657 lines
18 KiB
C
657 lines
18 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Copyright (C) 2018-2020 Christoph Hellwig.
|
||
|
*
|
||
|
* DMA operations that map physical memory directly without using an IOMMU.
|
||
|
*/
|
||
|
#include <linux/memblock.h> /* for max_pfn */
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/dma-map-ops.h>
|
||
|
#include <linux/scatterlist.h>
|
||
|
#include <linux/pfn.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/set_memory.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include "direct.h"
|
||
|
|
||
|
/*
|
||
|
* Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
|
||
|
* it for entirely different regions. In that case the arch code needs to
|
||
|
* override the variable below for dma-direct to work properly.
|
||
|
*/
|
||
|
unsigned int zone_dma_bits __ro_after_init = 24;
|
||
|
|
||
|
static inline dma_addr_t phys_to_dma_direct(struct device *dev,
|
||
|
phys_addr_t phys)
|
||
|
{
|
||
|
if (force_dma_unencrypted(dev))
|
||
|
return phys_to_dma_unencrypted(dev, phys);
|
||
|
return phys_to_dma(dev, phys);
|
||
|
}
|
||
|
|
||
|
static inline struct page *dma_direct_to_page(struct device *dev,
|
||
|
dma_addr_t dma_addr)
|
||
|
{
|
||
|
return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
|
||
|
}
|
||
|
|
||
|
u64 dma_direct_get_required_mask(struct device *dev)
|
||
|
{
|
||
|
phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
|
||
|
u64 max_dma = phys_to_dma_direct(dev, phys);
|
||
|
|
||
|
return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
|
||
|
}
|
||
|
|
||
|
static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
|
||
|
u64 *phys_limit)
|
||
|
{
|
||
|
u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
|
||
|
|
||
|
/*
|
||
|
* Optimistically try the zone that the physical address mask falls
|
||
|
* into first. If that returns memory that isn't actually addressable
|
||
|
* we will fallback to the next lower zone and try again.
|
||
|
*
|
||
|
* Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
|
||
|
* zones.
|
||
|
*/
|
||
|
*phys_limit = dma_to_phys(dev, dma_limit);
|
||
|
if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
|
||
|
return GFP_DMA;
|
||
|
if (*phys_limit <= DMA_BIT_MASK(32))
|
||
|
return GFP_DMA32;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
|
||
|
{
|
||
|
dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
|
||
|
|
||
|
if (dma_addr == DMA_MAPPING_ERROR)
|
||
|
return false;
|
||
|
return dma_addr + size - 1 <=
|
||
|
min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
|
||
|
}
|
||
|
|
||
|
static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
|
||
|
{
|
||
|
if (!force_dma_unencrypted(dev))
|
||
|
return 0;
|
||
|
return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
|
||
|
}
|
||
|
|
||
|
static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
if (!force_dma_unencrypted(dev))
|
||
|
return 0;
|
||
|
ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
|
||
|
if (ret)
|
||
|
pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void __dma_direct_free_pages(struct device *dev, struct page *page,
|
||
|
size_t size)
|
||
|
{
|
||
|
if (swiotlb_free(dev, page, size))
|
||
|
return;
|
||
|
dma_free_contiguous(dev, page, size);
|
||
|
}
|
||
|
|
||
|
static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
|
||
|
{
|
||
|
struct page *page = swiotlb_alloc(dev, size);
|
||
|
|
||
|
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
|
||
|
swiotlb_free(dev, page, size);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
|
||
|
gfp_t gfp, bool allow_highmem)
|
||
|
{
|
||
|
int node = dev_to_node(dev);
|
||
|
struct page *page = NULL;
|
||
|
u64 phys_limit;
|
||
|
|
||
|
WARN_ON_ONCE(!PAGE_ALIGNED(size));
|
||
|
|
||
|
if (is_swiotlb_for_alloc(dev))
|
||
|
return dma_direct_alloc_swiotlb(dev, size);
|
||
|
|
||
|
gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
|
||
|
&phys_limit);
|
||
|
page = dma_alloc_contiguous(dev, size, gfp);
|
||
|
if (page) {
|
||
|
if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
|
||
|
(!allow_highmem && PageHighMem(page))) {
|
||
|
dma_free_contiguous(dev, page, size);
|
||
|
page = NULL;
|
||
|
}
|
||
|
}
|
||
|
again:
|
||
|
if (!page)
|
||
|
page = alloc_pages_node(node, gfp, get_order(size));
|
||
|
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
|
||
|
dma_free_contiguous(dev, page, size);
|
||
|
page = NULL;
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
|
||
|
phys_limit < DMA_BIT_MASK(64) &&
|
||
|
!(gfp & (GFP_DMA32 | GFP_DMA))) {
|
||
|
gfp |= GFP_DMA32;
|
||
|
goto again;
|
||
|
}
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
|
||
|
gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
|
||
|
goto again;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check if a potentially blocking operations needs to dip into the atomic
|
||
|
* pools for the given device/gfp.
|
||
|
*/
|
||
|
static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
|
||
|
{
|
||
|
return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
|
||
|
}
|
||
|
|
||
|
static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
|
||
|
dma_addr_t *dma_handle, gfp_t gfp)
|
||
|
{
|
||
|
struct page *page;
|
||
|
u64 phys_mask;
|
||
|
void *ret;
|
||
|
|
||
|
if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
|
||
|
return NULL;
|
||
|
|
||
|
gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
|
||
|
&phys_mask);
|
||
|
page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
|
||
|
if (!page)
|
||
|
return NULL;
|
||
|
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
|
||
|
dma_addr_t *dma_handle, gfp_t gfp)
|
||
|
{
|
||
|
struct page *page;
|
||
|
|
||
|
page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
|
||
|
if (!page)
|
||
|
return NULL;
|
||
|
|
||
|
/* remove any dirty cache lines on the kernel alias */
|
||
|
if (!PageHighMem(page))
|
||
|
arch_dma_prep_coherent(page, size);
|
||
|
|
||
|
/* return the page pointer as the opaque cookie */
|
||
|
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
void *dma_direct_alloc(struct device *dev, size_t size,
|
||
|
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
|
||
|
{
|
||
|
bool remap = false, set_uncached = false;
|
||
|
struct page *page;
|
||
|
void *ret;
|
||
|
|
||
|
size = PAGE_ALIGN(size);
|
||
|
if (attrs & DMA_ATTR_NO_WARN)
|
||
|
gfp |= __GFP_NOWARN;
|
||
|
|
||
|
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
|
||
|
!force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
|
||
|
return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
|
||
|
|
||
|
if (!dev_is_dma_coherent(dev)) {
|
||
|
/*
|
||
|
* Fallback to the arch handler if it exists. This should
|
||
|
* eventually go away.
|
||
|
*/
|
||
|
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
|
||
|
!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
|
||
|
!IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
|
||
|
!is_swiotlb_for_alloc(dev))
|
||
|
return arch_dma_alloc(dev, size, dma_handle, gfp,
|
||
|
attrs);
|
||
|
|
||
|
/*
|
||
|
* If there is a global pool, always allocate from it for
|
||
|
* non-coherent devices.
|
||
|
*/
|
||
|
if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
|
||
|
return dma_alloc_from_global_coherent(dev, size,
|
||
|
dma_handle);
|
||
|
|
||
|
/*
|
||
|
* Otherwise remap if the architecture is asking for it. But
|
||
|
* given that remapping memory is a blocking operation we'll
|
||
|
* instead have to dip into the atomic pools.
|
||
|
*/
|
||
|
remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
|
||
|
if (remap) {
|
||
|
if (dma_direct_use_pool(dev, gfp))
|
||
|
return dma_direct_alloc_from_pool(dev, size,
|
||
|
dma_handle, gfp);
|
||
|
} else {
|
||
|
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
|
||
|
return NULL;
|
||
|
set_uncached = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Decrypting memory may block, so allocate the memory from the atomic
|
||
|
* pools if we can't block.
|
||
|
*/
|
||
|
if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
|
||
|
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
|
||
|
|
||
|
/* we always manually zero the memory once we are done */
|
||
|
page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
|
||
|
if (!page)
|
||
|
return NULL;
|
||
|
|
||
|
/*
|
||
|
* dma_alloc_contiguous can return highmem pages depending on a
|
||
|
* combination the cma= arguments and per-arch setup. These need to be
|
||
|
* remapped to return a kernel virtual address.
|
||
|
*/
|
||
|
if (PageHighMem(page)) {
|
||
|
remap = true;
|
||
|
set_uncached = false;
|
||
|
}
|
||
|
|
||
|
if (remap) {
|
||
|
pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
|
||
|
|
||
|
if (force_dma_unencrypted(dev))
|
||
|
prot = pgprot_decrypted(prot);
|
||
|
|
||
|
/* remove any dirty cache lines on the kernel alias */
|
||
|
arch_dma_prep_coherent(page, size);
|
||
|
|
||
|
/* create a coherent mapping */
|
||
|
ret = dma_common_contiguous_remap(page, size, prot,
|
||
|
__builtin_return_address(0));
|
||
|
if (!ret)
|
||
|
goto out_free_pages;
|
||
|
} else {
|
||
|
ret = page_address(page);
|
||
|
if (dma_set_decrypted(dev, ret, size))
|
||
|
goto out_free_pages;
|
||
|
}
|
||
|
|
||
|
memset(ret, 0, size);
|
||
|
|
||
|
if (set_uncached) {
|
||
|
arch_dma_prep_coherent(page, size);
|
||
|
ret = arch_dma_set_uncached(ret, size);
|
||
|
if (IS_ERR(ret))
|
||
|
goto out_encrypt_pages;
|
||
|
}
|
||
|
|
||
|
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
|
||
|
return ret;
|
||
|
|
||
|
out_encrypt_pages:
|
||
|
if (dma_set_encrypted(dev, page_address(page), size))
|
||
|
return NULL;
|
||
|
out_free_pages:
|
||
|
__dma_direct_free_pages(dev, page, size);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
void dma_direct_free(struct device *dev, size_t size,
|
||
|
void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
|
||
|
{
|
||
|
unsigned int page_order = get_order(size);
|
||
|
|
||
|
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
|
||
|
!force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
|
||
|
/* cpu_addr is a struct page cookie, not a kernel address */
|
||
|
dma_free_contiguous(dev, cpu_addr, size);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
|
||
|
!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
|
||
|
!IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
|
||
|
!dev_is_dma_coherent(dev) &&
|
||
|
!is_swiotlb_for_alloc(dev)) {
|
||
|
arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
|
||
|
!dev_is_dma_coherent(dev)) {
|
||
|
if (!dma_release_from_global_coherent(page_order, cpu_addr))
|
||
|
WARN_ON_ONCE(1);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
|
||
|
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
|
||
|
dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
|
||
|
return;
|
||
|
|
||
|
if (is_vmalloc_addr(cpu_addr)) {
|
||
|
vunmap(cpu_addr);
|
||
|
} else {
|
||
|
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
|
||
|
arch_dma_clear_uncached(cpu_addr, size);
|
||
|
if (dma_set_encrypted(dev, cpu_addr, size))
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
|
||
|
}
|
||
|
|
||
|
struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
|
||
|
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
|
||
|
{
|
||
|
struct page *page;
|
||
|
void *ret;
|
||
|
|
||
|
if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
|
||
|
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
|
||
|
|
||
|
page = __dma_direct_alloc_pages(dev, size, gfp, false);
|
||
|
if (!page)
|
||
|
return NULL;
|
||
|
|
||
|
ret = page_address(page);
|
||
|
if (dma_set_decrypted(dev, ret, size))
|
||
|
goto out_free_pages;
|
||
|
memset(ret, 0, size);
|
||
|
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
|
||
|
return page;
|
||
|
out_free_pages:
|
||
|
__dma_direct_free_pages(dev, page, size);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
void dma_direct_free_pages(struct device *dev, size_t size,
|
||
|
struct page *page, dma_addr_t dma_addr,
|
||
|
enum dma_data_direction dir)
|
||
|
{
|
||
|
void *vaddr = page_address(page);
|
||
|
|
||
|
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
|
||
|
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
|
||
|
dma_free_from_pool(dev, vaddr, size))
|
||
|
return;
|
||
|
|
||
|
if (dma_set_encrypted(dev, vaddr, size))
|
||
|
return;
|
||
|
__dma_direct_free_pages(dev, page, size);
|
||
|
}
|
||
|
|
||
|
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
|
||
|
defined(CONFIG_SWIOTLB)
|
||
|
void dma_direct_sync_sg_for_device(struct device *dev,
|
||
|
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
|
||
|
{
|
||
|
struct scatterlist *sg;
|
||
|
int i;
|
||
|
|
||
|
for_each_sg(sgl, sg, nents, i) {
|
||
|
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
|
||
|
|
||
|
if (unlikely(is_swiotlb_buffer(dev, paddr)))
|
||
|
swiotlb_sync_single_for_device(dev, paddr, sg->length,
|
||
|
dir);
|
||
|
|
||
|
if (!dev_is_dma_coherent(dev))
|
||
|
arch_sync_dma_for_device(paddr, sg->length,
|
||
|
dir);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
|
||
|
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
|
||
|
defined(CONFIG_SWIOTLB)
|
||
|
void dma_direct_sync_sg_for_cpu(struct device *dev,
|
||
|
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
|
||
|
{
|
||
|
struct scatterlist *sg;
|
||
|
int i;
|
||
|
|
||
|
for_each_sg(sgl, sg, nents, i) {
|
||
|
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
|
||
|
|
||
|
if (!dev_is_dma_coherent(dev))
|
||
|
arch_sync_dma_for_cpu(paddr, sg->length, dir);
|
||
|
|
||
|
if (unlikely(is_swiotlb_buffer(dev, paddr)))
|
||
|
swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
|
||
|
dir);
|
||
|
|
||
|
if (dir == DMA_FROM_DEVICE)
|
||
|
arch_dma_mark_clean(paddr, sg->length);
|
||
|
}
|
||
|
|
||
|
if (!dev_is_dma_coherent(dev))
|
||
|
arch_sync_dma_for_cpu_all();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Unmaps segments, except for ones marked as pci_p2pdma which do not
|
||
|
* require any further action as they contain a bus address.
|
||
|
*/
|
||
|
void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
|
||
|
int nents, enum dma_data_direction dir, unsigned long attrs)
|
||
|
{
|
||
|
struct scatterlist *sg;
|
||
|
int i;
|
||
|
|
||
|
for_each_sg(sgl, sg, nents, i) {
|
||
|
if (sg_is_dma_bus_address(sg))
|
||
|
sg_dma_unmark_bus_address(sg);
|
||
|
else
|
||
|
dma_direct_unmap_page(dev, sg->dma_address,
|
||
|
sg_dma_len(sg), dir, attrs);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
|
||
|
enum dma_data_direction dir, unsigned long attrs)
|
||
|
{
|
||
|
struct pci_p2pdma_map_state p2pdma_state = {};
|
||
|
enum pci_p2pdma_map_type map;
|
||
|
struct scatterlist *sg;
|
||
|
int i, ret;
|
||
|
|
||
|
for_each_sg(sgl, sg, nents, i) {
|
||
|
if (is_pci_p2pdma_page(sg_page(sg))) {
|
||
|
map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
|
||
|
switch (map) {
|
||
|
case PCI_P2PDMA_MAP_BUS_ADDR:
|
||
|
continue;
|
||
|
case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
|
||
|
/*
|
||
|
* Any P2P mapping that traverses the PCI
|
||
|
* host bridge must be mapped with CPU physical
|
||
|
* address and not PCI bus addresses. This is
|
||
|
* done with dma_direct_map_page() below.
|
||
|
*/
|
||
|
break;
|
||
|
default:
|
||
|
ret = -EREMOTEIO;
|
||
|
goto out_unmap;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
|
||
|
sg->offset, sg->length, dir, attrs);
|
||
|
if (sg->dma_address == DMA_MAPPING_ERROR) {
|
||
|
ret = -EIO;
|
||
|
goto out_unmap;
|
||
|
}
|
||
|
sg_dma_len(sg) = sg->length;
|
||
|
}
|
||
|
|
||
|
return nents;
|
||
|
|
||
|
out_unmap:
|
||
|
dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
|
||
|
size_t size, enum dma_data_direction dir, unsigned long attrs)
|
||
|
{
|
||
|
dma_addr_t dma_addr = paddr;
|
||
|
|
||
|
if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
|
||
|
dev_err_once(dev,
|
||
|
"DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
|
||
|
&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
|
||
|
WARN_ON_ONCE(1);
|
||
|
return DMA_MAPPING_ERROR;
|
||
|
}
|
||
|
|
||
|
return dma_addr;
|
||
|
}
|
||
|
|
||
|
int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
|
||
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
||
|
unsigned long attrs)
|
||
|
{
|
||
|
struct page *page = dma_direct_to_page(dev, dma_addr);
|
||
|
int ret;
|
||
|
|
||
|
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
|
||
|
if (!ret)
|
||
|
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
bool dma_direct_can_mmap(struct device *dev)
|
||
|
{
|
||
|
return dev_is_dma_coherent(dev) ||
|
||
|
IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
|
||
|
}
|
||
|
|
||
|
int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
|
||
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
||
|
unsigned long attrs)
|
||
|
{
|
||
|
unsigned long user_count = vma_pages(vma);
|
||
|
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
||
|
unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
|
||
|
int ret = -ENXIO;
|
||
|
|
||
|
vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
|
||
|
if (force_dma_unencrypted(dev))
|
||
|
vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
|
||
|
|
||
|
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
|
||
|
return ret;
|
||
|
if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
|
||
|
return ret;
|
||
|
|
||
|
if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
|
||
|
return -ENXIO;
|
||
|
return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
|
||
|
user_count << PAGE_SHIFT, vma->vm_page_prot);
|
||
|
}
|
||
|
|
||
|
int dma_direct_supported(struct device *dev, u64 mask)
|
||
|
{
|
||
|
u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
|
||
|
|
||
|
/*
|
||
|
* Because 32-bit DMA masks are so common we expect every architecture
|
||
|
* to be able to satisfy them - either by not supporting more physical
|
||
|
* memory, or by providing a ZONE_DMA32. If neither is the case, the
|
||
|
* architecture needs to use an IOMMU instead of the direct mapping.
|
||
|
*/
|
||
|
if (mask >= DMA_BIT_MASK(32))
|
||
|
return 1;
|
||
|
|
||
|
/*
|
||
|
* This check needs to be against the actual bit mask value, so use
|
||
|
* phys_to_dma_unencrypted() here so that the SME encryption mask isn't
|
||
|
* part of the check.
|
||
|
*/
|
||
|
if (IS_ENABLED(CONFIG_ZONE_DMA))
|
||
|
min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
|
||
|
return mask >= phys_to_dma_unencrypted(dev, min_mask);
|
||
|
}
|
||
|
|
||
|
size_t dma_direct_max_mapping_size(struct device *dev)
|
||
|
{
|
||
|
/* If SWIOTLB is active, use its maximum mapping size */
|
||
|
if (is_swiotlb_active(dev) &&
|
||
|
(dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
|
||
|
return swiotlb_max_mapping_size(dev);
|
||
|
return SIZE_MAX;
|
||
|
}
|
||
|
|
||
|
bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
|
||
|
{
|
||
|
return !dev_is_dma_coherent(dev) ||
|
||
|
is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* dma_direct_set_offset - Assign scalar offset for a single DMA range.
|
||
|
* @dev: device pointer; needed to "own" the alloced memory.
|
||
|
* @cpu_start: beginning of memory region covered by this offset.
|
||
|
* @dma_start: beginning of DMA/PCI region covered by this offset.
|
||
|
* @size: size of the region.
|
||
|
*
|
||
|
* This is for the simple case of a uniform offset which cannot
|
||
|
* be discovered by "dma-ranges".
|
||
|
*
|
||
|
* It returns -ENOMEM if out of memory, -EINVAL if a map
|
||
|
* already exists, 0 otherwise.
|
||
|
*
|
||
|
* Note: any call to this from a driver is a bug. The mapping needs
|
||
|
* to be described by the device tree or other firmware interfaces.
|
||
|
*/
|
||
|
int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
|
||
|
dma_addr_t dma_start, u64 size)
|
||
|
{
|
||
|
struct bus_dma_region *map;
|
||
|
u64 offset = (u64)cpu_start - (u64)dma_start;
|
||
|
|
||
|
if (dev->dma_range_map) {
|
||
|
dev_err(dev, "attempt to add DMA range to existing map\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (!offset)
|
||
|
return 0;
|
||
|
|
||
|
map = kcalloc(2, sizeof(*map), GFP_KERNEL);
|
||
|
if (!map)
|
||
|
return -ENOMEM;
|
||
|
map[0].cpu_start = cpu_start;
|
||
|
map[0].dma_start = dma_start;
|
||
|
map[0].offset = offset;
|
||
|
map[0].size = size;
|
||
|
dev->dma_range_map = map;
|
||
|
return 0;
|
||
|
}
|