linuxdebug/drivers/usb/host/xhci-mtk-sch.c

772 lines
19 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015 MediaTek Inc.
* Author:
* Zhigang.Wei <zhigang.wei@mediatek.com>
* Chunfeng.Yun <chunfeng.yun@mediatek.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include "xhci.h"
#include "xhci-mtk.h"
#define SSP_BW_BOUNDARY 130000
#define SS_BW_BOUNDARY 51000
/* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */
#define HS_BW_BOUNDARY 6144
/* usb2 spec section11.18.1: at most 188 FS bytes per microframe */
#define FS_PAYLOAD_MAX 188
#define DBG_BUF_EN 64
/* schedule error type */
#define ESCH_SS_Y6 1001
#define ESCH_SS_OVERLAP 1002
#define ESCH_CS_OVERFLOW 1003
#define ESCH_BW_OVERFLOW 1004
#define ESCH_FIXME 1005
/* mtk scheduler bitmasks */
#define EP_BPKTS(p) ((p) & 0x7f)
#define EP_BCSCOUNT(p) (((p) & 0x7) << 8)
#define EP_BBM(p) ((p) << 11)
#define EP_BOFFSET(p) ((p) & 0x3fff)
#define EP_BREPEAT(p) (((p) & 0x7fff) << 16)
static char *sch_error_string(int err_num)
{
switch (err_num) {
case ESCH_SS_Y6:
return "Can't schedule Start-Split in Y6";
case ESCH_SS_OVERLAP:
return "Can't find a suitable Start-Split location";
case ESCH_CS_OVERFLOW:
return "The last Complete-Split is greater than 7";
case ESCH_BW_OVERFLOW:
return "Bandwidth exceeds the maximum limit";
case ESCH_FIXME:
return "FIXME, to be resolved";
default:
return "Unknown";
}
}
static int is_fs_or_ls(enum usb_device_speed speed)
{
return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW;
}
static const char *
decode_ep(struct usb_host_endpoint *ep, enum usb_device_speed speed)
{
static char buf[DBG_BUF_EN];
struct usb_endpoint_descriptor *epd = &ep->desc;
unsigned int interval;
const char *unit;
interval = usb_decode_interval(epd, speed);
if (interval % 1000) {
unit = "us";
} else {
unit = "ms";
interval /= 1000;
}
snprintf(buf, DBG_BUF_EN, "%s ep%d%s %s, mpkt:%d, interval:%d/%d%s",
usb_speed_string(speed), usb_endpoint_num(epd),
usb_endpoint_dir_in(epd) ? "in" : "out",
usb_ep_type_string(usb_endpoint_type(epd)),
usb_endpoint_maxp(epd), epd->bInterval, interval, unit);
return buf;
}
static u32 get_bw_boundary(enum usb_device_speed speed)
{
u32 boundary;
switch (speed) {
case USB_SPEED_SUPER_PLUS:
boundary = SSP_BW_BOUNDARY;
break;
case USB_SPEED_SUPER:
boundary = SS_BW_BOUNDARY;
break;
default:
boundary = HS_BW_BOUNDARY;
break;
}
return boundary;
}
/*
* get the bandwidth domain which @ep belongs to.
*
* the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk,
* each HS root port is treated as a single bandwidth domain,
* but each SS root port is treated as two bandwidth domains, one for IN eps,
* one for OUT eps.
* @real_port value is defined as follow according to xHCI spec:
* 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc
* so the bandwidth domain array is organized as follow for simplification:
* SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY
*/
static struct mu3h_sch_bw_info *
get_bw_info(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
struct usb_host_endpoint *ep)
{
struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
struct xhci_virt_device *virt_dev;
int bw_index;
virt_dev = xhci->devs[udev->slot_id];
if (!virt_dev->real_port) {
WARN_ONCE(1, "%s invalid real_port\n", dev_name(&udev->dev));
return NULL;
}
if (udev->speed >= USB_SPEED_SUPER) {
if (usb_endpoint_dir_out(&ep->desc))
bw_index = (virt_dev->real_port - 1) * 2;
else
bw_index = (virt_dev->real_port - 1) * 2 + 1;
} else {
/* add one more for each SS port */
bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1;
}
return &mtk->sch_array[bw_index];
}
static u32 get_esit(struct xhci_ep_ctx *ep_ctx)
{
u32 esit;
esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info));
if (esit > XHCI_MTK_MAX_ESIT)
esit = XHCI_MTK_MAX_ESIT;
return esit;
}
static struct mu3h_sch_tt *find_tt(struct usb_device *udev)
{
struct usb_tt *utt = udev->tt;
struct mu3h_sch_tt *tt, **tt_index, **ptt;
bool allocated_index = false;
if (!utt)
return NULL; /* Not below a TT */
/*
* Find/create our data structure.
* For hubs with a single TT, we get it directly.
* For hubs with multiple TTs, there's an extra level of pointers.
*/
tt_index = NULL;
if (utt->multi) {
tt_index = utt->hcpriv;
if (!tt_index) { /* Create the index array */
tt_index = kcalloc(utt->hub->maxchild,
sizeof(*tt_index), GFP_KERNEL);
if (!tt_index)
return ERR_PTR(-ENOMEM);
utt->hcpriv = tt_index;
allocated_index = true;
}
ptt = &tt_index[udev->ttport - 1];
} else {
ptt = (struct mu3h_sch_tt **) &utt->hcpriv;
}
tt = *ptt;
if (!tt) { /* Create the mu3h_sch_tt */
tt = kzalloc(sizeof(*tt), GFP_KERNEL);
if (!tt) {
if (allocated_index) {
utt->hcpriv = NULL;
kfree(tt_index);
}
return ERR_PTR(-ENOMEM);
}
INIT_LIST_HEAD(&tt->ep_list);
*ptt = tt;
}
return tt;
}
/* Release the TT above udev, if it's not in use */
static void drop_tt(struct usb_device *udev)
{
struct usb_tt *utt = udev->tt;
struct mu3h_sch_tt *tt, **tt_index, **ptt;
int i, cnt;
if (!utt || !utt->hcpriv)
return; /* Not below a TT, or never allocated */
cnt = 0;
if (utt->multi) {
tt_index = utt->hcpriv;
ptt = &tt_index[udev->ttport - 1];
/* How many entries are left in tt_index? */
for (i = 0; i < utt->hub->maxchild; ++i)
cnt += !!tt_index[i];
} else {
tt_index = NULL;
ptt = (struct mu3h_sch_tt **)&utt->hcpriv;
}
tt = *ptt;
if (!tt || !list_empty(&tt->ep_list))
return; /* never allocated , or still in use*/
*ptt = NULL;
kfree(tt);
if (cnt == 1) {
utt->hcpriv = NULL;
kfree(tt_index);
}
}
static struct mu3h_sch_ep_info *
create_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
struct usb_host_endpoint *ep)
{
struct mu3h_sch_ep_info *sch_ep;
struct mu3h_sch_bw_info *bw_info;
struct mu3h_sch_tt *tt = NULL;
bw_info = get_bw_info(mtk, udev, ep);
if (!bw_info)
return ERR_PTR(-ENODEV);
sch_ep = kzalloc(sizeof(*sch_ep), GFP_KERNEL);
if (!sch_ep)
return ERR_PTR(-ENOMEM);
if (is_fs_or_ls(udev->speed)) {
tt = find_tt(udev);
if (IS_ERR(tt)) {
kfree(sch_ep);
return ERR_PTR(-ENOMEM);
}
}
sch_ep->bw_info = bw_info;
sch_ep->sch_tt = tt;
sch_ep->ep = ep;
sch_ep->speed = udev->speed;
INIT_LIST_HEAD(&sch_ep->endpoint);
INIT_LIST_HEAD(&sch_ep->tt_endpoint);
INIT_HLIST_NODE(&sch_ep->hentry);
return sch_ep;
}
static void setup_sch_info(struct xhci_ep_ctx *ep_ctx,
struct mu3h_sch_ep_info *sch_ep)
{
u32 ep_type;
u32 maxpkt;
u32 max_burst;
u32 mult;
u32 esit_pkts;
u32 max_esit_payload;
ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2));
mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info));
max_esit_payload =
(CTX_TO_MAX_ESIT_PAYLOAD_HI(
le32_to_cpu(ep_ctx->ep_info)) << 16) |
CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info));
sch_ep->esit = get_esit(ep_ctx);
sch_ep->num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
sch_ep->ep_type = ep_type;
sch_ep->maxpkt = maxpkt;
sch_ep->offset = 0;
sch_ep->burst_mode = 0;
sch_ep->repeat = 0;
if (sch_ep->speed == USB_SPEED_HIGH) {
sch_ep->cs_count = 0;
/*
* usb_20 spec section5.9
* a single microframe is enough for HS synchromous endpoints
* in a interval
*/
sch_ep->num_budget_microframes = 1;
/*
* xHCI spec section6.2.3.4
* @max_burst is the number of additional transactions
* opportunities per microframe
*/
sch_ep->pkts = max_burst + 1;
sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts;
} else if (sch_ep->speed >= USB_SPEED_SUPER) {
/* usb3_r1 spec section4.4.7 & 4.4.8 */
sch_ep->cs_count = 0;
sch_ep->burst_mode = 1;
/*
* some device's (d)wBytesPerInterval is set as 0,
* then max_esit_payload is 0, so evaluate esit_pkts from
* mult and burst
*/
esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt);
if (esit_pkts == 0)
esit_pkts = (mult + 1) * (max_burst + 1);
if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) {
sch_ep->pkts = esit_pkts;
sch_ep->num_budget_microframes = 1;
}
if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) {
if (sch_ep->esit == 1)
sch_ep->pkts = esit_pkts;
else if (esit_pkts <= sch_ep->esit)
sch_ep->pkts = 1;
else
sch_ep->pkts = roundup_pow_of_two(esit_pkts)
/ sch_ep->esit;
sch_ep->num_budget_microframes =
DIV_ROUND_UP(esit_pkts, sch_ep->pkts);
sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1);
}
sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts;
} else if (is_fs_or_ls(sch_ep->speed)) {
sch_ep->pkts = 1; /* at most one packet for each microframe */
/*
* num_budget_microframes and cs_count will be updated when
* check TT for INT_OUT_EP, ISOC/INT_IN_EP type
*/
sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX);
sch_ep->num_budget_microframes = sch_ep->cs_count;
sch_ep->bw_cost_per_microframe = min_t(u32, maxpkt, FS_PAYLOAD_MAX);
}
}
/* Get maximum bandwidth when we schedule at offset slot. */
static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw,
struct mu3h_sch_ep_info *sch_ep, u32 offset)
{
u32 max_bw = 0;
u32 bw;
int i, j, k;
for (i = 0; i < sch_ep->num_esit; i++) {
u32 base = offset + i * sch_ep->esit;
for (j = 0; j < sch_ep->num_budget_microframes; j++) {
k = XHCI_MTK_BW_INDEX(base + j);
bw = sch_bw->bus_bw[k] + sch_ep->bw_cost_per_microframe;
if (bw > max_bw)
max_bw = bw;
}
}
return max_bw;
}
static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw,
struct mu3h_sch_ep_info *sch_ep, bool used)
{
int bw_updated;
u32 base;
int i, j;
bw_updated = sch_ep->bw_cost_per_microframe * (used ? 1 : -1);
for (i = 0; i < sch_ep->num_esit; i++) {
base = sch_ep->offset + i * sch_ep->esit;
for (j = 0; j < sch_ep->num_budget_microframes; j++)
sch_bw->bus_bw[XHCI_MTK_BW_INDEX(base + j)] += bw_updated;
}
}
static int check_fs_bus_bw(struct mu3h_sch_ep_info *sch_ep, int offset)
{
struct mu3h_sch_tt *tt = sch_ep->sch_tt;
u32 tmp;
int base;
int i, j, k;
for (i = 0; i < sch_ep->num_esit; i++) {
base = offset + i * sch_ep->esit;
/*
* Compared with hs bus, no matter what ep type,
* the hub will always delay one uframe to send data
*/
for (j = 0; j < sch_ep->num_budget_microframes; j++) {
k = XHCI_MTK_BW_INDEX(base + j);
tmp = tt->fs_bus_bw[k] + sch_ep->bw_cost_per_microframe;
if (tmp > FS_PAYLOAD_MAX)
return -ESCH_BW_OVERFLOW;
}
}
return 0;
}
static int check_sch_tt(struct mu3h_sch_ep_info *sch_ep, u32 offset)
{
u32 start_ss, last_ss;
u32 start_cs, last_cs;
if (!sch_ep->sch_tt)
return 0;
start_ss = offset % 8;
if (sch_ep->ep_type == ISOC_OUT_EP) {
last_ss = start_ss + sch_ep->cs_count - 1;
/*
* usb_20 spec section11.18:
* must never schedule Start-Split in Y6
*/
if (!(start_ss == 7 || last_ss < 6))
return -ESCH_SS_Y6;
} else {
u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX);
/*
* usb_20 spec section11.18:
* must never schedule Start-Split in Y6
*/
if (start_ss == 6)
return -ESCH_SS_Y6;
/* one uframe for ss + one uframe for idle */
start_cs = (start_ss + 2) % 8;
last_cs = start_cs + cs_count - 1;
if (last_cs > 7)
return -ESCH_CS_OVERFLOW;
if (cs_count > 7)
cs_count = 7; /* HW limit */
sch_ep->cs_count = cs_count;
/* ss, idle are ignored */
sch_ep->num_budget_microframes = cs_count;
/*
* if interval=1, maxp >752, num_budge_micoframe is larger
* than sch_ep->esit, will overstep boundary
*/
if (sch_ep->num_budget_microframes > sch_ep->esit)
sch_ep->num_budget_microframes = sch_ep->esit;
}
return check_fs_bus_bw(sch_ep, offset);
}
static void update_sch_tt(struct mu3h_sch_ep_info *sch_ep, bool used)
{
struct mu3h_sch_tt *tt = sch_ep->sch_tt;
int bw_updated;
u32 base;
int i, j;
bw_updated = sch_ep->bw_cost_per_microframe * (used ? 1 : -1);
for (i = 0; i < sch_ep->num_esit; i++) {
base = sch_ep->offset + i * sch_ep->esit;
for (j = 0; j < sch_ep->num_budget_microframes; j++)
tt->fs_bus_bw[XHCI_MTK_BW_INDEX(base + j)] += bw_updated;
}
if (used)
list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list);
else
list_del(&sch_ep->tt_endpoint);
}
static int load_ep_bw(struct mu3h_sch_bw_info *sch_bw,
struct mu3h_sch_ep_info *sch_ep, bool loaded)
{
if (sch_ep->sch_tt)
update_sch_tt(sch_ep, loaded);
/* update bus bandwidth info */
update_bus_bw(sch_bw, sch_ep, loaded);
sch_ep->allocated = loaded;
return 0;
}
static int check_sch_bw(struct mu3h_sch_ep_info *sch_ep)
{
struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info;
const u32 bw_boundary = get_bw_boundary(sch_ep->speed);
u32 offset;
u32 worst_bw;
u32 min_bw = ~0;
int min_index = -1;
int ret = 0;
/*
* Search through all possible schedule microframes.
* and find a microframe where its worst bandwidth is minimum.
*/
for (offset = 0; offset < sch_ep->esit; offset++) {
ret = check_sch_tt(sch_ep, offset);
if (ret)
continue;
worst_bw = get_max_bw(sch_bw, sch_ep, offset);
if (worst_bw > bw_boundary)
continue;
if (min_bw > worst_bw) {
min_bw = worst_bw;
min_index = offset;
}
/* use first-fit for LS/FS */
if (sch_ep->sch_tt && min_index >= 0)
break;
if (min_bw == 0)
break;
}
if (min_index < 0)
return ret ? ret : -ESCH_BW_OVERFLOW;
sch_ep->offset = min_index;
return load_ep_bw(sch_bw, sch_ep, true);
}
static void destroy_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
struct mu3h_sch_ep_info *sch_ep)
{
/* only release ep bw check passed by check_sch_bw() */
if (sch_ep->allocated)
load_ep_bw(sch_ep->bw_info, sch_ep, false);
if (sch_ep->sch_tt)
drop_tt(udev);
list_del(&sch_ep->endpoint);
hlist_del(&sch_ep->hentry);
kfree(sch_ep);
}
static bool need_bw_sch(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
bool has_tt = udev->tt && udev->tt->hub->parent;
/* only for periodic endpoints */
if (usb_endpoint_xfer_control(&ep->desc)
|| usb_endpoint_xfer_bulk(&ep->desc))
return false;
/*
* for LS & FS periodic endpoints which its device is not behind
* a TT are also ignored, root-hub will schedule them directly,
* but need set @bpkts field of endpoint context to 1.
*/
if (is_fs_or_ls(udev->speed) && !has_tt)
return false;
/* skip endpoint with zero maxpkt */
if (usb_endpoint_maxp(&ep->desc) == 0)
return false;
return true;
}
int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk)
{
struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
struct mu3h_sch_bw_info *sch_array;
int num_usb_bus;
/* ss IN and OUT are separated */
num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports;
sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL);
if (sch_array == NULL)
return -ENOMEM;
mtk->sch_array = sch_array;
INIT_LIST_HEAD(&mtk->bw_ep_chk_list);
hash_init(mtk->sch_ep_hash);
return 0;
}
void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk)
{
kfree(mtk->sch_array);
}
static int add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep)
{
struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
struct xhci_ep_ctx *ep_ctx;
struct xhci_virt_device *virt_dev;
struct mu3h_sch_ep_info *sch_ep;
unsigned int ep_index;
virt_dev = xhci->devs[udev->slot_id];
ep_index = xhci_get_endpoint_index(&ep->desc);
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
if (!need_bw_sch(udev, ep)) {
/*
* set @bpkts to 1 if it is LS or FS periodic endpoint, and its
* device does not connected through an external HS hub
*/
if (usb_endpoint_xfer_int(&ep->desc)
|| usb_endpoint_xfer_isoc(&ep->desc))
ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(1));
return 0;
}
xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
sch_ep = create_sch_ep(mtk, udev, ep);
if (IS_ERR_OR_NULL(sch_ep))
return -ENOMEM;
setup_sch_info(ep_ctx, sch_ep);
list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list);
hash_add(mtk->sch_ep_hash, &sch_ep->hentry, (unsigned long)ep);
return 0;
}
static void drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep)
{
struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
struct mu3h_sch_ep_info *sch_ep;
struct hlist_node *hn;
if (!need_bw_sch(udev, ep))
return;
xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
hash_for_each_possible_safe(mtk->sch_ep_hash, sch_ep,
hn, hentry, (unsigned long)ep) {
if (sch_ep->ep == ep) {
destroy_sch_ep(mtk, udev, sch_ep);
break;
}
}
}
int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
{
struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
struct mu3h_sch_ep_info *sch_ep;
int ret;
xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) {
struct xhci_ep_ctx *ep_ctx;
struct usb_host_endpoint *ep = sch_ep->ep;
unsigned int ep_index = xhci_get_endpoint_index(&ep->desc);
ret = check_sch_bw(sch_ep);
if (ret) {
xhci_err(xhci, "Not enough bandwidth! (%s)\n",
sch_error_string(-ret));
return -ENOSPC;
}
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts)
| EP_BCSCOUNT(sch_ep->cs_count)
| EP_BBM(sch_ep->burst_mode));
ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset)
| EP_BREPEAT(sch_ep->repeat));
xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n",
sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode,
sch_ep->offset, sch_ep->repeat);
}
ret = xhci_check_bandwidth(hcd, udev);
if (!ret)
list_del_init(&mtk->bw_ep_chk_list);
return ret;
}
void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
{
struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
struct mu3h_sch_ep_info *sch_ep, *tmp;
xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint)
destroy_sch_ep(mtk, udev, sch_ep);
xhci_reset_bandwidth(hcd, udev);
}
int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep)
{
int ret;
ret = xhci_add_endpoint(hcd, udev, ep);
if (ret)
return ret;
if (ep->hcpriv)
ret = add_ep_quirk(hcd, udev, ep);
return ret;
}
int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep)
{
int ret;
ret = xhci_drop_endpoint(hcd, udev, ep);
if (ret)
return ret;
/* needn't check @ep->hcpriv, xhci_endpoint_disable set it NULL */
drop_ep_quirk(hcd, udev, ep);
return 0;
}