_INSTANCE_CH_NUM;
rtd->sram_bank = ACP_SRAM_BANK_1_ADDRESS;
rtd->destination = TO_ACP_I2S_2;
rtd->dma_dscr_idx_1 = PLAYBACK_START_DMA_DESCR_CH4;
rtd->dma_dscr_idx_2 = PLAYBACK_START_DMA_DESCR_CH5;
rtd->byte_cnt_high_reg_offset =
mmACP_I2S_MICSP_TRANSMIT_BYTE_CNT_HIGH;
rtd->byte_cnt_low_reg_offset =
mmACP_I2S_MICSP_TRANSMIT_BYTE_CNT_LOW;
adata->play_i2s_micsp_stream = substream;
break;
case I2S_SP_INSTANCE:
default:
switch (adata->asic_type) {
case CHIP_STONEY:
rtd->pte_offset = ACP_ST_PLAYBACK_PTE_OFFSET;
break;
default:
rtd->pte_offset = ACP_PLAYBACK_PTE_OFFSET;
}
rtd->ch1 = SYSRAM_TO_ACP_CH_NUM;
rtd->ch2 = ACP_TO_I2S_DMA_CH_NUM;
rtd->sram_bank = ACP_SRAM_BANK_1_ADDRESS;
rtd->destination = TO_ACP_I2S_1;
rtd->dma_dscr_idx_1 = PLAYBACK_START_DMA_DESCR_CH12;
rtd->dma_dscr_idx_2 = PLAYBACK_START_DMA_DESCR_CH13;
rtd->byte_cnt_high_reg_offset =
mmACP_I2S_TRANSMIT_BYTE_CNT_HIGH;
rtd->byte_cnt_low_reg_offset =
mmACP_I2S_TRANSMIT_BYTE_CNT_LOW;
adata->play_i2ssp_stream = substream;
}
} else {
switch (rtd->i2s_instance) {
case I2S_BT_INSTANCE:
rtd->pte_offset = ACP_ST_BT_CAPTURE_PTE_OFFSET;
rtd->ch1 = I2S_TO_ACP_DMA_BT_INSTANCE_CH_NUM;
rtd->ch2 = ACP_TO_SYSRAM_BT_INSTANCE_CH_NUM;
rtd->sram_bank = ACP_SRAM_BANK_4_ADDRESS;
rtd->destination = FROM_BLUETOOTH;
rtd->dma_dscr_idx_1 = CAPTURE_START_DMA_DESCR_CH10;
rtd->dma_dscr_idx_2 = CAPTURE_START_DMA_DESCR_CH11;
rtd->byte_cnt_high_reg_offset =
mmACP_I2S_BT_RECEIVE_BYTE_CNT_HIGH;
rtd->byte_cnt_low_reg_offset =
mmACP_I2S_BT_RECEIVE_BYTE_CNT_LOW;
rtd->dma_curr_dscr = mmACP_DMA_CUR_DSCR_11;
adata->capture_i2sbt_stream = substream;
break;
case I2S_MICSP_INSTANCE:
case I2S_SP_INSTANCE:
default:
rtd->pte_offset = ACP_CAPTURE_PTE_OFFSET;
rtd->ch1 = I2S_TO_ACP_DMA_CH_NUM;
rtd->ch2 = ACP_TO_SYSRAM_CH_NUM;
switch (adata->asic_type) {
case CHIP_STONEY:
rtd->pte_offset = ACP_ST_CAPTURE_PTE_OFFSET;
rtd->sram_bank = ACP_SRAM_BANK_2_ADDRESS;
break;
default:
rtd->pte_offset = ACP_CAPTURE_PTE_OFFSET;
rtd->sram_bank = ACP_SRAM_BANK_5_ADDRESS;
}
rtd->destination = FROM_ACP_I2S_1;
rtd->dma_dscr_idx_1 = CAPTURE_START_DMA_DESCR_CH14;
rtd->dma_dscr_idx_2 = CAPTURE_START_DMA_DESCR_CH15;
rtd->byte_cnt_high_reg_offset =
mmACP_I2S_RECEIVED_BYTE_CNT_HIGH;
rtd->byte_cnt_low_reg_offset =
mmACP_I2S_RECEIVED_BYTE_CNT_LOW;
rtd->dma_curr_dscr = mmACP_DMA_CUR_DSCR_15;
adata->capture_i2ssp_stream = substream;
}
}
size = params_buffer_bytes(params);
acp_set_sram_bank_state(rtd->acp_mmio, 0, true);
/* Save for runtime private data */
rtd->dma_addr = runtime->dma_addr;
rtd->order = get_order(size);
/* Fill the page table entries in ACP SRAM */
rtd->size = size;
rtd->num_of_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
rtd->direction = substream->stream;
config_acp_dma(rtd->acp_mmio, rtd, adata->asic_type);
return 0;
}
static u64 acp_get_byte_count(struct audio_substream_data *rtd)
{
union acp_dma_count byte_count;
byte_count.bcount.high = acp_reg_read(rtd->acp_mmio,
rtd->byte_cnt_high_reg_offset);
byte_count.bcount.low = acp_reg_read(rtd->acp_mmio,
rtd->byte_cnt_low_reg_offset);
return byte_count.bytescount;
}
static snd_pcm_uframes_t acp_dma_pointer(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
u32 buffersize;
u32 pos = 0;
u64 bytescount = 0;
u16 dscr;
u32 period_bytes, delay;
struct snd_pcm_runtime *runtime = substream->runtime;
struct audio_substream_data *rtd = runtime->private_data;
struct audio_drv_data *adata = dev_get_drvdata(component->dev);
if (!rtd)
return -EINVAL;
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
period_bytes = frames_to_bytes(runtime, runtime->period_size);
bytescount = acp_get_byte_count(rtd);
if (bytescount >= rtd->bytescount)
bytescount -= rtd->bytescount;
if (bytescount < period_bytes) {
pos = 0;
} else {
dscr = acp_reg_read(rtd->acp_mmio, rtd->dma_curr_dscr);
if (dscr == rtd->dma_dscr_idx_1)
pos = period_bytes;
else
pos = 0;
}
if (bytescount > 0) {
delay = do_div(bytescount, period_bytes);
adata->delay += bytes_to_frames(runtime, delay);
}
} else {
buffersize = frames_to_bytes(runtime, runtime->buffer_size);
bytescount = acp_get_byte_count(rtd);
if (bytescount > rtd->bytescount)
bytescount -= rtd->bytescount;
pos = do_div(bytescount, buffersize);
}
return bytes_to_frames(runtime, pos);
}
static snd_pcm_sframes_t acp_dma_delay(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct audio_drv_data *adata = dev_get_drvdata(component->dev);
snd_pcm_sframes_t delay = adata->delay;
adata->delay = 0;
return delay;
}
static int acp_dma_prepare(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct audio_substream_data *rtd = runtime->private_data;
u16 ch_acp_sysmem, ch_acp_i2s;
if (!rtd)
return -EINVAL;
if (rtd->direction == SNDRV_PCM_STREAM_PLAYBACK) {
ch_acp_sysmem = rtd->ch1;
ch_acp_i2s = rtd->ch2;
} else {
ch_acp_i2s = rtd->ch1;
ch_acp_sysmem = rtd->ch2;
}
config_acp_dma_channel(rtd->acp_mmio,
ch_acp_sysmem,
rtd->dma_dscr_idx_1,
NUM_DSCRS_PER_CHANNEL, 0);
config_acp_dma_channel(rtd->acp_mmio,
ch_acp_i2s,
rtd->dma_dscr_idx_2,
NUM_DSCRS_PER_CHANNEL, 0);
return 0;
}
static int acp_dma_trigger(struct snd_soc_component *component,
struct snd_pcm_substream *substream, int cmd)
{
int ret;
struct snd_pcm_runtime *runtime = substream->runtime;
struct audio_substream_data *rtd = runtime->private_data;
if (!rtd)
return -EINVAL;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
rtd->bytescount = acp_get_byte_count(rtd);
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
if (rtd->capture_channel == CAP_CHANNEL0) {
acp_dma_cap_channel_disable(rtd->acp_mmio,
CAP_CHANNEL1);
acp_dma_cap_channel_enable(rtd->acp_mmio,
CAP_CHANNEL0);
}
if (rtd->capture_channel == CAP_CHANNEL1) {
acp_dma_cap_channel_disable(rtd->acp_mmio,
CAP_CHANNEL0);
acp_dma_cap_channel_enable(rtd->acp_mmio,
CAP_CHANNEL1);
}
acp_dma_start(rtd->acp_mmio, rtd->ch1, true);
} else {
acp_dma_start(rtd->acp_mmio, rtd->ch1, true);
acp_dma_start(rtd->acp_mmio, rtd->ch2, true);
}
ret = 0;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
acp_dma_stop(rtd->acp_mmio, rtd->ch2);
ret = acp_dma_stop(rtd->acp_mmio, rtd->ch1);
break;
default:
ret = -EINVAL;
}
return ret;
}
static int acp_dma_new(struct snd_soc_component *component,
struct snd_soc_pcm_runtime *rtd)
{
struct audio_drv_data *adata = dev_get_drvdata(component->dev);
struct device *parent = component->dev->parent;
switch (adata->asic_type) {
case CHIP_STONEY:
snd_pcm_set_managed_buffer_all(rtd->pcm,
SNDRV_DMA_TYPE_DEV,
parent,
ST_MIN_BUFFER,
ST_MAX_BUFFER);
break;
default:
snd_pcm_set_managed_buffer_all(rtd->pcm,
SNDRV_DMA_TYPE_DEV,
parent,
MIN_BUFFER,
MAX_BUFFER);
break;
}
return 0;
}
static int acp_dma_close(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
u16 bank;
struct snd_pcm_runtime *runtime = substream->runtime;
struct audio_substream_data *rtd = runtime->private_data;
struct audio_drv_data *adata = dev_get_drvdata(component->dev);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
switch (rtd->i2s_instance) {
case I2S_BT_INSTANCE:
adata->play_i2sbt_stream = NULL;
break;
case I2S_MICSP_INSTANCE:
adata->play_i2s_micsp_stream = NULL;
break;
case I2S_SP_INSTANCE:
default:
adata->play_i2ssp_stream = NULL;
/*
* For Stoney, Memory gating is disabled,i.e SRAM Banks
* won't be turned off. The default state for SRAM banks
* is ON.Setting SRAM bank state code skipped for STONEY
* platform. Added condition checks for Carrizo platform
* only.
*/
if (adata->asic_type != CHIP_STONEY) {
for (bank = 1; bank <= 4; bank++)
acp_set_sram_bank_state(adata->acp_mmio,
bank, false);
}
}
} else {
switch (rtd->i2s_instance) {
case I2S_BT_INSTANCE:
adata->capture_i2sbt_stream = NULL;
break;
case I2S_MICSP_INSTANCE:
case I2S_SP_INSTANCE:
default:
adata->capture_i2ssp_stream = NULL;
if (adata->asic_type != CHIP_STONEY) {
for (bank = 5; bank <= 8; bank++)
acp_set_sram_bank_state(adata->acp_mmio,
bank, false);
}
}
}
/*
* Disable ACP irq, when the current stream is being closed and
* another stream is also not active.
*/
if (!adata->play_i2ssp_stream && !adata->capture_i2ssp_stream &&
!adata->play_i2sbt_stream && !adata->capture_i2sbt_stream &&
!adata->play_i2s_micsp_stream)
acp_reg_write(0, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB);
kfree(rtd);
return 0;
}
static const struct snd_soc_component_driver acp_asoc_platform = {
.name = DRV_NAME,
.open = acp_dma_open,
.close = acp_dma_close,
.hw_params = acp_dma_hw_params,
.trigger = acp_dma_trigger,
.pointer = acp_dma_pointer,
.delay = acp_dma_delay,
.prepare = acp_dma_prepare,
.pcm_construct = acp_dma_new,
};
static int acp_audio_probe(struct platform_device *pdev)
{
int status, irq;
struct audio_drv_data *audio_drv_data;
const u32 *pdata = pdev->dev.platform_data;
if (!pdata) {
dev_err(&pdev->dev, "Missing platform data\n");
return -ENODEV;
}
audio_drv_data = devm_kzalloc(&pdev->dev, sizeof(struct audio_drv_data),
GFP_KERNEL);
if (!audio_drv_data)
return -ENOMEM;
audio_drv_data->acp_mmio = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(audio_drv_data->acp_mmio))
return PTR_ERR(audio_drv_data->acp_mmio);
/*
* The following members gets populated in device 'open'
* function. Till then interrupts are disabled in 'acp_init'
* and device doesn't generate any interrupts.
*/
audio_drv_data->play_i2ssp_stream = NULL;
audio_drv_data->capture_i2ssp_stream = NULL;
audio_drv_data->play_i2sbt_stream = NULL;
audio_drv_data->capture_i2sbt_stream = NULL;
audio_drv_data->play_i2s_micsp_stream = NULL;
audio_drv_data->asic_type = *pdata;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -ENODEV;
status = devm_request_irq(&pdev->dev, irq, dma_irq_handler,
0, "ACP_IRQ", &pdev->dev);
if (status) {
dev_err(&pdev->dev, "ACP IRQ request failed\n");
return status;
}
dev_set_drvdata(&pdev->dev, audio_drv_data);
/* Initialize the ACP */
status = acp_init(audio_drv_data->acp_mmio, audio_drv_data->asic_type);
if (status) {
dev_err(&pdev->dev, "ACP Init failed status:%d\n", status);
return status;
}
status = devm_snd_soc_register_component(&pdev->dev,
&acp_asoc_platform, NULL, 0);
if (status != 0) {
dev_err(&pdev->dev, "Fail to register ALSA platform device\n");
return status;
}
pm_runtime_set_autosuspend_delay(&pdev->dev, 10000);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
return status;
}
static int acp_audio_remove(struct platform_device *pdev)
{
int status;
struct audio_drv_data *adata = dev_get_drvdata(&pdev->dev);
status = acp_deinit(adata->acp_mmio);
if (status)
dev_err(&pdev->dev, "ACP Deinit failed status:%d\n", status);
pm_runtime_disable(&pdev->dev);
return 0;
}
static int acp_pcm_resume(struct device *dev)
{
u16 bank;
int status;
struct audio_substream_data *rtd;
struct audio_drv_data *adata = dev_get_drvdata(dev);
status = acp_init(adata->acp_mmio, adata->asic_type);
if (status) {
dev_err(dev, "ACP Init failed status:%d\n", status);
return status;
}
if (adata->play_i2ssp_stream && adata->play_i2ssp_stream->runtime) {
/*
* For Stoney, Memory gating is disabled,i.e SRAM Banks
* won't be turned off. The default state for SRAM banks is ON.
* Setting SRAM bank state code skipped for STONEY platform.
*/
if (adata->asic_type != CHIP_STONEY) {
for (bank = 1; bank <= 4; bank++)
acp_set_sram_bank_state(adata->acp_mmio, bank,
true);
}
rtd = adata->play_i2ssp_stream->runtime->private_data;
config_acp_dma(adata->acp_mmio, rtd, adata->asic_type);
}
if (adata->capture_i2ssp_stream &&
adata->capture_i2ssp_stream->runtime) {
if (adata->asic_type != CHIP_STONEY) {
for (bank = 5; bank <= 8; bank++)
acp_set_sram_bank_state(adata->acp_mmio, bank,
true);
}
rtd = adata->capture_i2ssp_stream->runtime->private_data;
config_acp_dma(adata->acp_mmio, rtd, adata->asic_type);
}
if (adata->asic_type != CHIP_CARRIZO) {
if (adata->play_i2s_micsp_stream &&
adata->play_i2s_micsp_stream->runtime) {
rtd = adata->play_i2s_micsp_stream->runtime->private_data;
config_acp_dma(adata->acp_mmio, rtd, adata->asic_type);
}
if (adata->play_i2sbt_stream &&
adata->play_i2sbt_stream->runtime) {
rtd = adata->play_i2sbt_stream->runtime->private_data;
config_acp_dma(adata->acp_mmio, rtd, adata->asic_type);
}
if (adata->capture_i2sbt_stream &&
adata->capture_i2sbt_stream->runtime) {
rtd = adata->capture_i2sbt_stream->runtime->private_data;
config_acp_dma(adata->acp_mmio, rtd, adata->asic_type);
}
}
acp_reg_write(1, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB);
return 0;
}
static int acp_pcm_runtime_suspend(struct device *dev)
{
int status;
struct audio_drv_data *adata = dev_get_drvdata(dev);
status = acp_deinit(adata->acp_mmio);
if (status)
dev_err(dev, "ACP Deinit failed status:%d\n", status);
acp_reg_write(0, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB);
return 0;
}
static int acp_pcm_runtime_resume(struct device *dev)
{
int status;
struct audio_drv_data *adata = dev_get_drvdata(dev);
status = acp_init(adata->acp_mmio, adata->asic_type);
if (status) {
dev_err(dev, "ACP Init failed status:%d\n", status);
return status;
}
acp_reg_write(1, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB);
return 0;
}
static const struct dev_pm_ops acp_pm_ops = {
.resume = acp_pcm_resume,
.runtime_suspend = acp_pcm_runtime_suspend,
.runtime_resume = acp_pcm_runtime_resume,
};
static struct platform_driver acp_dma_driver = {
.probe = acp_audio_probe,
.remove = acp_audio_remove,
.driver = {
.name = DRV_NAME,
.pm = &acp_pm_ops,
},
};
module_platform_driver(acp_dma_driver);
MODULE_AUTHOR("Vijendar.Mukunda@amd.com");
MODULE_AUTHOR("Maruthi.Bayyavarapu@amd.com");
MODULE_DESCRIPTION("AMD ACP PCM Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:"DRV_NAME);