3629 lines
96 KiB
C
3629 lines
96 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* NVM Express device driver
|
||
|
* Copyright (c) 2011-2014, Intel Corporation.
|
||
|
*/
|
||
|
|
||
|
#include <linux/acpi.h>
|
||
|
#include <linux/aer.h>
|
||
|
#include <linux/async.h>
|
||
|
#include <linux/blkdev.h>
|
||
|
#include <linux/blk-mq.h>
|
||
|
#include <linux/blk-mq-pci.h>
|
||
|
#include <linux/blk-integrity.h>
|
||
|
#include <linux/dmi.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/memremap.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/mutex.h>
|
||
|
#include <linux/once.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/suspend.h>
|
||
|
#include <linux/t10-pi.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/io-64-nonatomic-lo-hi.h>
|
||
|
#include <linux/io-64-nonatomic-hi-lo.h>
|
||
|
#include <linux/sed-opal.h>
|
||
|
#include <linux/pci-p2pdma.h>
|
||
|
|
||
|
#include "trace.h"
|
||
|
#include "nvme.h"
|
||
|
|
||
|
#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
|
||
|
#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
|
||
|
|
||
|
#define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
|
||
|
|
||
|
/*
|
||
|
* These can be higher, but we need to ensure that any command doesn't
|
||
|
* require an sg allocation that needs more than a page of data.
|
||
|
*/
|
||
|
#define NVME_MAX_KB_SZ 4096
|
||
|
#define NVME_MAX_SEGS 127
|
||
|
|
||
|
static int use_threaded_interrupts;
|
||
|
module_param(use_threaded_interrupts, int, 0444);
|
||
|
|
||
|
static bool use_cmb_sqes = true;
|
||
|
module_param(use_cmb_sqes, bool, 0444);
|
||
|
MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
|
||
|
|
||
|
static unsigned int max_host_mem_size_mb = 128;
|
||
|
module_param(max_host_mem_size_mb, uint, 0444);
|
||
|
MODULE_PARM_DESC(max_host_mem_size_mb,
|
||
|
"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
|
||
|
|
||
|
static unsigned int sgl_threshold = SZ_32K;
|
||
|
module_param(sgl_threshold, uint, 0644);
|
||
|
MODULE_PARM_DESC(sgl_threshold,
|
||
|
"Use SGLs when average request segment size is larger or equal to "
|
||
|
"this size. Use 0 to disable SGLs.");
|
||
|
|
||
|
#define NVME_PCI_MIN_QUEUE_SIZE 2
|
||
|
#define NVME_PCI_MAX_QUEUE_SIZE 4095
|
||
|
static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
|
||
|
static const struct kernel_param_ops io_queue_depth_ops = {
|
||
|
.set = io_queue_depth_set,
|
||
|
.get = param_get_uint,
|
||
|
};
|
||
|
|
||
|
static unsigned int io_queue_depth = 1024;
|
||
|
module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
|
||
|
MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
|
||
|
|
||
|
static int io_queue_count_set(const char *val, const struct kernel_param *kp)
|
||
|
{
|
||
|
unsigned int n;
|
||
|
int ret;
|
||
|
|
||
|
ret = kstrtouint(val, 10, &n);
|
||
|
if (ret != 0 || n > num_possible_cpus())
|
||
|
return -EINVAL;
|
||
|
return param_set_uint(val, kp);
|
||
|
}
|
||
|
|
||
|
static const struct kernel_param_ops io_queue_count_ops = {
|
||
|
.set = io_queue_count_set,
|
||
|
.get = param_get_uint,
|
||
|
};
|
||
|
|
||
|
static unsigned int write_queues;
|
||
|
module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
|
||
|
MODULE_PARM_DESC(write_queues,
|
||
|
"Number of queues to use for writes. If not set, reads and writes "
|
||
|
"will share a queue set.");
|
||
|
|
||
|
static unsigned int poll_queues;
|
||
|
module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
|
||
|
MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
|
||
|
|
||
|
static bool noacpi;
|
||
|
module_param(noacpi, bool, 0444);
|
||
|
MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
|
||
|
|
||
|
struct nvme_dev;
|
||
|
struct nvme_queue;
|
||
|
|
||
|
static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
|
||
|
static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
|
||
|
static void nvme_update_attrs(struct nvme_dev *dev);
|
||
|
|
||
|
/*
|
||
|
* Represents an NVM Express device. Each nvme_dev is a PCI function.
|
||
|
*/
|
||
|
struct nvme_dev {
|
||
|
struct nvme_queue *queues;
|
||
|
struct blk_mq_tag_set tagset;
|
||
|
struct blk_mq_tag_set admin_tagset;
|
||
|
u32 __iomem *dbs;
|
||
|
struct device *dev;
|
||
|
struct dma_pool *prp_page_pool;
|
||
|
struct dma_pool *prp_small_pool;
|
||
|
unsigned online_queues;
|
||
|
unsigned max_qid;
|
||
|
unsigned io_queues[HCTX_MAX_TYPES];
|
||
|
unsigned int num_vecs;
|
||
|
u32 q_depth;
|
||
|
int io_sqes;
|
||
|
u32 db_stride;
|
||
|
void __iomem *bar;
|
||
|
unsigned long bar_mapped_size;
|
||
|
struct work_struct remove_work;
|
||
|
struct mutex shutdown_lock;
|
||
|
bool subsystem;
|
||
|
u64 cmb_size;
|
||
|
bool cmb_use_sqes;
|
||
|
u32 cmbsz;
|
||
|
u32 cmbloc;
|
||
|
struct nvme_ctrl ctrl;
|
||
|
u32 last_ps;
|
||
|
bool hmb;
|
||
|
|
||
|
mempool_t *iod_mempool;
|
||
|
|
||
|
/* shadow doorbell buffer support: */
|
||
|
__le32 *dbbuf_dbs;
|
||
|
dma_addr_t dbbuf_dbs_dma_addr;
|
||
|
__le32 *dbbuf_eis;
|
||
|
dma_addr_t dbbuf_eis_dma_addr;
|
||
|
|
||
|
/* host memory buffer support: */
|
||
|
u64 host_mem_size;
|
||
|
u32 nr_host_mem_descs;
|
||
|
dma_addr_t host_mem_descs_dma;
|
||
|
struct nvme_host_mem_buf_desc *host_mem_descs;
|
||
|
void **host_mem_desc_bufs;
|
||
|
unsigned int nr_allocated_queues;
|
||
|
unsigned int nr_write_queues;
|
||
|
unsigned int nr_poll_queues;
|
||
|
};
|
||
|
|
||
|
static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
|
||
|
{
|
||
|
return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
|
||
|
NVME_PCI_MAX_QUEUE_SIZE);
|
||
|
}
|
||
|
|
||
|
static inline unsigned int sq_idx(unsigned int qid, u32 stride)
|
||
|
{
|
||
|
return qid * 2 * stride;
|
||
|
}
|
||
|
|
||
|
static inline unsigned int cq_idx(unsigned int qid, u32 stride)
|
||
|
{
|
||
|
return (qid * 2 + 1) * stride;
|
||
|
}
|
||
|
|
||
|
static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
|
||
|
{
|
||
|
return container_of(ctrl, struct nvme_dev, ctrl);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* An NVM Express queue. Each device has at least two (one for admin
|
||
|
* commands and one for I/O commands).
|
||
|
*/
|
||
|
struct nvme_queue {
|
||
|
struct nvme_dev *dev;
|
||
|
spinlock_t sq_lock;
|
||
|
void *sq_cmds;
|
||
|
/* only used for poll queues: */
|
||
|
spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
|
||
|
struct nvme_completion *cqes;
|
||
|
dma_addr_t sq_dma_addr;
|
||
|
dma_addr_t cq_dma_addr;
|
||
|
u32 __iomem *q_db;
|
||
|
u32 q_depth;
|
||
|
u16 cq_vector;
|
||
|
u16 sq_tail;
|
||
|
u16 last_sq_tail;
|
||
|
u16 cq_head;
|
||
|
u16 qid;
|
||
|
u8 cq_phase;
|
||
|
u8 sqes;
|
||
|
unsigned long flags;
|
||
|
#define NVMEQ_ENABLED 0
|
||
|
#define NVMEQ_SQ_CMB 1
|
||
|
#define NVMEQ_DELETE_ERROR 2
|
||
|
#define NVMEQ_POLLED 3
|
||
|
__le32 *dbbuf_sq_db;
|
||
|
__le32 *dbbuf_cq_db;
|
||
|
__le32 *dbbuf_sq_ei;
|
||
|
__le32 *dbbuf_cq_ei;
|
||
|
struct completion delete_done;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* The nvme_iod describes the data in an I/O.
|
||
|
*
|
||
|
* The sg pointer contains the list of PRP/SGL chunk allocations in addition
|
||
|
* to the actual struct scatterlist.
|
||
|
*/
|
||
|
struct nvme_iod {
|
||
|
struct nvme_request req;
|
||
|
struct nvme_command cmd;
|
||
|
bool use_sgl;
|
||
|
bool aborted;
|
||
|
s8 nr_allocations; /* PRP list pool allocations. 0 means small
|
||
|
pool in use */
|
||
|
unsigned int dma_len; /* length of single DMA segment mapping */
|
||
|
dma_addr_t first_dma;
|
||
|
dma_addr_t meta_dma;
|
||
|
struct sg_table sgt;
|
||
|
};
|
||
|
|
||
|
static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
|
||
|
{
|
||
|
return dev->nr_allocated_queues * 8 * dev->db_stride;
|
||
|
}
|
||
|
|
||
|
static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
|
||
|
{
|
||
|
unsigned int mem_size = nvme_dbbuf_size(dev);
|
||
|
|
||
|
if (dev->dbbuf_dbs) {
|
||
|
/*
|
||
|
* Clear the dbbuf memory so the driver doesn't observe stale
|
||
|
* values from the previous instantiation.
|
||
|
*/
|
||
|
memset(dev->dbbuf_dbs, 0, mem_size);
|
||
|
memset(dev->dbbuf_eis, 0, mem_size);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
|
||
|
&dev->dbbuf_dbs_dma_addr,
|
||
|
GFP_KERNEL);
|
||
|
if (!dev->dbbuf_dbs)
|
||
|
return -ENOMEM;
|
||
|
dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
|
||
|
&dev->dbbuf_eis_dma_addr,
|
||
|
GFP_KERNEL);
|
||
|
if (!dev->dbbuf_eis) {
|
||
|
dma_free_coherent(dev->dev, mem_size,
|
||
|
dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
|
||
|
dev->dbbuf_dbs = NULL;
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
|
||
|
{
|
||
|
unsigned int mem_size = nvme_dbbuf_size(dev);
|
||
|
|
||
|
if (dev->dbbuf_dbs) {
|
||
|
dma_free_coherent(dev->dev, mem_size,
|
||
|
dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
|
||
|
dev->dbbuf_dbs = NULL;
|
||
|
}
|
||
|
if (dev->dbbuf_eis) {
|
||
|
dma_free_coherent(dev->dev, mem_size,
|
||
|
dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
|
||
|
dev->dbbuf_eis = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void nvme_dbbuf_init(struct nvme_dev *dev,
|
||
|
struct nvme_queue *nvmeq, int qid)
|
||
|
{
|
||
|
if (!dev->dbbuf_dbs || !qid)
|
||
|
return;
|
||
|
|
||
|
nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
|
||
|
nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
|
||
|
nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
|
||
|
nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
|
||
|
}
|
||
|
|
||
|
static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
|
||
|
{
|
||
|
if (!nvmeq->qid)
|
||
|
return;
|
||
|
|
||
|
nvmeq->dbbuf_sq_db = NULL;
|
||
|
nvmeq->dbbuf_cq_db = NULL;
|
||
|
nvmeq->dbbuf_sq_ei = NULL;
|
||
|
nvmeq->dbbuf_cq_ei = NULL;
|
||
|
}
|
||
|
|
||
|
static void nvme_dbbuf_set(struct nvme_dev *dev)
|
||
|
{
|
||
|
struct nvme_command c = { };
|
||
|
unsigned int i;
|
||
|
|
||
|
if (!dev->dbbuf_dbs)
|
||
|
return;
|
||
|
|
||
|
c.dbbuf.opcode = nvme_admin_dbbuf;
|
||
|
c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
|
||
|
c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
|
||
|
|
||
|
if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
|
||
|
dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
|
||
|
/* Free memory and continue on */
|
||
|
nvme_dbbuf_dma_free(dev);
|
||
|
|
||
|
for (i = 1; i <= dev->online_queues; i++)
|
||
|
nvme_dbbuf_free(&dev->queues[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
|
||
|
{
|
||
|
return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
|
||
|
}
|
||
|
|
||
|
/* Update dbbuf and return true if an MMIO is required */
|
||
|
static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
|
||
|
volatile __le32 *dbbuf_ei)
|
||
|
{
|
||
|
if (dbbuf_db) {
|
||
|
u16 old_value, event_idx;
|
||
|
|
||
|
/*
|
||
|
* Ensure that the queue is written before updating
|
||
|
* the doorbell in memory
|
||
|
*/
|
||
|
wmb();
|
||
|
|
||
|
old_value = le32_to_cpu(*dbbuf_db);
|
||
|
*dbbuf_db = cpu_to_le32(value);
|
||
|
|
||
|
/*
|
||
|
* Ensure that the doorbell is updated before reading the event
|
||
|
* index from memory. The controller needs to provide similar
|
||
|
* ordering to ensure the envent index is updated before reading
|
||
|
* the doorbell.
|
||
|
*/
|
||
|
mb();
|
||
|
|
||
|
event_idx = le32_to_cpu(*dbbuf_ei);
|
||
|
if (!nvme_dbbuf_need_event(event_idx, value, old_value))
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Will slightly overestimate the number of pages needed. This is OK
|
||
|
* as it only leads to a small amount of wasted memory for the lifetime of
|
||
|
* the I/O.
|
||
|
*/
|
||
|
static int nvme_pci_npages_prp(void)
|
||
|
{
|
||
|
unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
|
||
|
unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
|
||
|
return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Calculates the number of pages needed for the SGL segments. For example a 4k
|
||
|
* page can accommodate 256 SGL descriptors.
|
||
|
*/
|
||
|
static int nvme_pci_npages_sgl(void)
|
||
|
{
|
||
|
return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
|
||
|
NVME_CTRL_PAGE_SIZE);
|
||
|
}
|
||
|
|
||
|
static size_t nvme_pci_iod_alloc_size(void)
|
||
|
{
|
||
|
size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
|
||
|
|
||
|
return sizeof(__le64 *) * npages +
|
||
|
sizeof(struct scatterlist) * NVME_MAX_SEGS;
|
||
|
}
|
||
|
|
||
|
static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
||
|
unsigned int hctx_idx)
|
||
|
{
|
||
|
struct nvme_dev *dev = data;
|
||
|
struct nvme_queue *nvmeq = &dev->queues[0];
|
||
|
|
||
|
WARN_ON(hctx_idx != 0);
|
||
|
WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
|
||
|
|
||
|
hctx->driver_data = nvmeq;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
||
|
unsigned int hctx_idx)
|
||
|
{
|
||
|
struct nvme_dev *dev = data;
|
||
|
struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
|
||
|
|
||
|
WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
|
||
|
hctx->driver_data = nvmeq;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int nvme_pci_init_request(struct blk_mq_tag_set *set,
|
||
|
struct request *req, unsigned int hctx_idx,
|
||
|
unsigned int numa_node)
|
||
|
{
|
||
|
struct nvme_dev *dev = set->driver_data;
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
|
||
|
nvme_req(req)->ctrl = &dev->ctrl;
|
||
|
nvme_req(req)->cmd = &iod->cmd;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int queue_irq_offset(struct nvme_dev *dev)
|
||
|
{
|
||
|
/* if we have more than 1 vec, admin queue offsets us by 1 */
|
||
|
if (dev->num_vecs > 1)
|
||
|
return 1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
|
||
|
{
|
||
|
struct nvme_dev *dev = set->driver_data;
|
||
|
int i, qoff, offset;
|
||
|
|
||
|
offset = queue_irq_offset(dev);
|
||
|
for (i = 0, qoff = 0; i < set->nr_maps; i++) {
|
||
|
struct blk_mq_queue_map *map = &set->map[i];
|
||
|
|
||
|
map->nr_queues = dev->io_queues[i];
|
||
|
if (!map->nr_queues) {
|
||
|
BUG_ON(i == HCTX_TYPE_DEFAULT);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The poll queue(s) doesn't have an IRQ (and hence IRQ
|
||
|
* affinity), so use the regular blk-mq cpu mapping
|
||
|
*/
|
||
|
map->queue_offset = qoff;
|
||
|
if (i != HCTX_TYPE_POLL && offset)
|
||
|
blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
|
||
|
else
|
||
|
blk_mq_map_queues(map);
|
||
|
qoff += map->nr_queues;
|
||
|
offset += map->nr_queues;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write sq tail if we are asked to, or if the next command would wrap.
|
||
|
*/
|
||
|
static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
|
||
|
{
|
||
|
if (!write_sq) {
|
||
|
u16 next_tail = nvmeq->sq_tail + 1;
|
||
|
|
||
|
if (next_tail == nvmeq->q_depth)
|
||
|
next_tail = 0;
|
||
|
if (next_tail != nvmeq->last_sq_tail)
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
|
||
|
nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
|
||
|
writel(nvmeq->sq_tail, nvmeq->q_db);
|
||
|
nvmeq->last_sq_tail = nvmeq->sq_tail;
|
||
|
}
|
||
|
|
||
|
static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
|
||
|
struct nvme_command *cmd)
|
||
|
{
|
||
|
memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
|
||
|
absolute_pointer(cmd), sizeof(*cmd));
|
||
|
if (++nvmeq->sq_tail == nvmeq->q_depth)
|
||
|
nvmeq->sq_tail = 0;
|
||
|
}
|
||
|
|
||
|
static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
|
||
|
{
|
||
|
struct nvme_queue *nvmeq = hctx->driver_data;
|
||
|
|
||
|
spin_lock(&nvmeq->sq_lock);
|
||
|
if (nvmeq->sq_tail != nvmeq->last_sq_tail)
|
||
|
nvme_write_sq_db(nvmeq, true);
|
||
|
spin_unlock(&nvmeq->sq_lock);
|
||
|
}
|
||
|
|
||
|
static void **nvme_pci_iod_list(struct request *req)
|
||
|
{
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
|
||
|
}
|
||
|
|
||
|
static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
|
||
|
{
|
||
|
struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
|
||
|
int nseg = blk_rq_nr_phys_segments(req);
|
||
|
unsigned int avg_seg_size;
|
||
|
|
||
|
avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
|
||
|
|
||
|
if (!nvme_ctrl_sgl_supported(&dev->ctrl))
|
||
|
return false;
|
||
|
if (!nvmeq->qid)
|
||
|
return false;
|
||
|
if (!sgl_threshold || avg_seg_size < sgl_threshold)
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
|
||
|
{
|
||
|
const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
dma_addr_t dma_addr = iod->first_dma;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < iod->nr_allocations; i++) {
|
||
|
__le64 *prp_list = nvme_pci_iod_list(req)[i];
|
||
|
dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
|
||
|
|
||
|
dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
|
||
|
dma_addr = next_dma_addr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
|
||
|
{
|
||
|
const int last_sg = SGES_PER_PAGE - 1;
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
dma_addr_t dma_addr = iod->first_dma;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < iod->nr_allocations; i++) {
|
||
|
struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
|
||
|
dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
|
||
|
|
||
|
dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
|
||
|
dma_addr = next_dma_addr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
|
||
|
{
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
|
||
|
if (iod->dma_len) {
|
||
|
dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
|
||
|
rq_dma_dir(req));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
WARN_ON_ONCE(!iod->sgt.nents);
|
||
|
|
||
|
dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
|
||
|
|
||
|
if (iod->nr_allocations == 0)
|
||
|
dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
|
||
|
iod->first_dma);
|
||
|
else if (iod->use_sgl)
|
||
|
nvme_free_sgls(dev, req);
|
||
|
else
|
||
|
nvme_free_prps(dev, req);
|
||
|
mempool_free(iod->sgt.sgl, dev->iod_mempool);
|
||
|
}
|
||
|
|
||
|
static void nvme_print_sgl(struct scatterlist *sgl, int nents)
|
||
|
{
|
||
|
int i;
|
||
|
struct scatterlist *sg;
|
||
|
|
||
|
for_each_sg(sgl, sg, nents, i) {
|
||
|
dma_addr_t phys = sg_phys(sg);
|
||
|
pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
|
||
|
"dma_address:%pad dma_length:%d\n",
|
||
|
i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
|
||
|
sg_dma_len(sg));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
|
||
|
struct request *req, struct nvme_rw_command *cmnd)
|
||
|
{
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
struct dma_pool *pool;
|
||
|
int length = blk_rq_payload_bytes(req);
|
||
|
struct scatterlist *sg = iod->sgt.sgl;
|
||
|
int dma_len = sg_dma_len(sg);
|
||
|
u64 dma_addr = sg_dma_address(sg);
|
||
|
int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
|
||
|
__le64 *prp_list;
|
||
|
void **list = nvme_pci_iod_list(req);
|
||
|
dma_addr_t prp_dma;
|
||
|
int nprps, i;
|
||
|
|
||
|
length -= (NVME_CTRL_PAGE_SIZE - offset);
|
||
|
if (length <= 0) {
|
||
|
iod->first_dma = 0;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
|
||
|
if (dma_len) {
|
||
|
dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
|
||
|
} else {
|
||
|
sg = sg_next(sg);
|
||
|
dma_addr = sg_dma_address(sg);
|
||
|
dma_len = sg_dma_len(sg);
|
||
|
}
|
||
|
|
||
|
if (length <= NVME_CTRL_PAGE_SIZE) {
|
||
|
iod->first_dma = dma_addr;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
|
||
|
if (nprps <= (256 / 8)) {
|
||
|
pool = dev->prp_small_pool;
|
||
|
iod->nr_allocations = 0;
|
||
|
} else {
|
||
|
pool = dev->prp_page_pool;
|
||
|
iod->nr_allocations = 1;
|
||
|
}
|
||
|
|
||
|
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
|
||
|
if (!prp_list) {
|
||
|
iod->nr_allocations = -1;
|
||
|
return BLK_STS_RESOURCE;
|
||
|
}
|
||
|
list[0] = prp_list;
|
||
|
iod->first_dma = prp_dma;
|
||
|
i = 0;
|
||
|
for (;;) {
|
||
|
if (i == NVME_CTRL_PAGE_SIZE >> 3) {
|
||
|
__le64 *old_prp_list = prp_list;
|
||
|
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
|
||
|
if (!prp_list)
|
||
|
goto free_prps;
|
||
|
list[iod->nr_allocations++] = prp_list;
|
||
|
prp_list[0] = old_prp_list[i - 1];
|
||
|
old_prp_list[i - 1] = cpu_to_le64(prp_dma);
|
||
|
i = 1;
|
||
|
}
|
||
|
prp_list[i++] = cpu_to_le64(dma_addr);
|
||
|
dma_len -= NVME_CTRL_PAGE_SIZE;
|
||
|
dma_addr += NVME_CTRL_PAGE_SIZE;
|
||
|
length -= NVME_CTRL_PAGE_SIZE;
|
||
|
if (length <= 0)
|
||
|
break;
|
||
|
if (dma_len > 0)
|
||
|
continue;
|
||
|
if (unlikely(dma_len < 0))
|
||
|
goto bad_sgl;
|
||
|
sg = sg_next(sg);
|
||
|
dma_addr = sg_dma_address(sg);
|
||
|
dma_len = sg_dma_len(sg);
|
||
|
}
|
||
|
done:
|
||
|
cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
|
||
|
cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
|
||
|
return BLK_STS_OK;
|
||
|
free_prps:
|
||
|
nvme_free_prps(dev, req);
|
||
|
return BLK_STS_RESOURCE;
|
||
|
bad_sgl:
|
||
|
WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
|
||
|
"Invalid SGL for payload:%d nents:%d\n",
|
||
|
blk_rq_payload_bytes(req), iod->sgt.nents);
|
||
|
return BLK_STS_IOERR;
|
||
|
}
|
||
|
|
||
|
static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
|
||
|
struct scatterlist *sg)
|
||
|
{
|
||
|
sge->addr = cpu_to_le64(sg_dma_address(sg));
|
||
|
sge->length = cpu_to_le32(sg_dma_len(sg));
|
||
|
sge->type = NVME_SGL_FMT_DATA_DESC << 4;
|
||
|
}
|
||
|
|
||
|
static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
|
||
|
dma_addr_t dma_addr, int entries)
|
||
|
{
|
||
|
sge->addr = cpu_to_le64(dma_addr);
|
||
|
if (entries < SGES_PER_PAGE) {
|
||
|
sge->length = cpu_to_le32(entries * sizeof(*sge));
|
||
|
sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
|
||
|
} else {
|
||
|
sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE);
|
||
|
sge->type = NVME_SGL_FMT_SEG_DESC << 4;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
|
||
|
struct request *req, struct nvme_rw_command *cmd)
|
||
|
{
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
struct dma_pool *pool;
|
||
|
struct nvme_sgl_desc *sg_list;
|
||
|
struct scatterlist *sg = iod->sgt.sgl;
|
||
|
unsigned int entries = iod->sgt.nents;
|
||
|
dma_addr_t sgl_dma;
|
||
|
int i = 0;
|
||
|
|
||
|
/* setting the transfer type as SGL */
|
||
|
cmd->flags = NVME_CMD_SGL_METABUF;
|
||
|
|
||
|
if (entries == 1) {
|
||
|
nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
|
||
|
return BLK_STS_OK;
|
||
|
}
|
||
|
|
||
|
if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
|
||
|
pool = dev->prp_small_pool;
|
||
|
iod->nr_allocations = 0;
|
||
|
} else {
|
||
|
pool = dev->prp_page_pool;
|
||
|
iod->nr_allocations = 1;
|
||
|
}
|
||
|
|
||
|
sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
|
||
|
if (!sg_list) {
|
||
|
iod->nr_allocations = -1;
|
||
|
return BLK_STS_RESOURCE;
|
||
|
}
|
||
|
|
||
|
nvme_pci_iod_list(req)[0] = sg_list;
|
||
|
iod->first_dma = sgl_dma;
|
||
|
|
||
|
nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
|
||
|
|
||
|
do {
|
||
|
if (i == SGES_PER_PAGE) {
|
||
|
struct nvme_sgl_desc *old_sg_desc = sg_list;
|
||
|
struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
|
||
|
|
||
|
sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
|
||
|
if (!sg_list)
|
||
|
goto free_sgls;
|
||
|
|
||
|
i = 0;
|
||
|
nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list;
|
||
|
sg_list[i++] = *link;
|
||
|
nvme_pci_sgl_set_seg(link, sgl_dma, entries);
|
||
|
}
|
||
|
|
||
|
nvme_pci_sgl_set_data(&sg_list[i++], sg);
|
||
|
sg = sg_next(sg);
|
||
|
} while (--entries > 0);
|
||
|
|
||
|
return BLK_STS_OK;
|
||
|
free_sgls:
|
||
|
nvme_free_sgls(dev, req);
|
||
|
return BLK_STS_RESOURCE;
|
||
|
}
|
||
|
|
||
|
static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
|
||
|
struct request *req, struct nvme_rw_command *cmnd,
|
||
|
struct bio_vec *bv)
|
||
|
{
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
|
||
|
unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
|
||
|
|
||
|
iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
|
||
|
if (dma_mapping_error(dev->dev, iod->first_dma))
|
||
|
return BLK_STS_RESOURCE;
|
||
|
iod->dma_len = bv->bv_len;
|
||
|
|
||
|
cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
|
||
|
if (bv->bv_len > first_prp_len)
|
||
|
cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
|
||
|
else
|
||
|
cmnd->dptr.prp2 = 0;
|
||
|
return BLK_STS_OK;
|
||
|
}
|
||
|
|
||
|
static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
|
||
|
struct request *req, struct nvme_rw_command *cmnd,
|
||
|
struct bio_vec *bv)
|
||
|
{
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
|
||
|
iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
|
||
|
if (dma_mapping_error(dev->dev, iod->first_dma))
|
||
|
return BLK_STS_RESOURCE;
|
||
|
iod->dma_len = bv->bv_len;
|
||
|
|
||
|
cmnd->flags = NVME_CMD_SGL_METABUF;
|
||
|
cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
|
||
|
cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
|
||
|
cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
|
||
|
return BLK_STS_OK;
|
||
|
}
|
||
|
|
||
|
static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
|
||
|
struct nvme_command *cmnd)
|
||
|
{
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
blk_status_t ret = BLK_STS_RESOURCE;
|
||
|
int rc;
|
||
|
|
||
|
if (blk_rq_nr_phys_segments(req) == 1) {
|
||
|
struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
|
||
|
struct bio_vec bv = req_bvec(req);
|
||
|
|
||
|
if (!is_pci_p2pdma_page(bv.bv_page)) {
|
||
|
if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
|
||
|
return nvme_setup_prp_simple(dev, req,
|
||
|
&cmnd->rw, &bv);
|
||
|
|
||
|
if (nvmeq->qid && sgl_threshold &&
|
||
|
nvme_ctrl_sgl_supported(&dev->ctrl))
|
||
|
return nvme_setup_sgl_simple(dev, req,
|
||
|
&cmnd->rw, &bv);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
iod->dma_len = 0;
|
||
|
iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
|
||
|
if (!iod->sgt.sgl)
|
||
|
return BLK_STS_RESOURCE;
|
||
|
sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
|
||
|
iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
|
||
|
if (!iod->sgt.orig_nents)
|
||
|
goto out_free_sg;
|
||
|
|
||
|
rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
|
||
|
DMA_ATTR_NO_WARN);
|
||
|
if (rc) {
|
||
|
if (rc == -EREMOTEIO)
|
||
|
ret = BLK_STS_TARGET;
|
||
|
goto out_free_sg;
|
||
|
}
|
||
|
|
||
|
iod->use_sgl = nvme_pci_use_sgls(dev, req);
|
||
|
if (iod->use_sgl)
|
||
|
ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
|
||
|
else
|
||
|
ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
|
||
|
if (ret != BLK_STS_OK)
|
||
|
goto out_unmap_sg;
|
||
|
return BLK_STS_OK;
|
||
|
|
||
|
out_unmap_sg:
|
||
|
dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
|
||
|
out_free_sg:
|
||
|
mempool_free(iod->sgt.sgl, dev->iod_mempool);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
|
||
|
struct nvme_command *cmnd)
|
||
|
{
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
|
||
|
iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
|
||
|
rq_dma_dir(req), 0);
|
||
|
if (dma_mapping_error(dev->dev, iod->meta_dma))
|
||
|
return BLK_STS_IOERR;
|
||
|
cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
|
||
|
return BLK_STS_OK;
|
||
|
}
|
||
|
|
||
|
static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
|
||
|
{
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
blk_status_t ret;
|
||
|
|
||
|
iod->aborted = false;
|
||
|
iod->nr_allocations = -1;
|
||
|
iod->sgt.nents = 0;
|
||
|
|
||
|
ret = nvme_setup_cmd(req->q->queuedata, req);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (blk_rq_nr_phys_segments(req)) {
|
||
|
ret = nvme_map_data(dev, req, &iod->cmd);
|
||
|
if (ret)
|
||
|
goto out_free_cmd;
|
||
|
}
|
||
|
|
||
|
if (blk_integrity_rq(req)) {
|
||
|
ret = nvme_map_metadata(dev, req, &iod->cmd);
|
||
|
if (ret)
|
||
|
goto out_unmap_data;
|
||
|
}
|
||
|
|
||
|
blk_mq_start_request(req);
|
||
|
return BLK_STS_OK;
|
||
|
out_unmap_data:
|
||
|
nvme_unmap_data(dev, req);
|
||
|
out_free_cmd:
|
||
|
nvme_cleanup_cmd(req);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* NOTE: ns is NULL when called on the admin queue.
|
||
|
*/
|
||
|
static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
|
||
|
const struct blk_mq_queue_data *bd)
|
||
|
{
|
||
|
struct nvme_queue *nvmeq = hctx->driver_data;
|
||
|
struct nvme_dev *dev = nvmeq->dev;
|
||
|
struct request *req = bd->rq;
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
blk_status_t ret;
|
||
|
|
||
|
/*
|
||
|
* We should not need to do this, but we're still using this to
|
||
|
* ensure we can drain requests on a dying queue.
|
||
|
*/
|
||
|
if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
|
||
|
return BLK_STS_IOERR;
|
||
|
|
||
|
if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
|
||
|
return nvme_fail_nonready_command(&dev->ctrl, req);
|
||
|
|
||
|
ret = nvme_prep_rq(dev, req);
|
||
|
if (unlikely(ret))
|
||
|
return ret;
|
||
|
spin_lock(&nvmeq->sq_lock);
|
||
|
nvme_sq_copy_cmd(nvmeq, &iod->cmd);
|
||
|
nvme_write_sq_db(nvmeq, bd->last);
|
||
|
spin_unlock(&nvmeq->sq_lock);
|
||
|
return BLK_STS_OK;
|
||
|
}
|
||
|
|
||
|
static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
|
||
|
{
|
||
|
spin_lock(&nvmeq->sq_lock);
|
||
|
while (!rq_list_empty(*rqlist)) {
|
||
|
struct request *req = rq_list_pop(rqlist);
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
|
||
|
nvme_sq_copy_cmd(nvmeq, &iod->cmd);
|
||
|
}
|
||
|
nvme_write_sq_db(nvmeq, true);
|
||
|
spin_unlock(&nvmeq->sq_lock);
|
||
|
}
|
||
|
|
||
|
static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
|
||
|
{
|
||
|
/*
|
||
|
* We should not need to do this, but we're still using this to
|
||
|
* ensure we can drain requests on a dying queue.
|
||
|
*/
|
||
|
if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
|
||
|
return false;
|
||
|
if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
|
||
|
return false;
|
||
|
|
||
|
req->mq_hctx->tags->rqs[req->tag] = req;
|
||
|
return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
|
||
|
}
|
||
|
|
||
|
static void nvme_queue_rqs(struct request **rqlist)
|
||
|
{
|
||
|
struct request *req, *next, *prev = NULL;
|
||
|
struct request *requeue_list = NULL;
|
||
|
|
||
|
rq_list_for_each_safe(rqlist, req, next) {
|
||
|
struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
|
||
|
|
||
|
if (!nvme_prep_rq_batch(nvmeq, req)) {
|
||
|
/* detach 'req' and add to remainder list */
|
||
|
rq_list_move(rqlist, &requeue_list, req, prev);
|
||
|
|
||
|
req = prev;
|
||
|
if (!req)
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (!next || req->mq_hctx != next->mq_hctx) {
|
||
|
/* detach rest of list, and submit */
|
||
|
req->rq_next = NULL;
|
||
|
nvme_submit_cmds(nvmeq, rqlist);
|
||
|
*rqlist = next;
|
||
|
prev = NULL;
|
||
|
} else
|
||
|
prev = req;
|
||
|
}
|
||
|
|
||
|
*rqlist = requeue_list;
|
||
|
}
|
||
|
|
||
|
static __always_inline void nvme_pci_unmap_rq(struct request *req)
|
||
|
{
|
||
|
struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
|
||
|
struct nvme_dev *dev = nvmeq->dev;
|
||
|
|
||
|
if (blk_integrity_rq(req)) {
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
|
||
|
dma_unmap_page(dev->dev, iod->meta_dma,
|
||
|
rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
|
||
|
}
|
||
|
|
||
|
if (blk_rq_nr_phys_segments(req))
|
||
|
nvme_unmap_data(dev, req);
|
||
|
}
|
||
|
|
||
|
static void nvme_pci_complete_rq(struct request *req)
|
||
|
{
|
||
|
nvme_pci_unmap_rq(req);
|
||
|
nvme_complete_rq(req);
|
||
|
}
|
||
|
|
||
|
static void nvme_pci_complete_batch(struct io_comp_batch *iob)
|
||
|
{
|
||
|
nvme_complete_batch(iob, nvme_pci_unmap_rq);
|
||
|
}
|
||
|
|
||
|
/* We read the CQE phase first to check if the rest of the entry is valid */
|
||
|
static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
|
||
|
{
|
||
|
struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
|
||
|
|
||
|
return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
|
||
|
}
|
||
|
|
||
|
static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
|
||
|
{
|
||
|
u16 head = nvmeq->cq_head;
|
||
|
|
||
|
if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
|
||
|
nvmeq->dbbuf_cq_ei))
|
||
|
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
|
||
|
}
|
||
|
|
||
|
static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
|
||
|
{
|
||
|
if (!nvmeq->qid)
|
||
|
return nvmeq->dev->admin_tagset.tags[0];
|
||
|
return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
|
||
|
}
|
||
|
|
||
|
static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
|
||
|
struct io_comp_batch *iob, u16 idx)
|
||
|
{
|
||
|
struct nvme_completion *cqe = &nvmeq->cqes[idx];
|
||
|
__u16 command_id = READ_ONCE(cqe->command_id);
|
||
|
struct request *req;
|
||
|
|
||
|
/*
|
||
|
* AEN requests are special as they don't time out and can
|
||
|
* survive any kind of queue freeze and often don't respond to
|
||
|
* aborts. We don't even bother to allocate a struct request
|
||
|
* for them but rather special case them here.
|
||
|
*/
|
||
|
if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
|
||
|
nvme_complete_async_event(&nvmeq->dev->ctrl,
|
||
|
cqe->status, &cqe->result);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
|
||
|
if (unlikely(!req)) {
|
||
|
dev_warn(nvmeq->dev->ctrl.device,
|
||
|
"invalid id %d completed on queue %d\n",
|
||
|
command_id, le16_to_cpu(cqe->sq_id));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
|
||
|
if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
|
||
|
!blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
|
||
|
nvme_pci_complete_batch))
|
||
|
nvme_pci_complete_rq(req);
|
||
|
}
|
||
|
|
||
|
static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
|
||
|
{
|
||
|
u32 tmp = nvmeq->cq_head + 1;
|
||
|
|
||
|
if (tmp == nvmeq->q_depth) {
|
||
|
nvmeq->cq_head = 0;
|
||
|
nvmeq->cq_phase ^= 1;
|
||
|
} else {
|
||
|
nvmeq->cq_head = tmp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
|
||
|
struct io_comp_batch *iob)
|
||
|
{
|
||
|
int found = 0;
|
||
|
|
||
|
while (nvme_cqe_pending(nvmeq)) {
|
||
|
found++;
|
||
|
/*
|
||
|
* load-load control dependency between phase and the rest of
|
||
|
* the cqe requires a full read memory barrier
|
||
|
*/
|
||
|
dma_rmb();
|
||
|
nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
|
||
|
nvme_update_cq_head(nvmeq);
|
||
|
}
|
||
|
|
||
|
if (found)
|
||
|
nvme_ring_cq_doorbell(nvmeq);
|
||
|
return found;
|
||
|
}
|
||
|
|
||
|
static irqreturn_t nvme_irq(int irq, void *data)
|
||
|
{
|
||
|
struct nvme_queue *nvmeq = data;
|
||
|
DEFINE_IO_COMP_BATCH(iob);
|
||
|
|
||
|
if (nvme_poll_cq(nvmeq, &iob)) {
|
||
|
if (!rq_list_empty(iob.req_list))
|
||
|
nvme_pci_complete_batch(&iob);
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
return IRQ_NONE;
|
||
|
}
|
||
|
|
||
|
static irqreturn_t nvme_irq_check(int irq, void *data)
|
||
|
{
|
||
|
struct nvme_queue *nvmeq = data;
|
||
|
|
||
|
if (nvme_cqe_pending(nvmeq))
|
||
|
return IRQ_WAKE_THREAD;
|
||
|
return IRQ_NONE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Poll for completions for any interrupt driven queue
|
||
|
* Can be called from any context.
|
||
|
*/
|
||
|
static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
|
||
|
{
|
||
|
struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
|
||
|
|
||
|
WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
|
||
|
|
||
|
disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
|
||
|
nvme_poll_cq(nvmeq, NULL);
|
||
|
enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
|
||
|
}
|
||
|
|
||
|
static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
|
||
|
{
|
||
|
struct nvme_queue *nvmeq = hctx->driver_data;
|
||
|
bool found;
|
||
|
|
||
|
if (!nvme_cqe_pending(nvmeq))
|
||
|
return 0;
|
||
|
|
||
|
spin_lock(&nvmeq->cq_poll_lock);
|
||
|
found = nvme_poll_cq(nvmeq, iob);
|
||
|
spin_unlock(&nvmeq->cq_poll_lock);
|
||
|
|
||
|
return found;
|
||
|
}
|
||
|
|
||
|
static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
|
||
|
{
|
||
|
struct nvme_dev *dev = to_nvme_dev(ctrl);
|
||
|
struct nvme_queue *nvmeq = &dev->queues[0];
|
||
|
struct nvme_command c = { };
|
||
|
|
||
|
c.common.opcode = nvme_admin_async_event;
|
||
|
c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
|
||
|
|
||
|
spin_lock(&nvmeq->sq_lock);
|
||
|
nvme_sq_copy_cmd(nvmeq, &c);
|
||
|
nvme_write_sq_db(nvmeq, true);
|
||
|
spin_unlock(&nvmeq->sq_lock);
|
||
|
}
|
||
|
|
||
|
static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
|
||
|
{
|
||
|
struct nvme_command c = { };
|
||
|
|
||
|
c.delete_queue.opcode = opcode;
|
||
|
c.delete_queue.qid = cpu_to_le16(id);
|
||
|
|
||
|
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
||
|
}
|
||
|
|
||
|
static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
|
||
|
struct nvme_queue *nvmeq, s16 vector)
|
||
|
{
|
||
|
struct nvme_command c = { };
|
||
|
int flags = NVME_QUEUE_PHYS_CONTIG;
|
||
|
|
||
|
if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
|
||
|
flags |= NVME_CQ_IRQ_ENABLED;
|
||
|
|
||
|
/*
|
||
|
* Note: we (ab)use the fact that the prp fields survive if no data
|
||
|
* is attached to the request.
|
||
|
*/
|
||
|
c.create_cq.opcode = nvme_admin_create_cq;
|
||
|
c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
|
||
|
c.create_cq.cqid = cpu_to_le16(qid);
|
||
|
c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
|
||
|
c.create_cq.cq_flags = cpu_to_le16(flags);
|
||
|
c.create_cq.irq_vector = cpu_to_le16(vector);
|
||
|
|
||
|
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
||
|
}
|
||
|
|
||
|
static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
|
||
|
struct nvme_queue *nvmeq)
|
||
|
{
|
||
|
struct nvme_ctrl *ctrl = &dev->ctrl;
|
||
|
struct nvme_command c = { };
|
||
|
int flags = NVME_QUEUE_PHYS_CONTIG;
|
||
|
|
||
|
/*
|
||
|
* Some drives have a bug that auto-enables WRRU if MEDIUM isn't
|
||
|
* set. Since URGENT priority is zeroes, it makes all queues
|
||
|
* URGENT.
|
||
|
*/
|
||
|
if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
|
||
|
flags |= NVME_SQ_PRIO_MEDIUM;
|
||
|
|
||
|
/*
|
||
|
* Note: we (ab)use the fact that the prp fields survive if no data
|
||
|
* is attached to the request.
|
||
|
*/
|
||
|
c.create_sq.opcode = nvme_admin_create_sq;
|
||
|
c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
|
||
|
c.create_sq.sqid = cpu_to_le16(qid);
|
||
|
c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
|
||
|
c.create_sq.sq_flags = cpu_to_le16(flags);
|
||
|
c.create_sq.cqid = cpu_to_le16(qid);
|
||
|
|
||
|
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
||
|
}
|
||
|
|
||
|
static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
|
||
|
{
|
||
|
return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
|
||
|
}
|
||
|
|
||
|
static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
|
||
|
{
|
||
|
return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
|
||
|
}
|
||
|
|
||
|
static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
|
||
|
{
|
||
|
struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
|
||
|
|
||
|
dev_warn(nvmeq->dev->ctrl.device,
|
||
|
"Abort status: 0x%x", nvme_req(req)->status);
|
||
|
atomic_inc(&nvmeq->dev->ctrl.abort_limit);
|
||
|
blk_mq_free_request(req);
|
||
|
return RQ_END_IO_NONE;
|
||
|
}
|
||
|
|
||
|
static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
|
||
|
{
|
||
|
/* If true, indicates loss of adapter communication, possibly by a
|
||
|
* NVMe Subsystem reset.
|
||
|
*/
|
||
|
bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
|
||
|
|
||
|
/* If there is a reset/reinit ongoing, we shouldn't reset again. */
|
||
|
switch (dev->ctrl.state) {
|
||
|
case NVME_CTRL_RESETTING:
|
||
|
case NVME_CTRL_CONNECTING:
|
||
|
return false;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* We shouldn't reset unless the controller is on fatal error state
|
||
|
* _or_ if we lost the communication with it.
|
||
|
*/
|
||
|
if (!(csts & NVME_CSTS_CFS) && !nssro)
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
|
||
|
{
|
||
|
/* Read a config register to help see what died. */
|
||
|
u16 pci_status;
|
||
|
int result;
|
||
|
|
||
|
result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
|
||
|
&pci_status);
|
||
|
if (result == PCIBIOS_SUCCESSFUL)
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
|
||
|
csts, pci_status);
|
||
|
else
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
|
||
|
csts, result);
|
||
|
|
||
|
if (csts != ~0)
|
||
|
return;
|
||
|
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"Does your device have a faulty power saving mode enabled?\n");
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
|
||
|
}
|
||
|
|
||
|
static enum blk_eh_timer_return nvme_timeout(struct request *req)
|
||
|
{
|
||
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||
|
struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
|
||
|
struct nvme_dev *dev = nvmeq->dev;
|
||
|
struct request *abort_req;
|
||
|
struct nvme_command cmd = { };
|
||
|
u32 csts = readl(dev->bar + NVME_REG_CSTS);
|
||
|
|
||
|
/* If PCI error recovery process is happening, we cannot reset or
|
||
|
* the recovery mechanism will surely fail.
|
||
|
*/
|
||
|
mb();
|
||
|
if (pci_channel_offline(to_pci_dev(dev->dev)))
|
||
|
return BLK_EH_RESET_TIMER;
|
||
|
|
||
|
/*
|
||
|
* Reset immediately if the controller is failed
|
||
|
*/
|
||
|
if (nvme_should_reset(dev, csts)) {
|
||
|
nvme_warn_reset(dev, csts);
|
||
|
nvme_dev_disable(dev, false);
|
||
|
nvme_reset_ctrl(&dev->ctrl);
|
||
|
return BLK_EH_DONE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Did we miss an interrupt?
|
||
|
*/
|
||
|
if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
|
||
|
nvme_poll(req->mq_hctx, NULL);
|
||
|
else
|
||
|
nvme_poll_irqdisable(nvmeq);
|
||
|
|
||
|
if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"I/O %d QID %d timeout, completion polled\n",
|
||
|
req->tag, nvmeq->qid);
|
||
|
return BLK_EH_DONE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Shutdown immediately if controller times out while starting. The
|
||
|
* reset work will see the pci device disabled when it gets the forced
|
||
|
* cancellation error. All outstanding requests are completed on
|
||
|
* shutdown, so we return BLK_EH_DONE.
|
||
|
*/
|
||
|
switch (dev->ctrl.state) {
|
||
|
case NVME_CTRL_CONNECTING:
|
||
|
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
|
||
|
fallthrough;
|
||
|
case NVME_CTRL_DELETING:
|
||
|
dev_warn_ratelimited(dev->ctrl.device,
|
||
|
"I/O %d QID %d timeout, disable controller\n",
|
||
|
req->tag, nvmeq->qid);
|
||
|
nvme_req(req)->flags |= NVME_REQ_CANCELLED;
|
||
|
nvme_dev_disable(dev, true);
|
||
|
return BLK_EH_DONE;
|
||
|
case NVME_CTRL_RESETTING:
|
||
|
return BLK_EH_RESET_TIMER;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Shutdown the controller immediately and schedule a reset if the
|
||
|
* command was already aborted once before and still hasn't been
|
||
|
* returned to the driver, or if this is the admin queue.
|
||
|
*/
|
||
|
if (!nvmeq->qid || iod->aborted) {
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"I/O %d QID %d timeout, reset controller\n",
|
||
|
req->tag, nvmeq->qid);
|
||
|
nvme_req(req)->flags |= NVME_REQ_CANCELLED;
|
||
|
nvme_dev_disable(dev, false);
|
||
|
nvme_reset_ctrl(&dev->ctrl);
|
||
|
|
||
|
return BLK_EH_DONE;
|
||
|
}
|
||
|
|
||
|
if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
|
||
|
atomic_inc(&dev->ctrl.abort_limit);
|
||
|
return BLK_EH_RESET_TIMER;
|
||
|
}
|
||
|
iod->aborted = true;
|
||
|
|
||
|
cmd.abort.opcode = nvme_admin_abort_cmd;
|
||
|
cmd.abort.cid = nvme_cid(req);
|
||
|
cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
|
||
|
|
||
|
dev_warn(nvmeq->dev->ctrl.device,
|
||
|
"I/O %d (%s) QID %d timeout, aborting\n",
|
||
|
req->tag,
|
||
|
nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
|
||
|
nvmeq->qid);
|
||
|
|
||
|
abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
|
||
|
BLK_MQ_REQ_NOWAIT);
|
||
|
if (IS_ERR(abort_req)) {
|
||
|
atomic_inc(&dev->ctrl.abort_limit);
|
||
|
return BLK_EH_RESET_TIMER;
|
||
|
}
|
||
|
nvme_init_request(abort_req, &cmd);
|
||
|
|
||
|
abort_req->end_io = abort_endio;
|
||
|
abort_req->end_io_data = NULL;
|
||
|
blk_execute_rq_nowait(abort_req, false);
|
||
|
|
||
|
/*
|
||
|
* The aborted req will be completed on receiving the abort req.
|
||
|
* We enable the timer again. If hit twice, it'll cause a device reset,
|
||
|
* as the device then is in a faulty state.
|
||
|
*/
|
||
|
return BLK_EH_RESET_TIMER;
|
||
|
}
|
||
|
|
||
|
static void nvme_free_queue(struct nvme_queue *nvmeq)
|
||
|
{
|
||
|
dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
|
||
|
(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
|
||
|
if (!nvmeq->sq_cmds)
|
||
|
return;
|
||
|
|
||
|
if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
|
||
|
pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
|
||
|
nvmeq->sq_cmds, SQ_SIZE(nvmeq));
|
||
|
} else {
|
||
|
dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
|
||
|
nvmeq->sq_cmds, nvmeq->sq_dma_addr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void nvme_free_queues(struct nvme_dev *dev, int lowest)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
|
||
|
dev->ctrl.queue_count--;
|
||
|
nvme_free_queue(&dev->queues[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* nvme_suspend_queue - put queue into suspended state
|
||
|
* @nvmeq: queue to suspend
|
||
|
*/
|
||
|
static int nvme_suspend_queue(struct nvme_queue *nvmeq)
|
||
|
{
|
||
|
if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
|
||
|
return 1;
|
||
|
|
||
|
/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
|
||
|
mb();
|
||
|
|
||
|
nvmeq->dev->online_queues--;
|
||
|
if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
|
||
|
nvme_stop_admin_queue(&nvmeq->dev->ctrl);
|
||
|
if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
|
||
|
pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void nvme_suspend_io_queues(struct nvme_dev *dev)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = dev->ctrl.queue_count - 1; i > 0; i--)
|
||
|
nvme_suspend_queue(&dev->queues[i]);
|
||
|
}
|
||
|
|
||
|
static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
|
||
|
{
|
||
|
struct nvme_queue *nvmeq = &dev->queues[0];
|
||
|
|
||
|
if (shutdown)
|
||
|
nvme_shutdown_ctrl(&dev->ctrl);
|
||
|
else
|
||
|
nvme_disable_ctrl(&dev->ctrl);
|
||
|
|
||
|
nvme_poll_irqdisable(nvmeq);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called only on a device that has been disabled and after all other threads
|
||
|
* that can check this device's completion queues have synced, except
|
||
|
* nvme_poll(). This is the last chance for the driver to see a natural
|
||
|
* completion before nvme_cancel_request() terminates all incomplete requests.
|
||
|
*/
|
||
|
static void nvme_reap_pending_cqes(struct nvme_dev *dev)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
|
||
|
spin_lock(&dev->queues[i].cq_poll_lock);
|
||
|
nvme_poll_cq(&dev->queues[i], NULL);
|
||
|
spin_unlock(&dev->queues[i].cq_poll_lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
|
||
|
int entry_size)
|
||
|
{
|
||
|
int q_depth = dev->q_depth;
|
||
|
unsigned q_size_aligned = roundup(q_depth * entry_size,
|
||
|
NVME_CTRL_PAGE_SIZE);
|
||
|
|
||
|
if (q_size_aligned * nr_io_queues > dev->cmb_size) {
|
||
|
u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
|
||
|
|
||
|
mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
|
||
|
q_depth = div_u64(mem_per_q, entry_size);
|
||
|
|
||
|
/*
|
||
|
* Ensure the reduced q_depth is above some threshold where it
|
||
|
* would be better to map queues in system memory with the
|
||
|
* original depth
|
||
|
*/
|
||
|
if (q_depth < 64)
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
return q_depth;
|
||
|
}
|
||
|
|
||
|
static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
|
||
|
int qid)
|
||
|
{
|
||
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||
|
|
||
|
if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
|
||
|
nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
|
||
|
if (nvmeq->sq_cmds) {
|
||
|
nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
|
||
|
nvmeq->sq_cmds);
|
||
|
if (nvmeq->sq_dma_addr) {
|
||
|
set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
|
||
|
&nvmeq->sq_dma_addr, GFP_KERNEL);
|
||
|
if (!nvmeq->sq_cmds)
|
||
|
return -ENOMEM;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
|
||
|
{
|
||
|
struct nvme_queue *nvmeq = &dev->queues[qid];
|
||
|
|
||
|
if (dev->ctrl.queue_count > qid)
|
||
|
return 0;
|
||
|
|
||
|
nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
|
||
|
nvmeq->q_depth = depth;
|
||
|
nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
|
||
|
&nvmeq->cq_dma_addr, GFP_KERNEL);
|
||
|
if (!nvmeq->cqes)
|
||
|
goto free_nvmeq;
|
||
|
|
||
|
if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
|
||
|
goto free_cqdma;
|
||
|
|
||
|
nvmeq->dev = dev;
|
||
|
spin_lock_init(&nvmeq->sq_lock);
|
||
|
spin_lock_init(&nvmeq->cq_poll_lock);
|
||
|
nvmeq->cq_head = 0;
|
||
|
nvmeq->cq_phase = 1;
|
||
|
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
|
||
|
nvmeq->qid = qid;
|
||
|
dev->ctrl.queue_count++;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
free_cqdma:
|
||
|
dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
|
||
|
nvmeq->cq_dma_addr);
|
||
|
free_nvmeq:
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static int queue_request_irq(struct nvme_queue *nvmeq)
|
||
|
{
|
||
|
struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
|
||
|
int nr = nvmeq->dev->ctrl.instance;
|
||
|
|
||
|
if (use_threaded_interrupts) {
|
||
|
return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
|
||
|
nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
|
||
|
} else {
|
||
|
return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
|
||
|
NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
|
||
|
{
|
||
|
struct nvme_dev *dev = nvmeq->dev;
|
||
|
|
||
|
nvmeq->sq_tail = 0;
|
||
|
nvmeq->last_sq_tail = 0;
|
||
|
nvmeq->cq_head = 0;
|
||
|
nvmeq->cq_phase = 1;
|
||
|
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
|
||
|
memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
|
||
|
nvme_dbbuf_init(dev, nvmeq, qid);
|
||
|
dev->online_queues++;
|
||
|
wmb(); /* ensure the first interrupt sees the initialization */
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Try getting shutdown_lock while setting up IO queues.
|
||
|
*/
|
||
|
static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
|
||
|
{
|
||
|
/*
|
||
|
* Give up if the lock is being held by nvme_dev_disable.
|
||
|
*/
|
||
|
if (!mutex_trylock(&dev->shutdown_lock))
|
||
|
return -ENODEV;
|
||
|
|
||
|
/*
|
||
|
* Controller is in wrong state, fail early.
|
||
|
*/
|
||
|
if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
|
||
|
mutex_unlock(&dev->shutdown_lock);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
|
||
|
{
|
||
|
struct nvme_dev *dev = nvmeq->dev;
|
||
|
int result;
|
||
|
u16 vector = 0;
|
||
|
|
||
|
clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
|
||
|
|
||
|
/*
|
||
|
* A queue's vector matches the queue identifier unless the controller
|
||
|
* has only one vector available.
|
||
|
*/
|
||
|
if (!polled)
|
||
|
vector = dev->num_vecs == 1 ? 0 : qid;
|
||
|
else
|
||
|
set_bit(NVMEQ_POLLED, &nvmeq->flags);
|
||
|
|
||
|
result = adapter_alloc_cq(dev, qid, nvmeq, vector);
|
||
|
if (result)
|
||
|
return result;
|
||
|
|
||
|
result = adapter_alloc_sq(dev, qid, nvmeq);
|
||
|
if (result < 0)
|
||
|
return result;
|
||
|
if (result)
|
||
|
goto release_cq;
|
||
|
|
||
|
nvmeq->cq_vector = vector;
|
||
|
|
||
|
result = nvme_setup_io_queues_trylock(dev);
|
||
|
if (result)
|
||
|
return result;
|
||
|
nvme_init_queue(nvmeq, qid);
|
||
|
if (!polled) {
|
||
|
result = queue_request_irq(nvmeq);
|
||
|
if (result < 0)
|
||
|
goto release_sq;
|
||
|
}
|
||
|
|
||
|
set_bit(NVMEQ_ENABLED, &nvmeq->flags);
|
||
|
mutex_unlock(&dev->shutdown_lock);
|
||
|
return result;
|
||
|
|
||
|
release_sq:
|
||
|
dev->online_queues--;
|
||
|
mutex_unlock(&dev->shutdown_lock);
|
||
|
adapter_delete_sq(dev, qid);
|
||
|
release_cq:
|
||
|
adapter_delete_cq(dev, qid);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static const struct blk_mq_ops nvme_mq_admin_ops = {
|
||
|
.queue_rq = nvme_queue_rq,
|
||
|
.complete = nvme_pci_complete_rq,
|
||
|
.init_hctx = nvme_admin_init_hctx,
|
||
|
.init_request = nvme_pci_init_request,
|
||
|
.timeout = nvme_timeout,
|
||
|
};
|
||
|
|
||
|
static const struct blk_mq_ops nvme_mq_ops = {
|
||
|
.queue_rq = nvme_queue_rq,
|
||
|
.queue_rqs = nvme_queue_rqs,
|
||
|
.complete = nvme_pci_complete_rq,
|
||
|
.commit_rqs = nvme_commit_rqs,
|
||
|
.init_hctx = nvme_init_hctx,
|
||
|
.init_request = nvme_pci_init_request,
|
||
|
.map_queues = nvme_pci_map_queues,
|
||
|
.timeout = nvme_timeout,
|
||
|
.poll = nvme_poll,
|
||
|
};
|
||
|
|
||
|
static void nvme_dev_remove_admin(struct nvme_dev *dev)
|
||
|
{
|
||
|
if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
|
||
|
/*
|
||
|
* If the controller was reset during removal, it's possible
|
||
|
* user requests may be waiting on a stopped queue. Start the
|
||
|
* queue to flush these to completion.
|
||
|
*/
|
||
|
nvme_start_admin_queue(&dev->ctrl);
|
||
|
blk_mq_destroy_queue(dev->ctrl.admin_q);
|
||
|
blk_mq_free_tag_set(&dev->admin_tagset);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
|
||
|
{
|
||
|
struct blk_mq_tag_set *set = &dev->admin_tagset;
|
||
|
|
||
|
set->ops = &nvme_mq_admin_ops;
|
||
|
set->nr_hw_queues = 1;
|
||
|
|
||
|
set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
|
||
|
set->timeout = NVME_ADMIN_TIMEOUT;
|
||
|
set->numa_node = dev->ctrl.numa_node;
|
||
|
set->cmd_size = sizeof(struct nvme_iod);
|
||
|
set->flags = BLK_MQ_F_NO_SCHED;
|
||
|
set->driver_data = dev;
|
||
|
|
||
|
if (blk_mq_alloc_tag_set(set))
|
||
|
return -ENOMEM;
|
||
|
dev->ctrl.admin_tagset = set;
|
||
|
|
||
|
dev->ctrl.admin_q = blk_mq_init_queue(set);
|
||
|
if (IS_ERR(dev->ctrl.admin_q)) {
|
||
|
blk_mq_free_tag_set(set);
|
||
|
dev->ctrl.admin_q = NULL;
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
if (!blk_get_queue(dev->ctrl.admin_q)) {
|
||
|
nvme_dev_remove_admin(dev);
|
||
|
dev->ctrl.admin_q = NULL;
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
|
||
|
{
|
||
|
return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
|
||
|
}
|
||
|
|
||
|
static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
|
||
|
{
|
||
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||
|
|
||
|
if (size <= dev->bar_mapped_size)
|
||
|
return 0;
|
||
|
if (size > pci_resource_len(pdev, 0))
|
||
|
return -ENOMEM;
|
||
|
if (dev->bar)
|
||
|
iounmap(dev->bar);
|
||
|
dev->bar = ioremap(pci_resource_start(pdev, 0), size);
|
||
|
if (!dev->bar) {
|
||
|
dev->bar_mapped_size = 0;
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
dev->bar_mapped_size = size;
|
||
|
dev->dbs = dev->bar + NVME_REG_DBS;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
|
||
|
{
|
||
|
int result;
|
||
|
u32 aqa;
|
||
|
struct nvme_queue *nvmeq;
|
||
|
|
||
|
result = nvme_remap_bar(dev, db_bar_size(dev, 0));
|
||
|
if (result < 0)
|
||
|
return result;
|
||
|
|
||
|
dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
|
||
|
NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
|
||
|
|
||
|
if (dev->subsystem &&
|
||
|
(readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
|
||
|
writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
|
||
|
|
||
|
result = nvme_disable_ctrl(&dev->ctrl);
|
||
|
if (result < 0)
|
||
|
return result;
|
||
|
|
||
|
result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
|
||
|
if (result)
|
||
|
return result;
|
||
|
|
||
|
dev->ctrl.numa_node = dev_to_node(dev->dev);
|
||
|
|
||
|
nvmeq = &dev->queues[0];
|
||
|
aqa = nvmeq->q_depth - 1;
|
||
|
aqa |= aqa << 16;
|
||
|
|
||
|
writel(aqa, dev->bar + NVME_REG_AQA);
|
||
|
lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
|
||
|
lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
|
||
|
|
||
|
result = nvme_enable_ctrl(&dev->ctrl);
|
||
|
if (result)
|
||
|
return result;
|
||
|
|
||
|
nvmeq->cq_vector = 0;
|
||
|
nvme_init_queue(nvmeq, 0);
|
||
|
result = queue_request_irq(nvmeq);
|
||
|
if (result) {
|
||
|
dev->online_queues--;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
set_bit(NVMEQ_ENABLED, &nvmeq->flags);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static int nvme_create_io_queues(struct nvme_dev *dev)
|
||
|
{
|
||
|
unsigned i, max, rw_queues;
|
||
|
int ret = 0;
|
||
|
|
||
|
for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
|
||
|
if (nvme_alloc_queue(dev, i, dev->q_depth)) {
|
||
|
ret = -ENOMEM;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
max = min(dev->max_qid, dev->ctrl.queue_count - 1);
|
||
|
if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
|
||
|
rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
|
||
|
dev->io_queues[HCTX_TYPE_READ];
|
||
|
} else {
|
||
|
rw_queues = max;
|
||
|
}
|
||
|
|
||
|
for (i = dev->online_queues; i <= max; i++) {
|
||
|
bool polled = i > rw_queues;
|
||
|
|
||
|
ret = nvme_create_queue(&dev->queues[i], i, polled);
|
||
|
if (ret)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Ignore failing Create SQ/CQ commands, we can continue with less
|
||
|
* than the desired amount of queues, and even a controller without
|
||
|
* I/O queues can still be used to issue admin commands. This might
|
||
|
* be useful to upgrade a buggy firmware for example.
|
||
|
*/
|
||
|
return ret >= 0 ? 0 : ret;
|
||
|
}
|
||
|
|
||
|
static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
|
||
|
{
|
||
|
u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
|
||
|
|
||
|
return 1ULL << (12 + 4 * szu);
|
||
|
}
|
||
|
|
||
|
static u32 nvme_cmb_size(struct nvme_dev *dev)
|
||
|
{
|
||
|
return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
|
||
|
}
|
||
|
|
||
|
static void nvme_map_cmb(struct nvme_dev *dev)
|
||
|
{
|
||
|
u64 size, offset;
|
||
|
resource_size_t bar_size;
|
||
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||
|
int bar;
|
||
|
|
||
|
if (dev->cmb_size)
|
||
|
return;
|
||
|
|
||
|
if (NVME_CAP_CMBS(dev->ctrl.cap))
|
||
|
writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
|
||
|
|
||
|
dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
|
||
|
if (!dev->cmbsz)
|
||
|
return;
|
||
|
dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
|
||
|
|
||
|
size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
|
||
|
offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
|
||
|
bar = NVME_CMB_BIR(dev->cmbloc);
|
||
|
bar_size = pci_resource_len(pdev, bar);
|
||
|
|
||
|
if (offset > bar_size)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Tell the controller about the host side address mapping the CMB,
|
||
|
* and enable CMB decoding for the NVMe 1.4+ scheme:
|
||
|
*/
|
||
|
if (NVME_CAP_CMBS(dev->ctrl.cap)) {
|
||
|
hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
|
||
|
(pci_bus_address(pdev, bar) + offset),
|
||
|
dev->bar + NVME_REG_CMBMSC);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Controllers may support a CMB size larger than their BAR,
|
||
|
* for example, due to being behind a bridge. Reduce the CMB to
|
||
|
* the reported size of the BAR
|
||
|
*/
|
||
|
if (size > bar_size - offset)
|
||
|
size = bar_size - offset;
|
||
|
|
||
|
if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"failed to register the CMB\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
dev->cmb_size = size;
|
||
|
dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
|
||
|
|
||
|
if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
|
||
|
(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
|
||
|
pci_p2pmem_publish(pdev, true);
|
||
|
|
||
|
nvme_update_attrs(dev);
|
||
|
}
|
||
|
|
||
|
static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
|
||
|
{
|
||
|
u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
|
||
|
u64 dma_addr = dev->host_mem_descs_dma;
|
||
|
struct nvme_command c = { };
|
||
|
int ret;
|
||
|
|
||
|
c.features.opcode = nvme_admin_set_features;
|
||
|
c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
|
||
|
c.features.dword11 = cpu_to_le32(bits);
|
||
|
c.features.dword12 = cpu_to_le32(host_mem_size);
|
||
|
c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
|
||
|
c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
|
||
|
c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
|
||
|
|
||
|
ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
||
|
if (ret) {
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"failed to set host mem (err %d, flags %#x).\n",
|
||
|
ret, bits);
|
||
|
} else
|
||
|
dev->hmb = bits & NVME_HOST_MEM_ENABLE;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void nvme_free_host_mem(struct nvme_dev *dev)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < dev->nr_host_mem_descs; i++) {
|
||
|
struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
|
||
|
size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
|
||
|
|
||
|
dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
|
||
|
le64_to_cpu(desc->addr),
|
||
|
DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
|
||
|
}
|
||
|
|
||
|
kfree(dev->host_mem_desc_bufs);
|
||
|
dev->host_mem_desc_bufs = NULL;
|
||
|
dma_free_coherent(dev->dev,
|
||
|
dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
|
||
|
dev->host_mem_descs, dev->host_mem_descs_dma);
|
||
|
dev->host_mem_descs = NULL;
|
||
|
dev->nr_host_mem_descs = 0;
|
||
|
}
|
||
|
|
||
|
static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
|
||
|
u32 chunk_size)
|
||
|
{
|
||
|
struct nvme_host_mem_buf_desc *descs;
|
||
|
u32 max_entries, len;
|
||
|
dma_addr_t descs_dma;
|
||
|
int i = 0;
|
||
|
void **bufs;
|
||
|
u64 size, tmp;
|
||
|
|
||
|
tmp = (preferred + chunk_size - 1);
|
||
|
do_div(tmp, chunk_size);
|
||
|
max_entries = tmp;
|
||
|
|
||
|
if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
|
||
|
max_entries = dev->ctrl.hmmaxd;
|
||
|
|
||
|
descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
|
||
|
&descs_dma, GFP_KERNEL);
|
||
|
if (!descs)
|
||
|
goto out;
|
||
|
|
||
|
bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
|
||
|
if (!bufs)
|
||
|
goto out_free_descs;
|
||
|
|
||
|
for (size = 0; size < preferred && i < max_entries; size += len) {
|
||
|
dma_addr_t dma_addr;
|
||
|
|
||
|
len = min_t(u64, chunk_size, preferred - size);
|
||
|
bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
|
||
|
DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
|
||
|
if (!bufs[i])
|
||
|
break;
|
||
|
|
||
|
descs[i].addr = cpu_to_le64(dma_addr);
|
||
|
descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
|
||
|
i++;
|
||
|
}
|
||
|
|
||
|
if (!size)
|
||
|
goto out_free_bufs;
|
||
|
|
||
|
dev->nr_host_mem_descs = i;
|
||
|
dev->host_mem_size = size;
|
||
|
dev->host_mem_descs = descs;
|
||
|
dev->host_mem_descs_dma = descs_dma;
|
||
|
dev->host_mem_desc_bufs = bufs;
|
||
|
return 0;
|
||
|
|
||
|
out_free_bufs:
|
||
|
while (--i >= 0) {
|
||
|
size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
|
||
|
|
||
|
dma_free_attrs(dev->dev, size, bufs[i],
|
||
|
le64_to_cpu(descs[i].addr),
|
||
|
DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
|
||
|
}
|
||
|
|
||
|
kfree(bufs);
|
||
|
out_free_descs:
|
||
|
dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
|
||
|
descs_dma);
|
||
|
out:
|
||
|
dev->host_mem_descs = NULL;
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
|
||
|
{
|
||
|
u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
|
||
|
u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
|
||
|
u64 chunk_size;
|
||
|
|
||
|
/* start big and work our way down */
|
||
|
for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
|
||
|
if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
|
||
|
if (!min || dev->host_mem_size >= min)
|
||
|
return 0;
|
||
|
nvme_free_host_mem(dev);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static int nvme_setup_host_mem(struct nvme_dev *dev)
|
||
|
{
|
||
|
u64 max = (u64)max_host_mem_size_mb * SZ_1M;
|
||
|
u64 preferred = (u64)dev->ctrl.hmpre * 4096;
|
||
|
u64 min = (u64)dev->ctrl.hmmin * 4096;
|
||
|
u32 enable_bits = NVME_HOST_MEM_ENABLE;
|
||
|
int ret;
|
||
|
|
||
|
preferred = min(preferred, max);
|
||
|
if (min > max) {
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"min host memory (%lld MiB) above limit (%d MiB).\n",
|
||
|
min >> ilog2(SZ_1M), max_host_mem_size_mb);
|
||
|
nvme_free_host_mem(dev);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we already have a buffer allocated check if we can reuse it.
|
||
|
*/
|
||
|
if (dev->host_mem_descs) {
|
||
|
if (dev->host_mem_size >= min)
|
||
|
enable_bits |= NVME_HOST_MEM_RETURN;
|
||
|
else
|
||
|
nvme_free_host_mem(dev);
|
||
|
}
|
||
|
|
||
|
if (!dev->host_mem_descs) {
|
||
|
if (nvme_alloc_host_mem(dev, min, preferred)) {
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"failed to allocate host memory buffer.\n");
|
||
|
return 0; /* controller must work without HMB */
|
||
|
}
|
||
|
|
||
|
dev_info(dev->ctrl.device,
|
||
|
"allocated %lld MiB host memory buffer.\n",
|
||
|
dev->host_mem_size >> ilog2(SZ_1M));
|
||
|
}
|
||
|
|
||
|
ret = nvme_set_host_mem(dev, enable_bits);
|
||
|
if (ret)
|
||
|
nvme_free_host_mem(dev);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
|
||
|
char *buf)
|
||
|
{
|
||
|
struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
|
||
|
|
||
|
return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
|
||
|
ndev->cmbloc, ndev->cmbsz);
|
||
|
}
|
||
|
static DEVICE_ATTR_RO(cmb);
|
||
|
|
||
|
static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
|
||
|
char *buf)
|
||
|
{
|
||
|
struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
|
||
|
|
||
|
return sysfs_emit(buf, "%u\n", ndev->cmbloc);
|
||
|
}
|
||
|
static DEVICE_ATTR_RO(cmbloc);
|
||
|
|
||
|
static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
|
||
|
char *buf)
|
||
|
{
|
||
|
struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
|
||
|
|
||
|
return sysfs_emit(buf, "%u\n", ndev->cmbsz);
|
||
|
}
|
||
|
static DEVICE_ATTR_RO(cmbsz);
|
||
|
|
||
|
static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
|
||
|
char *buf)
|
||
|
{
|
||
|
struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
|
||
|
|
||
|
return sysfs_emit(buf, "%d\n", ndev->hmb);
|
||
|
}
|
||
|
|
||
|
static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
|
||
|
const char *buf, size_t count)
|
||
|
{
|
||
|
struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
|
||
|
bool new;
|
||
|
int ret;
|
||
|
|
||
|
if (strtobool(buf, &new) < 0)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (new == ndev->hmb)
|
||
|
return count;
|
||
|
|
||
|
if (new) {
|
||
|
ret = nvme_setup_host_mem(ndev);
|
||
|
} else {
|
||
|
ret = nvme_set_host_mem(ndev, 0);
|
||
|
if (!ret)
|
||
|
nvme_free_host_mem(ndev);
|
||
|
}
|
||
|
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
static DEVICE_ATTR_RW(hmb);
|
||
|
|
||
|
static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
|
||
|
struct attribute *a, int n)
|
||
|
{
|
||
|
struct nvme_ctrl *ctrl =
|
||
|
dev_get_drvdata(container_of(kobj, struct device, kobj));
|
||
|
struct nvme_dev *dev = to_nvme_dev(ctrl);
|
||
|
|
||
|
if (a == &dev_attr_cmb.attr ||
|
||
|
a == &dev_attr_cmbloc.attr ||
|
||
|
a == &dev_attr_cmbsz.attr) {
|
||
|
if (!dev->cmbsz)
|
||
|
return 0;
|
||
|
}
|
||
|
if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
|
||
|
return 0;
|
||
|
|
||
|
return a->mode;
|
||
|
}
|
||
|
|
||
|
static struct attribute *nvme_pci_attrs[] = {
|
||
|
&dev_attr_cmb.attr,
|
||
|
&dev_attr_cmbloc.attr,
|
||
|
&dev_attr_cmbsz.attr,
|
||
|
&dev_attr_hmb.attr,
|
||
|
NULL,
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group nvme_pci_dev_attrs_group = {
|
||
|
.attrs = nvme_pci_attrs,
|
||
|
.is_visible = nvme_pci_attrs_are_visible,
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
|
||
|
&nvme_dev_attrs_group,
|
||
|
&nvme_pci_dev_attrs_group,
|
||
|
NULL,
|
||
|
};
|
||
|
|
||
|
static void nvme_update_attrs(struct nvme_dev *dev)
|
||
|
{
|
||
|
sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* nirqs is the number of interrupts available for write and read
|
||
|
* queues. The core already reserved an interrupt for the admin queue.
|
||
|
*/
|
||
|
static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
|
||
|
{
|
||
|
struct nvme_dev *dev = affd->priv;
|
||
|
unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
|
||
|
|
||
|
/*
|
||
|
* If there is no interrupt available for queues, ensure that
|
||
|
* the default queue is set to 1. The affinity set size is
|
||
|
* also set to one, but the irq core ignores it for this case.
|
||
|
*
|
||
|
* If only one interrupt is available or 'write_queue' == 0, combine
|
||
|
* write and read queues.
|
||
|
*
|
||
|
* If 'write_queues' > 0, ensure it leaves room for at least one read
|
||
|
* queue.
|
||
|
*/
|
||
|
if (!nrirqs) {
|
||
|
nrirqs = 1;
|
||
|
nr_read_queues = 0;
|
||
|
} else if (nrirqs == 1 || !nr_write_queues) {
|
||
|
nr_read_queues = 0;
|
||
|
} else if (nr_write_queues >= nrirqs) {
|
||
|
nr_read_queues = 1;
|
||
|
} else {
|
||
|
nr_read_queues = nrirqs - nr_write_queues;
|
||
|
}
|
||
|
|
||
|
dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
|
||
|
affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
|
||
|
dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
|
||
|
affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
|
||
|
affd->nr_sets = nr_read_queues ? 2 : 1;
|
||
|
}
|
||
|
|
||
|
static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
|
||
|
{
|
||
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||
|
struct irq_affinity affd = {
|
||
|
.pre_vectors = 1,
|
||
|
.calc_sets = nvme_calc_irq_sets,
|
||
|
.priv = dev,
|
||
|
};
|
||
|
unsigned int irq_queues, poll_queues;
|
||
|
|
||
|
/*
|
||
|
* Poll queues don't need interrupts, but we need at least one I/O queue
|
||
|
* left over for non-polled I/O.
|
||
|
*/
|
||
|
poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
|
||
|
dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
|
||
|
|
||
|
/*
|
||
|
* Initialize for the single interrupt case, will be updated in
|
||
|
* nvme_calc_irq_sets().
|
||
|
*/
|
||
|
dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
|
||
|
dev->io_queues[HCTX_TYPE_READ] = 0;
|
||
|
|
||
|
/*
|
||
|
* We need interrupts for the admin queue and each non-polled I/O queue,
|
||
|
* but some Apple controllers require all queues to use the first
|
||
|
* vector.
|
||
|
*/
|
||
|
irq_queues = 1;
|
||
|
if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
|
||
|
irq_queues += (nr_io_queues - poll_queues);
|
||
|
return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
|
||
|
PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
|
||
|
}
|
||
|
|
||
|
static void nvme_disable_io_queues(struct nvme_dev *dev)
|
||
|
{
|
||
|
if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
|
||
|
__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
|
||
|
}
|
||
|
|
||
|
static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
|
||
|
{
|
||
|
/*
|
||
|
* If tags are shared with admin queue (Apple bug), then
|
||
|
* make sure we only use one IO queue.
|
||
|
*/
|
||
|
if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
|
||
|
return 1;
|
||
|
return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
|
||
|
}
|
||
|
|
||
|
static int nvme_setup_io_queues(struct nvme_dev *dev)
|
||
|
{
|
||
|
struct nvme_queue *adminq = &dev->queues[0];
|
||
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||
|
unsigned int nr_io_queues;
|
||
|
unsigned long size;
|
||
|
int result;
|
||
|
|
||
|
/*
|
||
|
* Sample the module parameters once at reset time so that we have
|
||
|
* stable values to work with.
|
||
|
*/
|
||
|
dev->nr_write_queues = write_queues;
|
||
|
dev->nr_poll_queues = poll_queues;
|
||
|
|
||
|
nr_io_queues = dev->nr_allocated_queues - 1;
|
||
|
result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
|
||
|
if (result < 0)
|
||
|
return result;
|
||
|
|
||
|
if (nr_io_queues == 0)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
|
||
|
* from set to unset. If there is a window to it is truely freed,
|
||
|
* pci_free_irq_vectors() jumping into this window will crash.
|
||
|
* And take lock to avoid racing with pci_free_irq_vectors() in
|
||
|
* nvme_dev_disable() path.
|
||
|
*/
|
||
|
result = nvme_setup_io_queues_trylock(dev);
|
||
|
if (result)
|
||
|
return result;
|
||
|
if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
|
||
|
pci_free_irq(pdev, 0, adminq);
|
||
|
|
||
|
if (dev->cmb_use_sqes) {
|
||
|
result = nvme_cmb_qdepth(dev, nr_io_queues,
|
||
|
sizeof(struct nvme_command));
|
||
|
if (result > 0)
|
||
|
dev->q_depth = result;
|
||
|
else
|
||
|
dev->cmb_use_sqes = false;
|
||
|
}
|
||
|
|
||
|
do {
|
||
|
size = db_bar_size(dev, nr_io_queues);
|
||
|
result = nvme_remap_bar(dev, size);
|
||
|
if (!result)
|
||
|
break;
|
||
|
if (!--nr_io_queues) {
|
||
|
result = -ENOMEM;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
} while (1);
|
||
|
adminq->q_db = dev->dbs;
|
||
|
|
||
|
retry:
|
||
|
/* Deregister the admin queue's interrupt */
|
||
|
if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
|
||
|
pci_free_irq(pdev, 0, adminq);
|
||
|
|
||
|
/*
|
||
|
* If we enable msix early due to not intx, disable it again before
|
||
|
* setting up the full range we need.
|
||
|
*/
|
||
|
pci_free_irq_vectors(pdev);
|
||
|
|
||
|
result = nvme_setup_irqs(dev, nr_io_queues);
|
||
|
if (result <= 0) {
|
||
|
result = -EIO;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
dev->num_vecs = result;
|
||
|
result = max(result - 1, 1);
|
||
|
dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
|
||
|
|
||
|
/*
|
||
|
* Should investigate if there's a performance win from allocating
|
||
|
* more queues than interrupt vectors; it might allow the submission
|
||
|
* path to scale better, even if the receive path is limited by the
|
||
|
* number of interrupts.
|
||
|
*/
|
||
|
result = queue_request_irq(adminq);
|
||
|
if (result)
|
||
|
goto out_unlock;
|
||
|
set_bit(NVMEQ_ENABLED, &adminq->flags);
|
||
|
mutex_unlock(&dev->shutdown_lock);
|
||
|
|
||
|
result = nvme_create_io_queues(dev);
|
||
|
if (result || dev->online_queues < 2)
|
||
|
return result;
|
||
|
|
||
|
if (dev->online_queues - 1 < dev->max_qid) {
|
||
|
nr_io_queues = dev->online_queues - 1;
|
||
|
nvme_disable_io_queues(dev);
|
||
|
result = nvme_setup_io_queues_trylock(dev);
|
||
|
if (result)
|
||
|
return result;
|
||
|
nvme_suspend_io_queues(dev);
|
||
|
goto retry;
|
||
|
}
|
||
|
dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
|
||
|
dev->io_queues[HCTX_TYPE_DEFAULT],
|
||
|
dev->io_queues[HCTX_TYPE_READ],
|
||
|
dev->io_queues[HCTX_TYPE_POLL]);
|
||
|
return 0;
|
||
|
out_unlock:
|
||
|
mutex_unlock(&dev->shutdown_lock);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
|
||
|
blk_status_t error)
|
||
|
{
|
||
|
struct nvme_queue *nvmeq = req->end_io_data;
|
||
|
|
||
|
blk_mq_free_request(req);
|
||
|
complete(&nvmeq->delete_done);
|
||
|
return RQ_END_IO_NONE;
|
||
|
}
|
||
|
|
||
|
static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
|
||
|
blk_status_t error)
|
||
|
{
|
||
|
struct nvme_queue *nvmeq = req->end_io_data;
|
||
|
|
||
|
if (error)
|
||
|
set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
|
||
|
|
||
|
return nvme_del_queue_end(req, error);
|
||
|
}
|
||
|
|
||
|
static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
|
||
|
{
|
||
|
struct request_queue *q = nvmeq->dev->ctrl.admin_q;
|
||
|
struct request *req;
|
||
|
struct nvme_command cmd = { };
|
||
|
|
||
|
cmd.delete_queue.opcode = opcode;
|
||
|
cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
|
||
|
|
||
|
req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
|
||
|
if (IS_ERR(req))
|
||
|
return PTR_ERR(req);
|
||
|
nvme_init_request(req, &cmd);
|
||
|
|
||
|
if (opcode == nvme_admin_delete_cq)
|
||
|
req->end_io = nvme_del_cq_end;
|
||
|
else
|
||
|
req->end_io = nvme_del_queue_end;
|
||
|
req->end_io_data = nvmeq;
|
||
|
|
||
|
init_completion(&nvmeq->delete_done);
|
||
|
blk_execute_rq_nowait(req, false);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
|
||
|
{
|
||
|
int nr_queues = dev->online_queues - 1, sent = 0;
|
||
|
unsigned long timeout;
|
||
|
|
||
|
retry:
|
||
|
timeout = NVME_ADMIN_TIMEOUT;
|
||
|
while (nr_queues > 0) {
|
||
|
if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
|
||
|
break;
|
||
|
nr_queues--;
|
||
|
sent++;
|
||
|
}
|
||
|
while (sent) {
|
||
|
struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
|
||
|
|
||
|
timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
|
||
|
timeout);
|
||
|
if (timeout == 0)
|
||
|
return false;
|
||
|
|
||
|
sent--;
|
||
|
if (nr_queues)
|
||
|
goto retry;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
|
||
|
{
|
||
|
struct blk_mq_tag_set * set = &dev->tagset;
|
||
|
int ret;
|
||
|
|
||
|
set->ops = &nvme_mq_ops;
|
||
|
set->nr_hw_queues = dev->online_queues - 1;
|
||
|
set->nr_maps = 1;
|
||
|
if (dev->io_queues[HCTX_TYPE_READ])
|
||
|
set->nr_maps = 2;
|
||
|
if (dev->io_queues[HCTX_TYPE_POLL])
|
||
|
set->nr_maps = 3;
|
||
|
set->timeout = NVME_IO_TIMEOUT;
|
||
|
set->numa_node = dev->ctrl.numa_node;
|
||
|
set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
|
||
|
set->cmd_size = sizeof(struct nvme_iod);
|
||
|
set->flags = BLK_MQ_F_SHOULD_MERGE;
|
||
|
set->driver_data = dev;
|
||
|
|
||
|
/*
|
||
|
* Some Apple controllers requires tags to be unique
|
||
|
* across admin and IO queue, so reserve the first 32
|
||
|
* tags of the IO queue.
|
||
|
*/
|
||
|
if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
|
||
|
set->reserved_tags = NVME_AQ_DEPTH;
|
||
|
|
||
|
ret = blk_mq_alloc_tag_set(set);
|
||
|
if (ret) {
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"IO queues tagset allocation failed %d\n", ret);
|
||
|
return;
|
||
|
}
|
||
|
dev->ctrl.tagset = set;
|
||
|
}
|
||
|
|
||
|
static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
|
||
|
{
|
||
|
blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
|
||
|
/* free previously allocated queues that are no longer usable */
|
||
|
nvme_free_queues(dev, dev->online_queues);
|
||
|
}
|
||
|
|
||
|
static int nvme_pci_enable(struct nvme_dev *dev)
|
||
|
{
|
||
|
int result = -ENOMEM;
|
||
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||
|
int dma_address_bits = 64;
|
||
|
|
||
|
if (pci_enable_device_mem(pdev))
|
||
|
return result;
|
||
|
|
||
|
pci_set_master(pdev);
|
||
|
|
||
|
if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
|
||
|
dma_address_bits = 48;
|
||
|
if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
|
||
|
goto disable;
|
||
|
|
||
|
if (readl(dev->bar + NVME_REG_CSTS) == -1) {
|
||
|
result = -ENODEV;
|
||
|
goto disable;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Some devices and/or platforms don't advertise or work with INTx
|
||
|
* interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
|
||
|
* adjust this later.
|
||
|
*/
|
||
|
result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
|
||
|
if (result < 0)
|
||
|
return result;
|
||
|
|
||
|
dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
|
||
|
|
||
|
dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
|
||
|
io_queue_depth);
|
||
|
dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
|
||
|
dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
|
||
|
dev->dbs = dev->bar + 4096;
|
||
|
|
||
|
/*
|
||
|
* Some Apple controllers require a non-standard SQE size.
|
||
|
* Interestingly they also seem to ignore the CC:IOSQES register
|
||
|
* so we don't bother updating it here.
|
||
|
*/
|
||
|
if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
|
||
|
dev->io_sqes = 7;
|
||
|
else
|
||
|
dev->io_sqes = NVME_NVM_IOSQES;
|
||
|
|
||
|
/*
|
||
|
* Temporary fix for the Apple controller found in the MacBook8,1 and
|
||
|
* some MacBook7,1 to avoid controller resets and data loss.
|
||
|
*/
|
||
|
if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
|
||
|
dev->q_depth = 2;
|
||
|
dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
|
||
|
"set queue depth=%u to work around controller resets\n",
|
||
|
dev->q_depth);
|
||
|
} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
|
||
|
(pdev->device == 0xa821 || pdev->device == 0xa822) &&
|
||
|
NVME_CAP_MQES(dev->ctrl.cap) == 0) {
|
||
|
dev->q_depth = 64;
|
||
|
dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
|
||
|
"set queue depth=%u\n", dev->q_depth);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Controllers with the shared tags quirk need the IO queue to be
|
||
|
* big enough so that we get 32 tags for the admin queue
|
||
|
*/
|
||
|
if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
|
||
|
(dev->q_depth < (NVME_AQ_DEPTH + 2))) {
|
||
|
dev->q_depth = NVME_AQ_DEPTH + 2;
|
||
|
dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
|
||
|
dev->q_depth);
|
||
|
}
|
||
|
|
||
|
|
||
|
nvme_map_cmb(dev);
|
||
|
|
||
|
pci_enable_pcie_error_reporting(pdev);
|
||
|
pci_save_state(pdev);
|
||
|
return 0;
|
||
|
|
||
|
disable:
|
||
|
pci_disable_device(pdev);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static void nvme_dev_unmap(struct nvme_dev *dev)
|
||
|
{
|
||
|
if (dev->bar)
|
||
|
iounmap(dev->bar);
|
||
|
pci_release_mem_regions(to_pci_dev(dev->dev));
|
||
|
}
|
||
|
|
||
|
static void nvme_pci_disable(struct nvme_dev *dev)
|
||
|
{
|
||
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||
|
|
||
|
pci_free_irq_vectors(pdev);
|
||
|
|
||
|
if (pci_is_enabled(pdev)) {
|
||
|
pci_disable_pcie_error_reporting(pdev);
|
||
|
pci_disable_device(pdev);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
|
||
|
{
|
||
|
bool dead = true, freeze = false;
|
||
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||
|
|
||
|
mutex_lock(&dev->shutdown_lock);
|
||
|
if (pci_is_enabled(pdev)) {
|
||
|
u32 csts;
|
||
|
|
||
|
if (pci_device_is_present(pdev))
|
||
|
csts = readl(dev->bar + NVME_REG_CSTS);
|
||
|
else
|
||
|
csts = ~0;
|
||
|
|
||
|
if (dev->ctrl.state == NVME_CTRL_LIVE ||
|
||
|
dev->ctrl.state == NVME_CTRL_RESETTING) {
|
||
|
freeze = true;
|
||
|
nvme_start_freeze(&dev->ctrl);
|
||
|
}
|
||
|
dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
|
||
|
pdev->error_state != pci_channel_io_normal);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Give the controller a chance to complete all entered requests if
|
||
|
* doing a safe shutdown.
|
||
|
*/
|
||
|
if (!dead && shutdown && freeze)
|
||
|
nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
|
||
|
|
||
|
nvme_stop_queues(&dev->ctrl);
|
||
|
|
||
|
if (!dead && dev->ctrl.queue_count > 0) {
|
||
|
nvme_disable_io_queues(dev);
|
||
|
nvme_disable_admin_queue(dev, shutdown);
|
||
|
}
|
||
|
nvme_suspend_io_queues(dev);
|
||
|
nvme_suspend_queue(&dev->queues[0]);
|
||
|
nvme_pci_disable(dev);
|
||
|
nvme_reap_pending_cqes(dev);
|
||
|
|
||
|
nvme_cancel_tagset(&dev->ctrl);
|
||
|
nvme_cancel_admin_tagset(&dev->ctrl);
|
||
|
|
||
|
/*
|
||
|
* The driver will not be starting up queues again if shutting down so
|
||
|
* must flush all entered requests to their failed completion to avoid
|
||
|
* deadlocking blk-mq hot-cpu notifier.
|
||
|
*/
|
||
|
if (shutdown) {
|
||
|
nvme_start_queues(&dev->ctrl);
|
||
|
if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
|
||
|
nvme_start_admin_queue(&dev->ctrl);
|
||
|
}
|
||
|
mutex_unlock(&dev->shutdown_lock);
|
||
|
}
|
||
|
|
||
|
static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
|
||
|
{
|
||
|
if (!nvme_wait_reset(&dev->ctrl))
|
||
|
return -EBUSY;
|
||
|
nvme_dev_disable(dev, shutdown);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int nvme_setup_prp_pools(struct nvme_dev *dev)
|
||
|
{
|
||
|
dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
|
||
|
NVME_CTRL_PAGE_SIZE,
|
||
|
NVME_CTRL_PAGE_SIZE, 0);
|
||
|
if (!dev->prp_page_pool)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* Optimisation for I/Os between 4k and 128k */
|
||
|
dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
|
||
|
256, 256, 0);
|
||
|
if (!dev->prp_small_pool) {
|
||
|
dma_pool_destroy(dev->prp_page_pool);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void nvme_release_prp_pools(struct nvme_dev *dev)
|
||
|
{
|
||
|
dma_pool_destroy(dev->prp_page_pool);
|
||
|
dma_pool_destroy(dev->prp_small_pool);
|
||
|
}
|
||
|
|
||
|
static void nvme_free_tagset(struct nvme_dev *dev)
|
||
|
{
|
||
|
if (dev->tagset.tags)
|
||
|
blk_mq_free_tag_set(&dev->tagset);
|
||
|
dev->ctrl.tagset = NULL;
|
||
|
}
|
||
|
|
||
|
static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
|
||
|
{
|
||
|
struct nvme_dev *dev = to_nvme_dev(ctrl);
|
||
|
|
||
|
nvme_dbbuf_dma_free(dev);
|
||
|
nvme_free_tagset(dev);
|
||
|
if (dev->ctrl.admin_q)
|
||
|
blk_put_queue(dev->ctrl.admin_q);
|
||
|
free_opal_dev(dev->ctrl.opal_dev);
|
||
|
mempool_destroy(dev->iod_mempool);
|
||
|
put_device(dev->dev);
|
||
|
kfree(dev->queues);
|
||
|
kfree(dev);
|
||
|
}
|
||
|
|
||
|
static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
|
||
|
{
|
||
|
/*
|
||
|
* Set state to deleting now to avoid blocking nvme_wait_reset(), which
|
||
|
* may be holding this pci_dev's device lock.
|
||
|
*/
|
||
|
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
|
||
|
nvme_get_ctrl(&dev->ctrl);
|
||
|
nvme_dev_disable(dev, false);
|
||
|
nvme_kill_queues(&dev->ctrl);
|
||
|
if (!queue_work(nvme_wq, &dev->remove_work))
|
||
|
nvme_put_ctrl(&dev->ctrl);
|
||
|
}
|
||
|
|
||
|
static void nvme_reset_work(struct work_struct *work)
|
||
|
{
|
||
|
struct nvme_dev *dev =
|
||
|
container_of(work, struct nvme_dev, ctrl.reset_work);
|
||
|
bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
|
||
|
int result;
|
||
|
|
||
|
if (dev->ctrl.state != NVME_CTRL_RESETTING) {
|
||
|
dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
|
||
|
dev->ctrl.state);
|
||
|
result = -ENODEV;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we're called to reset a live controller first shut it down before
|
||
|
* moving on.
|
||
|
*/
|
||
|
if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
|
||
|
nvme_dev_disable(dev, false);
|
||
|
nvme_sync_queues(&dev->ctrl);
|
||
|
|
||
|
mutex_lock(&dev->shutdown_lock);
|
||
|
result = nvme_pci_enable(dev);
|
||
|
if (result)
|
||
|
goto out_unlock;
|
||
|
|
||
|
result = nvme_pci_configure_admin_queue(dev);
|
||
|
if (result)
|
||
|
goto out_unlock;
|
||
|
|
||
|
if (!dev->ctrl.admin_q) {
|
||
|
result = nvme_pci_alloc_admin_tag_set(dev);
|
||
|
if (result)
|
||
|
goto out_unlock;
|
||
|
} else {
|
||
|
nvme_start_admin_queue(&dev->ctrl);
|
||
|
}
|
||
|
|
||
|
dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
|
||
|
|
||
|
/*
|
||
|
* Limit the max command size to prevent iod->sg allocations going
|
||
|
* over a single page.
|
||
|
*/
|
||
|
dev->ctrl.max_hw_sectors = min_t(u32,
|
||
|
NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
|
||
|
dev->ctrl.max_segments = NVME_MAX_SEGS;
|
||
|
|
||
|
/*
|
||
|
* Don't limit the IOMMU merged segment size.
|
||
|
*/
|
||
|
dma_set_max_seg_size(dev->dev, 0xffffffff);
|
||
|
|
||
|
mutex_unlock(&dev->shutdown_lock);
|
||
|
|
||
|
/*
|
||
|
* Introduce CONNECTING state from nvme-fc/rdma transports to mark the
|
||
|
* initializing procedure here.
|
||
|
*/
|
||
|
if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"failed to mark controller CONNECTING\n");
|
||
|
result = -EBUSY;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We do not support an SGL for metadata (yet), so we are limited to a
|
||
|
* single integrity segment for the separate metadata pointer.
|
||
|
*/
|
||
|
dev->ctrl.max_integrity_segments = 1;
|
||
|
|
||
|
result = nvme_init_ctrl_finish(&dev->ctrl);
|
||
|
if (result)
|
||
|
goto out;
|
||
|
|
||
|
if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
|
||
|
if (!dev->ctrl.opal_dev)
|
||
|
dev->ctrl.opal_dev =
|
||
|
init_opal_dev(&dev->ctrl, &nvme_sec_submit);
|
||
|
else if (was_suspend)
|
||
|
opal_unlock_from_suspend(dev->ctrl.opal_dev);
|
||
|
} else {
|
||
|
free_opal_dev(dev->ctrl.opal_dev);
|
||
|
dev->ctrl.opal_dev = NULL;
|
||
|
}
|
||
|
|
||
|
if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
|
||
|
result = nvme_dbbuf_dma_alloc(dev);
|
||
|
if (result)
|
||
|
dev_warn(dev->dev,
|
||
|
"unable to allocate dma for dbbuf\n");
|
||
|
}
|
||
|
|
||
|
if (dev->ctrl.hmpre) {
|
||
|
result = nvme_setup_host_mem(dev);
|
||
|
if (result < 0)
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
result = nvme_setup_io_queues(dev);
|
||
|
if (result)
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* Keep the controller around but remove all namespaces if we don't have
|
||
|
* any working I/O queue.
|
||
|
*/
|
||
|
if (dev->online_queues < 2) {
|
||
|
dev_warn(dev->ctrl.device, "IO queues not created\n");
|
||
|
nvme_kill_queues(&dev->ctrl);
|
||
|
nvme_remove_namespaces(&dev->ctrl);
|
||
|
nvme_free_tagset(dev);
|
||
|
} else {
|
||
|
nvme_start_queues(&dev->ctrl);
|
||
|
nvme_wait_freeze(&dev->ctrl);
|
||
|
if (!dev->ctrl.tagset)
|
||
|
nvme_pci_alloc_tag_set(dev);
|
||
|
else
|
||
|
nvme_pci_update_nr_queues(dev);
|
||
|
nvme_dbbuf_set(dev);
|
||
|
nvme_unfreeze(&dev->ctrl);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If only admin queue live, keep it to do further investigation or
|
||
|
* recovery.
|
||
|
*/
|
||
|
if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"failed to mark controller live state\n");
|
||
|
result = -ENODEV;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
nvme_start_ctrl(&dev->ctrl);
|
||
|
return;
|
||
|
|
||
|
out_unlock:
|
||
|
mutex_unlock(&dev->shutdown_lock);
|
||
|
out:
|
||
|
if (result)
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"Removing after probe failure status: %d\n", result);
|
||
|
nvme_remove_dead_ctrl(dev);
|
||
|
}
|
||
|
|
||
|
static void nvme_remove_dead_ctrl_work(struct work_struct *work)
|
||
|
{
|
||
|
struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
|
||
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||
|
|
||
|
if (pci_get_drvdata(pdev))
|
||
|
device_release_driver(&pdev->dev);
|
||
|
nvme_put_ctrl(&dev->ctrl);
|
||
|
}
|
||
|
|
||
|
static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
|
||
|
{
|
||
|
*val = readl(to_nvme_dev(ctrl)->bar + off);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
|
||
|
{
|
||
|
writel(val, to_nvme_dev(ctrl)->bar + off);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
|
||
|
{
|
||
|
*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
|
||
|
{
|
||
|
struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
|
||
|
|
||
|
return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
|
||
|
}
|
||
|
|
||
|
static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
|
||
|
{
|
||
|
struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
|
||
|
struct nvme_subsystem *subsys = ctrl->subsys;
|
||
|
|
||
|
dev_err(ctrl->device,
|
||
|
"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
|
||
|
pdev->vendor, pdev->device,
|
||
|
nvme_strlen(subsys->model, sizeof(subsys->model)),
|
||
|
subsys->model, nvme_strlen(subsys->firmware_rev,
|
||
|
sizeof(subsys->firmware_rev)),
|
||
|
subsys->firmware_rev);
|
||
|
}
|
||
|
|
||
|
static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
|
||
|
{
|
||
|
struct nvme_dev *dev = to_nvme_dev(ctrl);
|
||
|
|
||
|
return dma_pci_p2pdma_supported(dev->dev);
|
||
|
}
|
||
|
|
||
|
static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
|
||
|
.name = "pcie",
|
||
|
.module = THIS_MODULE,
|
||
|
.flags = NVME_F_METADATA_SUPPORTED,
|
||
|
.dev_attr_groups = nvme_pci_dev_attr_groups,
|
||
|
.reg_read32 = nvme_pci_reg_read32,
|
||
|
.reg_write32 = nvme_pci_reg_write32,
|
||
|
.reg_read64 = nvme_pci_reg_read64,
|
||
|
.free_ctrl = nvme_pci_free_ctrl,
|
||
|
.submit_async_event = nvme_pci_submit_async_event,
|
||
|
.get_address = nvme_pci_get_address,
|
||
|
.print_device_info = nvme_pci_print_device_info,
|
||
|
.supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
|
||
|
};
|
||
|
|
||
|
static int nvme_dev_map(struct nvme_dev *dev)
|
||
|
{
|
||
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||
|
|
||
|
if (pci_request_mem_regions(pdev, "nvme"))
|
||
|
return -ENODEV;
|
||
|
|
||
|
if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
|
||
|
goto release;
|
||
|
|
||
|
return 0;
|
||
|
release:
|
||
|
pci_release_mem_regions(pdev);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
|
||
|
{
|
||
|
if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
|
||
|
/*
|
||
|
* Several Samsung devices seem to drop off the PCIe bus
|
||
|
* randomly when APST is on and uses the deepest sleep state.
|
||
|
* This has been observed on a Samsung "SM951 NVMe SAMSUNG
|
||
|
* 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
|
||
|
* 950 PRO 256GB", but it seems to be restricted to two Dell
|
||
|
* laptops.
|
||
|
*/
|
||
|
if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
|
||
|
(dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
|
||
|
dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
|
||
|
return NVME_QUIRK_NO_DEEPEST_PS;
|
||
|
} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
|
||
|
/*
|
||
|
* Samsung SSD 960 EVO drops off the PCIe bus after system
|
||
|
* suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
|
||
|
* within few minutes after bootup on a Coffee Lake board -
|
||
|
* ASUS PRIME Z370-A
|
||
|
*/
|
||
|
if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
|
||
|
(dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
|
||
|
dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
|
||
|
return NVME_QUIRK_NO_APST;
|
||
|
} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
|
||
|
pdev->device == 0xa808 || pdev->device == 0xa809)) ||
|
||
|
(pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
|
||
|
/*
|
||
|
* Forcing to use host managed nvme power settings for
|
||
|
* lowest idle power with quick resume latency on
|
||
|
* Samsung and Toshiba SSDs based on suspend behavior
|
||
|
* on Coffee Lake board for LENOVO C640
|
||
|
*/
|
||
|
if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
|
||
|
dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
|
||
|
return NVME_QUIRK_SIMPLE_SUSPEND;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void nvme_async_probe(void *data, async_cookie_t cookie)
|
||
|
{
|
||
|
struct nvme_dev *dev = data;
|
||
|
|
||
|
flush_work(&dev->ctrl.reset_work);
|
||
|
flush_work(&dev->ctrl.scan_work);
|
||
|
nvme_put_ctrl(&dev->ctrl);
|
||
|
}
|
||
|
|
||
|
static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
|
||
|
{
|
||
|
int node, result = -ENOMEM;
|
||
|
struct nvme_dev *dev;
|
||
|
unsigned long quirks = id->driver_data;
|
||
|
size_t alloc_size;
|
||
|
|
||
|
node = dev_to_node(&pdev->dev);
|
||
|
if (node == NUMA_NO_NODE)
|
||
|
set_dev_node(&pdev->dev, first_memory_node);
|
||
|
|
||
|
dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
|
||
|
if (!dev)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
dev->nr_write_queues = write_queues;
|
||
|
dev->nr_poll_queues = poll_queues;
|
||
|
dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
|
||
|
dev->queues = kcalloc_node(dev->nr_allocated_queues,
|
||
|
sizeof(struct nvme_queue), GFP_KERNEL, node);
|
||
|
if (!dev->queues)
|
||
|
goto free;
|
||
|
|
||
|
dev->dev = get_device(&pdev->dev);
|
||
|
pci_set_drvdata(pdev, dev);
|
||
|
|
||
|
result = nvme_dev_map(dev);
|
||
|
if (result)
|
||
|
goto put_pci;
|
||
|
|
||
|
INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
|
||
|
INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
|
||
|
mutex_init(&dev->shutdown_lock);
|
||
|
|
||
|
result = nvme_setup_prp_pools(dev);
|
||
|
if (result)
|
||
|
goto unmap;
|
||
|
|
||
|
quirks |= check_vendor_combination_bug(pdev);
|
||
|
|
||
|
if (!noacpi && acpi_storage_d3(&pdev->dev)) {
|
||
|
/*
|
||
|
* Some systems use a bios work around to ask for D3 on
|
||
|
* platforms that support kernel managed suspend.
|
||
|
*/
|
||
|
dev_info(&pdev->dev,
|
||
|
"platform quirk: setting simple suspend\n");
|
||
|
quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Double check that our mempool alloc size will cover the biggest
|
||
|
* command we support.
|
||
|
*/
|
||
|
alloc_size = nvme_pci_iod_alloc_size();
|
||
|
WARN_ON_ONCE(alloc_size > PAGE_SIZE);
|
||
|
|
||
|
dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
|
||
|
mempool_kfree,
|
||
|
(void *) alloc_size,
|
||
|
GFP_KERNEL, node);
|
||
|
if (!dev->iod_mempool) {
|
||
|
result = -ENOMEM;
|
||
|
goto release_pools;
|
||
|
}
|
||
|
|
||
|
result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
|
||
|
quirks);
|
||
|
if (result)
|
||
|
goto release_mempool;
|
||
|
|
||
|
dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
|
||
|
|
||
|
nvme_reset_ctrl(&dev->ctrl);
|
||
|
async_schedule(nvme_async_probe, dev);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
release_mempool:
|
||
|
mempool_destroy(dev->iod_mempool);
|
||
|
release_pools:
|
||
|
nvme_release_prp_pools(dev);
|
||
|
unmap:
|
||
|
nvme_dev_unmap(dev);
|
||
|
put_pci:
|
||
|
put_device(dev->dev);
|
||
|
free:
|
||
|
kfree(dev->queues);
|
||
|
kfree(dev);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static void nvme_reset_prepare(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
||
|
|
||
|
/*
|
||
|
* We don't need to check the return value from waiting for the reset
|
||
|
* state as pci_dev device lock is held, making it impossible to race
|
||
|
* with ->remove().
|
||
|
*/
|
||
|
nvme_disable_prepare_reset(dev, false);
|
||
|
nvme_sync_queues(&dev->ctrl);
|
||
|
}
|
||
|
|
||
|
static void nvme_reset_done(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
||
|
|
||
|
if (!nvme_try_sched_reset(&dev->ctrl))
|
||
|
flush_work(&dev->ctrl.reset_work);
|
||
|
}
|
||
|
|
||
|
static void nvme_shutdown(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
||
|
|
||
|
nvme_disable_prepare_reset(dev, true);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The driver's remove may be called on a device in a partially initialized
|
||
|
* state. This function must not have any dependencies on the device state in
|
||
|
* order to proceed.
|
||
|
*/
|
||
|
static void nvme_remove(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
||
|
|
||
|
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
|
||
|
pci_set_drvdata(pdev, NULL);
|
||
|
|
||
|
if (!pci_device_is_present(pdev)) {
|
||
|
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
|
||
|
nvme_dev_disable(dev, true);
|
||
|
}
|
||
|
|
||
|
flush_work(&dev->ctrl.reset_work);
|
||
|
nvme_stop_ctrl(&dev->ctrl);
|
||
|
nvme_remove_namespaces(&dev->ctrl);
|
||
|
nvme_dev_disable(dev, true);
|
||
|
nvme_free_host_mem(dev);
|
||
|
nvme_dev_remove_admin(dev);
|
||
|
nvme_free_queues(dev, 0);
|
||
|
nvme_release_prp_pools(dev);
|
||
|
nvme_dev_unmap(dev);
|
||
|
nvme_uninit_ctrl(&dev->ctrl);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PM_SLEEP
|
||
|
static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
|
||
|
{
|
||
|
return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
|
||
|
}
|
||
|
|
||
|
static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
|
||
|
{
|
||
|
return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
|
||
|
}
|
||
|
|
||
|
static int nvme_resume(struct device *dev)
|
||
|
{
|
||
|
struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
|
||
|
struct nvme_ctrl *ctrl = &ndev->ctrl;
|
||
|
|
||
|
if (ndev->last_ps == U32_MAX ||
|
||
|
nvme_set_power_state(ctrl, ndev->last_ps) != 0)
|
||
|
goto reset;
|
||
|
if (ctrl->hmpre && nvme_setup_host_mem(ndev))
|
||
|
goto reset;
|
||
|
|
||
|
return 0;
|
||
|
reset:
|
||
|
return nvme_try_sched_reset(ctrl);
|
||
|
}
|
||
|
|
||
|
static int nvme_suspend(struct device *dev)
|
||
|
{
|
||
|
struct pci_dev *pdev = to_pci_dev(dev);
|
||
|
struct nvme_dev *ndev = pci_get_drvdata(pdev);
|
||
|
struct nvme_ctrl *ctrl = &ndev->ctrl;
|
||
|
int ret = -EBUSY;
|
||
|
|
||
|
ndev->last_ps = U32_MAX;
|
||
|
|
||
|
/*
|
||
|
* The platform does not remove power for a kernel managed suspend so
|
||
|
* use host managed nvme power settings for lowest idle power if
|
||
|
* possible. This should have quicker resume latency than a full device
|
||
|
* shutdown. But if the firmware is involved after the suspend or the
|
||
|
* device does not support any non-default power states, shut down the
|
||
|
* device fully.
|
||
|
*
|
||
|
* If ASPM is not enabled for the device, shut down the device and allow
|
||
|
* the PCI bus layer to put it into D3 in order to take the PCIe link
|
||
|
* down, so as to allow the platform to achieve its minimum low-power
|
||
|
* state (which may not be possible if the link is up).
|
||
|
*/
|
||
|
if (pm_suspend_via_firmware() || !ctrl->npss ||
|
||
|
!pcie_aspm_enabled(pdev) ||
|
||
|
(ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
|
||
|
return nvme_disable_prepare_reset(ndev, true);
|
||
|
|
||
|
nvme_start_freeze(ctrl);
|
||
|
nvme_wait_freeze(ctrl);
|
||
|
nvme_sync_queues(ctrl);
|
||
|
|
||
|
if (ctrl->state != NVME_CTRL_LIVE)
|
||
|
goto unfreeze;
|
||
|
|
||
|
/*
|
||
|
* Host memory access may not be successful in a system suspend state,
|
||
|
* but the specification allows the controller to access memory in a
|
||
|
* non-operational power state.
|
||
|
*/
|
||
|
if (ndev->hmb) {
|
||
|
ret = nvme_set_host_mem(ndev, 0);
|
||
|
if (ret < 0)
|
||
|
goto unfreeze;
|
||
|
}
|
||
|
|
||
|
ret = nvme_get_power_state(ctrl, &ndev->last_ps);
|
||
|
if (ret < 0)
|
||
|
goto unfreeze;
|
||
|
|
||
|
/*
|
||
|
* A saved state prevents pci pm from generically controlling the
|
||
|
* device's power. If we're using protocol specific settings, we don't
|
||
|
* want pci interfering.
|
||
|
*/
|
||
|
pci_save_state(pdev);
|
||
|
|
||
|
ret = nvme_set_power_state(ctrl, ctrl->npss);
|
||
|
if (ret < 0)
|
||
|
goto unfreeze;
|
||
|
|
||
|
if (ret) {
|
||
|
/* discard the saved state */
|
||
|
pci_load_saved_state(pdev, NULL);
|
||
|
|
||
|
/*
|
||
|
* Clearing npss forces a controller reset on resume. The
|
||
|
* correct value will be rediscovered then.
|
||
|
*/
|
||
|
ret = nvme_disable_prepare_reset(ndev, true);
|
||
|
ctrl->npss = 0;
|
||
|
}
|
||
|
unfreeze:
|
||
|
nvme_unfreeze(ctrl);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int nvme_simple_suspend(struct device *dev)
|
||
|
{
|
||
|
struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
|
||
|
|
||
|
return nvme_disable_prepare_reset(ndev, true);
|
||
|
}
|
||
|
|
||
|
static int nvme_simple_resume(struct device *dev)
|
||
|
{
|
||
|
struct pci_dev *pdev = to_pci_dev(dev);
|
||
|
struct nvme_dev *ndev = pci_get_drvdata(pdev);
|
||
|
|
||
|
return nvme_try_sched_reset(&ndev->ctrl);
|
||
|
}
|
||
|
|
||
|
static const struct dev_pm_ops nvme_dev_pm_ops = {
|
||
|
.suspend = nvme_suspend,
|
||
|
.resume = nvme_resume,
|
||
|
.freeze = nvme_simple_suspend,
|
||
|
.thaw = nvme_simple_resume,
|
||
|
.poweroff = nvme_simple_suspend,
|
||
|
.restore = nvme_simple_resume,
|
||
|
};
|
||
|
#endif /* CONFIG_PM_SLEEP */
|
||
|
|
||
|
static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
|
||
|
pci_channel_state_t state)
|
||
|
{
|
||
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
||
|
|
||
|
/*
|
||
|
* A frozen channel requires a reset. When detected, this method will
|
||
|
* shutdown the controller to quiesce. The controller will be restarted
|
||
|
* after the slot reset through driver's slot_reset callback.
|
||
|
*/
|
||
|
switch (state) {
|
||
|
case pci_channel_io_normal:
|
||
|
return PCI_ERS_RESULT_CAN_RECOVER;
|
||
|
case pci_channel_io_frozen:
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"frozen state error detected, reset controller\n");
|
||
|
nvme_dev_disable(dev, false);
|
||
|
return PCI_ERS_RESULT_NEED_RESET;
|
||
|
case pci_channel_io_perm_failure:
|
||
|
dev_warn(dev->ctrl.device,
|
||
|
"failure state error detected, request disconnect\n");
|
||
|
return PCI_ERS_RESULT_DISCONNECT;
|
||
|
}
|
||
|
return PCI_ERS_RESULT_NEED_RESET;
|
||
|
}
|
||
|
|
||
|
static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
||
|
|
||
|
dev_info(dev->ctrl.device, "restart after slot reset\n");
|
||
|
pci_restore_state(pdev);
|
||
|
nvme_reset_ctrl(&dev->ctrl);
|
||
|
return PCI_ERS_RESULT_RECOVERED;
|
||
|
}
|
||
|
|
||
|
static void nvme_error_resume(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
||
|
|
||
|
flush_work(&dev->ctrl.reset_work);
|
||
|
}
|
||
|
|
||
|
static const struct pci_error_handlers nvme_err_handler = {
|
||
|
.error_detected = nvme_error_detected,
|
||
|
.slot_reset = nvme_slot_reset,
|
||
|
.resume = nvme_error_resume,
|
||
|
.reset_prepare = nvme_reset_prepare,
|
||
|
.reset_done = nvme_reset_done,
|
||
|
};
|
||
|
|
||
|
static const struct pci_device_id nvme_id_table[] = {
|
||
|
{ PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
|
||
|
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
||
|
NVME_QUIRK_DEALLOCATE_ZEROES, },
|
||
|
{ PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
|
||
|
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
||
|
NVME_QUIRK_DEALLOCATE_ZEROES, },
|
||
|
{ PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
|
||
|
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
||
|
NVME_QUIRK_DEALLOCATE_ZEROES |
|
||
|
NVME_QUIRK_IGNORE_DEV_SUBNQN, },
|
||
|
{ PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
|
||
|
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
||
|
NVME_QUIRK_DEALLOCATE_ZEROES, },
|
||
|
{ PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
|
||
|
.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
|
||
|
NVME_QUIRK_MEDIUM_PRIO_SQ |
|
||
|
NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
|
||
|
NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||
|
{ PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
|
||
|
.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
|
||
|
{ PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
|
||
|
.driver_data = NVME_QUIRK_IDENTIFY_CNS |
|
||
|
NVME_QUIRK_DISABLE_WRITE_ZEROES |
|
||
|
NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
|
||
|
.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
|
||
|
NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
|
||
|
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
|
||
|
NVME_QUIRK_NO_NS_DESC_LIST, },
|
||
|
{ PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
|
||
|
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
|
||
|
{ PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
|
||
|
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
|
||
|
{ PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
|
||
|
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
|
||
|
{ PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
|
||
|
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
|
||
|
{ PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
|
||
|
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
|
||
|
NVME_QUIRK_DISABLE_WRITE_ZEROES|
|
||
|
NVME_QUIRK_IGNORE_DEV_SUBNQN, },
|
||
|
{ PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
|
||
|
.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
|
||
|
NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
|
||
|
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||
|
{ PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
|
||
|
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||
|
{ PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
|
||
|
.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
|
||
|
NVME_QUIRK_IGNORE_DEV_SUBNQN, },
|
||
|
{ PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
|
||
|
.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
|
||
|
NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
|
||
|
.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
|
||
|
NVME_QUIRK_IGNORE_DEV_SUBNQN, },
|
||
|
{ PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
|
||
|
.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
|
||
|
{ PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
|
||
|
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||
|
{ PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
|
||
|
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||
|
{ PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
|
||
|
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||
|
{ PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
|
||
|
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
|
||
|
NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
|
||
|
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||
|
{ PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
|
||
|
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||
|
{ PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
|
||
|
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||
|
{ PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
|
||
|
.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
|
||
|
{ PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
|
||
|
.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
|
||
|
{ PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
|
||
|
.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
|
||
|
{ PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
|
||
|
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||
|
{ PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
|
||
|
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||
|
{ PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
|
||
|
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||
|
{ PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
|
||
|
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||
|
{ PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
|
||
|
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||
|
{ PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
|
||
|
.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
|
||
|
{ PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
|
||
|
.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
|
||
|
{ PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID |
|
||
|
NVME_QUIRK_IGNORE_DEV_SUBNQN, },
|
||
|
{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
|
||
|
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||
|
{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
|
||
|
.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
|
||
|
{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
|
||
|
.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
|
||
|
{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
|
||
|
.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
|
||
|
{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
|
||
|
.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
|
||
|
{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
|
||
|
.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
|
||
|
{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
|
||
|
.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
|
||
|
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
|
||
|
.driver_data = NVME_QUIRK_SINGLE_VECTOR },
|
||
|
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
|
||
|
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
|
||
|
.driver_data = NVME_QUIRK_SINGLE_VECTOR |
|
||
|
NVME_QUIRK_128_BYTES_SQES |
|
||
|
NVME_QUIRK_SHARED_TAGS |
|
||
|
NVME_QUIRK_SKIP_CID_GEN },
|
||
|
{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
|
||
|
{ 0, }
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(pci, nvme_id_table);
|
||
|
|
||
|
static struct pci_driver nvme_driver = {
|
||
|
.name = "nvme",
|
||
|
.id_table = nvme_id_table,
|
||
|
.probe = nvme_probe,
|
||
|
.remove = nvme_remove,
|
||
|
.shutdown = nvme_shutdown,
|
||
|
#ifdef CONFIG_PM_SLEEP
|
||
|
.driver = {
|
||
|
.pm = &nvme_dev_pm_ops,
|
||
|
},
|
||
|
#endif
|
||
|
.sriov_configure = pci_sriov_configure_simple,
|
||
|
.err_handler = &nvme_err_handler,
|
||
|
};
|
||
|
|
||
|
static int __init nvme_init(void)
|
||
|
{
|
||
|
BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
|
||
|
BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
|
||
|
BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
|
||
|
BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
|
||
|
BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) >
|
||
|
S8_MAX);
|
||
|
|
||
|
return pci_register_driver(&nvme_driver);
|
||
|
}
|
||
|
|
||
|
static void __exit nvme_exit(void)
|
||
|
{
|
||
|
pci_unregister_driver(&nvme_driver);
|
||
|
flush_workqueue(nvme_wq);
|
||
|
}
|
||
|
|
||
|
MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_VERSION("1.0");
|
||
|
module_init(nvme_init);
|
||
|
module_exit(nvme_exit);
|