linuxdebug/drivers/net/wireless/rsi/rsi_91x_hal.c

1169 lines
31 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
/*
* Copyright (c) 2014 Redpine Signals Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/firmware.h>
#include <net/bluetooth/bluetooth.h>
#include "rsi_mgmt.h"
#include "rsi_hal.h"
#include "rsi_sdio.h"
#include "rsi_common.h"
/* FLASH Firmware */
static struct ta_metadata metadata_flash_content[] = {
{"flash_content", 0x00010000},
{"rsi/rs9113_wlan_qspi.rps", 0x00010000},
{"rsi/rs9113_wlan_bt_dual_mode.rps", 0x00010000},
{"flash_content", 0x00010000},
{"rsi/rs9113_ap_bt_dual_mode.rps", 0x00010000},
};
static struct ta_metadata metadata[] = {{"pmemdata_dummy", 0x00000000},
{"rsi/rs9116_wlan.rps", 0x00000000},
{"rsi/rs9116_wlan_bt_classic.rps", 0x00000000},
{"rsi/pmemdata_dummy", 0x00000000},
{"rsi/rs9116_wlan_bt_classic.rps", 0x00000000}
};
int rsi_send_pkt_to_bus(struct rsi_common *common, struct sk_buff *skb)
{
struct rsi_hw *adapter = common->priv;
int status;
if (common->coex_mode > 1)
mutex_lock(&common->tx_bus_mutex);
status = adapter->host_intf_ops->write_pkt(common->priv,
skb->data, skb->len);
if (common->coex_mode > 1)
mutex_unlock(&common->tx_bus_mutex);
return status;
}
int rsi_prepare_mgmt_desc(struct rsi_common *common, struct sk_buff *skb)
{
struct rsi_hw *adapter = common->priv;
struct ieee80211_hdr *wh = NULL;
struct ieee80211_tx_info *info;
struct ieee80211_conf *conf = &adapter->hw->conf;
struct ieee80211_vif *vif;
struct rsi_mgmt_desc *mgmt_desc;
struct skb_info *tx_params;
struct rsi_xtended_desc *xtend_desc = NULL;
u8 header_size;
u32 dword_align_bytes = 0;
if (skb->len > MAX_MGMT_PKT_SIZE) {
rsi_dbg(INFO_ZONE, "%s: Dropping mgmt pkt > 512\n", __func__);
return -EINVAL;
}
info = IEEE80211_SKB_CB(skb);
tx_params = (struct skb_info *)info->driver_data;
vif = tx_params->vif;
/* Update header size */
header_size = FRAME_DESC_SZ + sizeof(struct rsi_xtended_desc);
if (header_size > skb_headroom(skb)) {
rsi_dbg(ERR_ZONE,
"%s: Failed to add extended descriptor\n",
__func__);
return -ENOSPC;
}
skb_push(skb, header_size);
dword_align_bytes = ((unsigned long)skb->data & 0x3f);
if (dword_align_bytes > skb_headroom(skb)) {
rsi_dbg(ERR_ZONE,
"%s: Failed to add dword align\n", __func__);
return -ENOSPC;
}
skb_push(skb, dword_align_bytes);
header_size += dword_align_bytes;
tx_params->internal_hdr_size = header_size;
memset(&skb->data[0], 0, header_size);
wh = (struct ieee80211_hdr *)&skb->data[header_size];
mgmt_desc = (struct rsi_mgmt_desc *)skb->data;
xtend_desc = (struct rsi_xtended_desc *)&skb->data[FRAME_DESC_SZ];
rsi_set_len_qno(&mgmt_desc->len_qno, (skb->len - FRAME_DESC_SZ),
RSI_WIFI_MGMT_Q);
mgmt_desc->frame_type = TX_DOT11_MGMT;
mgmt_desc->header_len = MIN_802_11_HDR_LEN;
mgmt_desc->xtend_desc_size = header_size - FRAME_DESC_SZ;
if (ieee80211_is_probe_req(wh->frame_control))
mgmt_desc->frame_info = cpu_to_le16(RSI_INSERT_SEQ_IN_FW);
mgmt_desc->frame_info |= cpu_to_le16(RATE_INFO_ENABLE);
if (is_broadcast_ether_addr(wh->addr1))
mgmt_desc->frame_info |= cpu_to_le16(RSI_BROADCAST_PKT);
mgmt_desc->seq_ctrl =
cpu_to_le16(IEEE80211_SEQ_TO_SN(le16_to_cpu(wh->seq_ctrl)));
if ((common->band == NL80211_BAND_2GHZ) && !common->p2p_enabled)
mgmt_desc->rate_info = cpu_to_le16(RSI_RATE_1);
else
mgmt_desc->rate_info = cpu_to_le16(RSI_RATE_6);
if (conf_is_ht40(conf))
mgmt_desc->bbp_info = cpu_to_le16(FULL40M_ENABLE);
if (ieee80211_is_probe_resp(wh->frame_control)) {
mgmt_desc->misc_flags |= (RSI_ADD_DELTA_TSF_VAP_ID |
RSI_FETCH_RETRY_CNT_FRM_HST);
#define PROBE_RESP_RETRY_CNT 3
xtend_desc->retry_cnt = PROBE_RESP_RETRY_CNT;
}
if (((vif->type == NL80211_IFTYPE_AP) ||
(vif->type == NL80211_IFTYPE_P2P_GO)) &&
(ieee80211_is_action(wh->frame_control))) {
struct rsi_sta *rsta = rsi_find_sta(common, wh->addr1);
if (rsta)
mgmt_desc->sta_id = tx_params->sta_id;
else
return -EINVAL;
}
mgmt_desc->rate_info |=
cpu_to_le16((tx_params->vap_id << RSI_DESC_VAP_ID_OFST) &
RSI_DESC_VAP_ID_MASK);
return 0;
}
/* This function prepares descriptor for given data packet */
int rsi_prepare_data_desc(struct rsi_common *common, struct sk_buff *skb)
{
struct rsi_hw *adapter = common->priv;
struct ieee80211_vif *vif;
struct ieee80211_hdr *wh = NULL;
struct ieee80211_tx_info *info;
struct skb_info *tx_params;
struct rsi_data_desc *data_desc;
struct rsi_xtended_desc *xtend_desc;
u8 ieee80211_size = MIN_802_11_HDR_LEN;
u8 header_size;
u8 vap_id = 0;
u8 dword_align_bytes;
bool tx_eapol;
u16 seq_num;
info = IEEE80211_SKB_CB(skb);
vif = info->control.vif;
tx_params = (struct skb_info *)info->driver_data;
tx_eapol = IEEE80211_SKB_CB(skb)->control.flags &
IEEE80211_TX_CTRL_PORT_CTRL_PROTO;
header_size = FRAME_DESC_SZ + sizeof(struct rsi_xtended_desc);
if (header_size > skb_headroom(skb)) {
rsi_dbg(ERR_ZONE, "%s: Unable to send pkt\n", __func__);
return -ENOSPC;
}
skb_push(skb, header_size);
dword_align_bytes = ((unsigned long)skb->data & 0x3f);
if (header_size > skb_headroom(skb)) {
rsi_dbg(ERR_ZONE, "%s: Not enough headroom\n", __func__);
return -ENOSPC;
}
skb_push(skb, dword_align_bytes);
header_size += dword_align_bytes;
tx_params->internal_hdr_size = header_size;
data_desc = (struct rsi_data_desc *)skb->data;
memset(data_desc, 0, header_size);
xtend_desc = (struct rsi_xtended_desc *)&skb->data[FRAME_DESC_SZ];
wh = (struct ieee80211_hdr *)&skb->data[header_size];
seq_num = IEEE80211_SEQ_TO_SN(le16_to_cpu(wh->seq_ctrl));
data_desc->xtend_desc_size = header_size - FRAME_DESC_SZ;
if (ieee80211_is_data_qos(wh->frame_control)) {
ieee80211_size += 2;
data_desc->mac_flags |= cpu_to_le16(RSI_QOS_ENABLE);
}
if (((vif->type == NL80211_IFTYPE_STATION) ||
(vif->type == NL80211_IFTYPE_P2P_CLIENT)) &&
(adapter->ps_state == PS_ENABLED))
wh->frame_control |= cpu_to_le16(RSI_SET_PS_ENABLE);
if ((!(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)) &&
tx_params->have_key) {
if (rsi_is_cipher_wep(common))
ieee80211_size += 4;
else
ieee80211_size += 8;
data_desc->mac_flags |= cpu_to_le16(RSI_ENCRYPT_PKT);
}
rsi_set_len_qno(&data_desc->len_qno, (skb->len - FRAME_DESC_SZ),
RSI_WIFI_DATA_Q);
data_desc->header_len = ieee80211_size;
if (common->rate_config[common->band].fixed_enabled) {
/* Send fixed rate */
u16 fixed_rate = common->rate_config[common->band].fixed_hw_rate;
data_desc->frame_info = cpu_to_le16(RATE_INFO_ENABLE);
data_desc->rate_info = cpu_to_le16(fixed_rate);
if (conf_is_ht40(&common->priv->hw->conf))
data_desc->bbp_info = cpu_to_le16(FULL40M_ENABLE);
if (common->vif_info[0].sgi && (fixed_rate & 0x100)) {
/* Only MCS rates */
data_desc->rate_info |=
cpu_to_le16(ENABLE_SHORTGI_RATE);
}
}
if (tx_eapol) {
rsi_dbg(INFO_ZONE, "*** Tx EAPOL ***\n");
data_desc->frame_info = cpu_to_le16(RATE_INFO_ENABLE);
if (common->band == NL80211_BAND_5GHZ)
data_desc->rate_info = cpu_to_le16(RSI_RATE_6);
else
data_desc->rate_info = cpu_to_le16(RSI_RATE_1);
data_desc->mac_flags |= cpu_to_le16(RSI_REKEY_PURPOSE);
data_desc->misc_flags |= RSI_FETCH_RETRY_CNT_FRM_HST;
#define EAPOL_RETRY_CNT 15
xtend_desc->retry_cnt = EAPOL_RETRY_CNT;
if (common->eapol4_confirm)
skb->priority = VO_Q;
else
rsi_set_len_qno(&data_desc->len_qno,
(skb->len - FRAME_DESC_SZ),
RSI_WIFI_MGMT_Q);
if (((skb->len - header_size) == EAPOL4_PACKET_LEN) ||
((skb->len - header_size) == EAPOL4_PACKET_LEN - 2)) {
data_desc->misc_flags |=
RSI_DESC_REQUIRE_CFM_TO_HOST;
xtend_desc->confirm_frame_type = EAPOL4_CONFIRM;
}
}
data_desc->mac_flags |= cpu_to_le16(seq_num & 0xfff);
data_desc->qid_tid = ((skb->priority & 0xf) |
((tx_params->tid & 0xf) << 4));
data_desc->sta_id = tx_params->sta_id;
if ((is_broadcast_ether_addr(wh->addr1)) ||
(is_multicast_ether_addr(wh->addr1))) {
data_desc->frame_info = cpu_to_le16(RATE_INFO_ENABLE);
data_desc->frame_info |= cpu_to_le16(RSI_BROADCAST_PKT);
data_desc->sta_id = vap_id;
if ((vif->type == NL80211_IFTYPE_AP) ||
(vif->type == NL80211_IFTYPE_P2P_GO)) {
if (common->band == NL80211_BAND_5GHZ)
data_desc->rate_info = cpu_to_le16(RSI_RATE_6);
else
data_desc->rate_info = cpu_to_le16(RSI_RATE_1);
}
}
if (((vif->type == NL80211_IFTYPE_AP) ||
(vif->type == NL80211_IFTYPE_P2P_GO)) &&
(ieee80211_has_moredata(wh->frame_control)))
data_desc->frame_info |= cpu_to_le16(MORE_DATA_PRESENT);
data_desc->rate_info |=
cpu_to_le16((tx_params->vap_id << RSI_DESC_VAP_ID_OFST) &
RSI_DESC_VAP_ID_MASK);
return 0;
}
/* This function sends received data packet from driver to device */
int rsi_send_data_pkt(struct rsi_common *common, struct sk_buff *skb)
{
struct rsi_hw *adapter = common->priv;
struct ieee80211_vif *vif;
struct ieee80211_tx_info *info;
int status = -EINVAL;
if (!skb)
return 0;
if (common->iface_down)
goto err;
info = IEEE80211_SKB_CB(skb);
if (!info->control.vif)
goto err;
vif = info->control.vif;
if (((vif->type == NL80211_IFTYPE_STATION) ||
(vif->type == NL80211_IFTYPE_P2P_CLIENT)) &&
(!vif->cfg.assoc))
goto err;
status = rsi_send_pkt_to_bus(common, skb);
if (status)
rsi_dbg(ERR_ZONE, "%s: Failed to write pkt\n", __func__);
err:
++common->tx_stats.total_tx_pkt_freed[skb->priority];
rsi_indicate_tx_status(adapter, skb, status);
return status;
}
/**
* rsi_send_mgmt_pkt() - This functions sends the received management packet
* from driver to device.
* @common: Pointer to the driver private structure.
* @skb: Pointer to the socket buffer structure.
*
* Return: status: 0 on success, -1 on failure.
*/
int rsi_send_mgmt_pkt(struct rsi_common *common,
struct sk_buff *skb)
{
struct rsi_hw *adapter = common->priv;
struct ieee80211_hdr *wh;
struct ieee80211_tx_info *info;
struct skb_info *tx_params;
struct rsi_mgmt_desc *mgmt_desc;
struct rsi_xtended_desc *xtend_desc;
int status = -E2BIG;
u8 header_size;
info = IEEE80211_SKB_CB(skb);
tx_params = (struct skb_info *)info->driver_data;
header_size = tx_params->internal_hdr_size;
if (tx_params->flags & INTERNAL_MGMT_PKT) {
status = adapter->host_intf_ops->write_pkt(common->priv,
(u8 *)skb->data,
skb->len);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to write the packet\n", __func__);
}
dev_kfree_skb(skb);
return status;
}
wh = (struct ieee80211_hdr *)&skb->data[header_size];
mgmt_desc = (struct rsi_mgmt_desc *)skb->data;
xtend_desc = (struct rsi_xtended_desc *)&skb->data[FRAME_DESC_SZ];
/* Indicate to firmware to give cfm for probe */
if (ieee80211_is_probe_req(wh->frame_control) &&
!info->control.vif->cfg.assoc) {
rsi_dbg(INFO_ZONE,
"%s: blocking mgmt queue\n", __func__);
mgmt_desc->misc_flags = RSI_DESC_REQUIRE_CFM_TO_HOST;
xtend_desc->confirm_frame_type = PROBEREQ_CONFIRM;
common->mgmt_q_block = true;
rsi_dbg(INFO_ZONE, "Mgmt queue blocked\n");
}
status = rsi_send_pkt_to_bus(common, skb);
if (status)
rsi_dbg(ERR_ZONE, "%s: Failed to write the packet\n", __func__);
rsi_indicate_tx_status(common->priv, skb, status);
return status;
}
int rsi_send_bt_pkt(struct rsi_common *common, struct sk_buff *skb)
{
int status = -EINVAL;
u8 header_size = 0;
struct rsi_bt_desc *bt_desc;
u8 queueno = ((skb->data[1] >> 4) & 0xf);
if (queueno == RSI_BT_MGMT_Q) {
status = rsi_send_pkt_to_bus(common, skb);
if (status)
rsi_dbg(ERR_ZONE, "%s: Failed to write bt mgmt pkt\n",
__func__);
goto out;
}
header_size = FRAME_DESC_SZ;
if (header_size > skb_headroom(skb)) {
rsi_dbg(ERR_ZONE, "%s: Not enough headroom\n", __func__);
status = -ENOSPC;
goto out;
}
skb_push(skb, header_size);
memset(skb->data, 0, header_size);
bt_desc = (struct rsi_bt_desc *)skb->data;
rsi_set_len_qno(&bt_desc->len_qno, (skb->len - FRAME_DESC_SZ),
RSI_BT_DATA_Q);
bt_desc->bt_pkt_type = cpu_to_le16(bt_cb(skb)->pkt_type);
status = rsi_send_pkt_to_bus(common, skb);
if (status)
rsi_dbg(ERR_ZONE, "%s: Failed to write bt pkt\n", __func__);
out:
dev_kfree_skb(skb);
return status;
}
int rsi_prepare_beacon(struct rsi_common *common, struct sk_buff *skb)
{
struct rsi_hw *adapter = (struct rsi_hw *)common->priv;
struct rsi_data_desc *bcn_frm;
struct ieee80211_hw *hw = common->priv->hw;
struct ieee80211_conf *conf = &hw->conf;
struct ieee80211_vif *vif;
struct sk_buff *mac_bcn;
u8 vap_id = 0, i;
u16 tim_offset = 0;
for (i = 0; i < RSI_MAX_VIFS; i++) {
vif = adapter->vifs[i];
if (!vif)
continue;
if ((vif->type == NL80211_IFTYPE_AP) ||
(vif->type == NL80211_IFTYPE_P2P_GO))
break;
}
if (!vif)
return -EINVAL;
mac_bcn = ieee80211_beacon_get_tim(adapter->hw,
vif,
&tim_offset, NULL, 0);
if (!mac_bcn) {
rsi_dbg(ERR_ZONE, "Failed to get beacon from mac80211\n");
return -EINVAL;
}
common->beacon_cnt++;
bcn_frm = (struct rsi_data_desc *)skb->data;
rsi_set_len_qno(&bcn_frm->len_qno, mac_bcn->len, RSI_WIFI_DATA_Q);
bcn_frm->header_len = MIN_802_11_HDR_LEN;
bcn_frm->frame_info = cpu_to_le16(RSI_DATA_DESC_MAC_BBP_INFO |
RSI_DATA_DESC_NO_ACK_IND |
RSI_DATA_DESC_BEACON_FRAME |
RSI_DATA_DESC_INSERT_TSF |
RSI_DATA_DESC_INSERT_SEQ_NO |
RATE_INFO_ENABLE);
bcn_frm->rate_info = cpu_to_le16(vap_id << 14);
bcn_frm->qid_tid = BEACON_HW_Q;
if (conf_is_ht40_plus(conf)) {
bcn_frm->bbp_info = cpu_to_le16(LOWER_20_ENABLE);
bcn_frm->bbp_info |= cpu_to_le16(LOWER_20_ENABLE >> 12);
} else if (conf_is_ht40_minus(conf)) {
bcn_frm->bbp_info = cpu_to_le16(UPPER_20_ENABLE);
bcn_frm->bbp_info |= cpu_to_le16(UPPER_20_ENABLE >> 12);
}
if (common->band == NL80211_BAND_2GHZ)
bcn_frm->rate_info |= cpu_to_le16(RSI_RATE_1);
else
bcn_frm->rate_info |= cpu_to_le16(RSI_RATE_6);
if (mac_bcn->data[tim_offset + 2] == 0)
bcn_frm->frame_info |= cpu_to_le16(RSI_DATA_DESC_DTIM_BEACON);
memcpy(&skb->data[FRAME_DESC_SZ], mac_bcn->data, mac_bcn->len);
skb_put(skb, mac_bcn->len + FRAME_DESC_SZ);
dev_kfree_skb(mac_bcn);
return 0;
}
static void bl_cmd_timeout(struct timer_list *t)
{
struct rsi_hw *adapter = from_timer(adapter, t, bl_cmd_timer);
adapter->blcmd_timer_expired = true;
del_timer(&adapter->bl_cmd_timer);
}
static int bl_start_cmd_timer(struct rsi_hw *adapter, u32 timeout)
{
timer_setup(&adapter->bl_cmd_timer, bl_cmd_timeout, 0);
adapter->bl_cmd_timer.expires = (msecs_to_jiffies(timeout) + jiffies);
adapter->blcmd_timer_expired = false;
add_timer(&adapter->bl_cmd_timer);
return 0;
}
static int bl_stop_cmd_timer(struct rsi_hw *adapter)
{
adapter->blcmd_timer_expired = false;
if (timer_pending(&adapter->bl_cmd_timer))
del_timer(&adapter->bl_cmd_timer);
return 0;
}
static int bl_write_cmd(struct rsi_hw *adapter, u8 cmd, u8 exp_resp,
u16 *cmd_resp)
{
struct rsi_host_intf_ops *hif_ops = adapter->host_intf_ops;
u32 regin_val = 0, regout_val = 0;
u32 regin_input = 0;
u8 output = 0;
int status;
regin_input = (REGIN_INPUT | adapter->priv->coex_mode);
while (!adapter->blcmd_timer_expired) {
regin_val = 0;
status = hif_ops->master_reg_read(adapter, SWBL_REGIN,
&regin_val, 2);
if (status < 0) {
rsi_dbg(ERR_ZONE,
"%s: Command %0x REGIN reading failed..\n",
__func__, cmd);
return status;
}
mdelay(1);
if ((regin_val >> 12) != REGIN_VALID)
break;
}
if (adapter->blcmd_timer_expired) {
rsi_dbg(ERR_ZONE,
"%s: Command %0x REGIN reading timed out..\n",
__func__, cmd);
return -ETIMEDOUT;
}
rsi_dbg(INFO_ZONE,
"Issuing write to Regin val:%0x sending cmd:%0x\n",
regin_val, (cmd | regin_input << 8));
status = hif_ops->master_reg_write(adapter, SWBL_REGIN,
(cmd | regin_input << 8), 2);
if (status < 0)
return status;
mdelay(1);
if (cmd == LOAD_HOSTED_FW || cmd == JUMP_TO_ZERO_PC) {
/* JUMP_TO_ZERO_PC doesn't expect
* any response. So return from here
*/
return 0;
}
while (!adapter->blcmd_timer_expired) {
regout_val = 0;
status = hif_ops->master_reg_read(adapter, SWBL_REGOUT,
&regout_val, 2);
if (status < 0) {
rsi_dbg(ERR_ZONE,
"%s: Command %0x REGOUT reading failed..\n",
__func__, cmd);
return status;
}
mdelay(1);
if ((regout_val >> 8) == REGOUT_VALID)
break;
}
if (adapter->blcmd_timer_expired) {
rsi_dbg(ERR_ZONE,
"%s: Command %0x REGOUT reading timed out..\n",
__func__, cmd);
return status;
}
*cmd_resp = ((u16 *)&regout_val)[0] & 0xffff;
output = ((u8 *)&regout_val)[0] & 0xff;
status = hif_ops->master_reg_write(adapter, SWBL_REGOUT,
(cmd | REGOUT_INVALID << 8), 2);
if (status < 0) {
rsi_dbg(ERR_ZONE,
"%s: Command %0x REGOUT writing failed..\n",
__func__, cmd);
return status;
}
mdelay(1);
if (output != exp_resp) {
rsi_dbg(ERR_ZONE,
"%s: Recvd resp %x for cmd %0x\n",
__func__, output, cmd);
return -EINVAL;
}
rsi_dbg(INFO_ZONE,
"%s: Recvd Expected resp %x for cmd %0x\n",
__func__, output, cmd);
return 0;
}
static int bl_cmd(struct rsi_hw *adapter, u8 cmd, u8 exp_resp, char *str)
{
u16 regout_val = 0;
u32 timeout;
int status;
if ((cmd == EOF_REACHED) || (cmd == PING_VALID) || (cmd == PONG_VALID))
timeout = BL_BURN_TIMEOUT;
else
timeout = BL_CMD_TIMEOUT;
bl_start_cmd_timer(adapter, timeout);
status = bl_write_cmd(adapter, cmd, exp_resp, &regout_val);
if (status < 0) {
bl_stop_cmd_timer(adapter);
rsi_dbg(ERR_ZONE,
"%s: Command %s (%0x) writing failed..\n",
__func__, str, cmd);
return status;
}
bl_stop_cmd_timer(adapter);
return 0;
}
#define CHECK_SUM_OFFSET 20
#define LEN_OFFSET 8
#define ADDR_OFFSET 16
static int bl_write_header(struct rsi_hw *adapter, u8 *flash_content,
u32 content_size)
{
struct rsi_host_intf_ops *hif_ops = adapter->host_intf_ops;
struct bl_header *bl_hdr;
u32 write_addr, write_len;
int status;
bl_hdr = kzalloc(sizeof(*bl_hdr), GFP_KERNEL);
if (!bl_hdr)
return -ENOMEM;
bl_hdr->flags = 0;
bl_hdr->image_no = cpu_to_le32(adapter->priv->coex_mode);
bl_hdr->check_sum =
cpu_to_le32(*(u32 *)&flash_content[CHECK_SUM_OFFSET]);
bl_hdr->flash_start_address =
cpu_to_le32(*(u32 *)&flash_content[ADDR_OFFSET]);
bl_hdr->flash_len = cpu_to_le32(*(u32 *)&flash_content[LEN_OFFSET]);
write_len = sizeof(struct bl_header);
if (adapter->rsi_host_intf == RSI_HOST_INTF_USB) {
write_addr = PING_BUFFER_ADDRESS;
status = hif_ops->write_reg_multiple(adapter, write_addr,
(u8 *)bl_hdr, write_len);
if (status < 0) {
rsi_dbg(ERR_ZONE,
"%s: Failed to load Version/CRC structure\n",
__func__);
goto fail;
}
} else {
write_addr = PING_BUFFER_ADDRESS >> 16;
status = hif_ops->master_access_msword(adapter, write_addr);
if (status < 0) {
rsi_dbg(ERR_ZONE,
"%s: Unable to set ms word to common reg\n",
__func__);
goto fail;
}
write_addr = RSI_SD_REQUEST_MASTER |
(PING_BUFFER_ADDRESS & 0xFFFF);
status = hif_ops->write_reg_multiple(adapter, write_addr,
(u8 *)bl_hdr, write_len);
if (status < 0) {
rsi_dbg(ERR_ZONE,
"%s: Failed to load Version/CRC structure\n",
__func__);
goto fail;
}
}
status = 0;
fail:
kfree(bl_hdr);
return status;
}
static u32 read_flash_capacity(struct rsi_hw *adapter)
{
u32 flash_sz = 0;
if ((adapter->host_intf_ops->master_reg_read(adapter, FLASH_SIZE_ADDR,
&flash_sz, 2)) < 0) {
rsi_dbg(ERR_ZONE,
"%s: Flash size reading failed..\n",
__func__);
return 0;
}
rsi_dbg(INIT_ZONE, "Flash capacity: %d KiloBytes\n", flash_sz);
return (flash_sz * 1024); /* Return size in kbytes */
}
static int ping_pong_write(struct rsi_hw *adapter, u8 cmd, u8 *addr, u32 size)
{
struct rsi_host_intf_ops *hif_ops = adapter->host_intf_ops;
u32 block_size = adapter->block_size;
u32 cmd_addr;
u16 cmd_resp, cmd_req;
u8 *str;
int status;
if (cmd == PING_WRITE) {
cmd_addr = PING_BUFFER_ADDRESS;
cmd_resp = PONG_AVAIL;
cmd_req = PING_VALID;
str = "PING_VALID";
} else {
cmd_addr = PONG_BUFFER_ADDRESS;
cmd_resp = PING_AVAIL;
cmd_req = PONG_VALID;
str = "PONG_VALID";
}
status = hif_ops->load_data_master_write(adapter, cmd_addr, size,
block_size, addr);
if (status) {
rsi_dbg(ERR_ZONE, "%s: Unable to write blk at addr %0x\n",
__func__, *addr);
return status;
}
status = bl_cmd(adapter, cmd_req, cmd_resp, str);
if (status)
return status;
return 0;
}
static int auto_fw_upgrade(struct rsi_hw *adapter, u8 *flash_content,
u32 content_size)
{
u8 cmd;
u32 temp_content_size, num_flash, index;
u32 flash_start_address;
int status;
if (content_size > MAX_FLASH_FILE_SIZE) {
rsi_dbg(ERR_ZONE,
"%s: Flash Content size is more than 400K %u\n",
__func__, MAX_FLASH_FILE_SIZE);
return -EINVAL;
}
flash_start_address = *(u32 *)&flash_content[FLASH_START_ADDRESS];
rsi_dbg(INFO_ZONE, "flash start address: %08x\n", flash_start_address);
if (flash_start_address < FW_IMAGE_MIN_ADDRESS) {
rsi_dbg(ERR_ZONE,
"%s: Fw image Flash Start Address is less than 64K\n",
__func__);
return -EINVAL;
}
if (flash_start_address % FLASH_SECTOR_SIZE) {
rsi_dbg(ERR_ZONE,
"%s: Flash Start Address is not multiple of 4K\n",
__func__);
return -EINVAL;
}
if ((flash_start_address + content_size) > adapter->flash_capacity) {
rsi_dbg(ERR_ZONE,
"%s: Flash Content will cross max flash size\n",
__func__);
return -EINVAL;
}
temp_content_size = content_size;
num_flash = content_size / FLASH_WRITE_CHUNK_SIZE;
rsi_dbg(INFO_ZONE, "content_size: %d, num_flash: %d\n",
content_size, num_flash);
for (index = 0; index <= num_flash; index++) {
rsi_dbg(INFO_ZONE, "flash index: %d\n", index);
if (index != num_flash) {
content_size = FLASH_WRITE_CHUNK_SIZE;
rsi_dbg(INFO_ZONE, "QSPI content_size:%d\n",
content_size);
} else {
content_size =
temp_content_size % FLASH_WRITE_CHUNK_SIZE;
rsi_dbg(INFO_ZONE,
"Writing last sector content_size:%d\n",
content_size);
if (!content_size) {
rsi_dbg(INFO_ZONE, "instruction size zero\n");
break;
}
}
if (index % 2)
cmd = PING_WRITE;
else
cmd = PONG_WRITE;
status = ping_pong_write(adapter, cmd, flash_content,
content_size);
if (status) {
rsi_dbg(ERR_ZONE, "%s: Unable to load %d block\n",
__func__, index);
return status;
}
rsi_dbg(INFO_ZONE,
"%s: Successfully loaded %d instructions\n",
__func__, index);
flash_content += content_size;
}
status = bl_cmd(adapter, EOF_REACHED, FW_LOADING_SUCCESSFUL,
"EOF_REACHED");
if (status)
return status;
rsi_dbg(INFO_ZONE, "FW loading is done and FW is running..\n");
return 0;
}
static int rsi_hal_prepare_fwload(struct rsi_hw *adapter)
{
struct rsi_host_intf_ops *hif_ops = adapter->host_intf_ops;
u32 regout_val = 0;
int status;
bl_start_cmd_timer(adapter, BL_CMD_TIMEOUT);
while (!adapter->blcmd_timer_expired) {
status = hif_ops->master_reg_read(adapter, SWBL_REGOUT,
&regout_val,
RSI_COMMON_REG_SIZE);
if (status < 0) {
bl_stop_cmd_timer(adapter);
rsi_dbg(ERR_ZONE,
"%s: REGOUT read failed\n", __func__);
return status;
}
mdelay(1);
if ((regout_val >> 8) == REGOUT_VALID)
break;
}
if (adapter->blcmd_timer_expired) {
rsi_dbg(ERR_ZONE, "%s: REGOUT read timedout\n", __func__);
rsi_dbg(ERR_ZONE,
"%s: Soft boot loader not present\n", __func__);
return -ETIMEDOUT;
}
bl_stop_cmd_timer(adapter);
rsi_dbg(INFO_ZONE, "Received Board Version Number: %x\n",
(regout_val & 0xff));
status = hif_ops->master_reg_write(adapter, SWBL_REGOUT,
(REGOUT_INVALID |
REGOUT_INVALID << 8),
RSI_COMMON_REG_SIZE);
if (status < 0)
rsi_dbg(ERR_ZONE, "%s: REGOUT writing failed..\n", __func__);
else
rsi_dbg(INFO_ZONE,
"===> Device is ready to load firmware <===\n");
return status;
}
static int rsi_load_9113_firmware(struct rsi_hw *adapter)
{
struct rsi_common *common = adapter->priv;
const struct firmware *fw_entry = NULL;
u32 content_size;
u16 tmp_regout_val = 0;
struct ta_metadata *metadata_p;
int status;
status = bl_cmd(adapter, CONFIG_AUTO_READ_MODE, CMD_PASS,
"AUTO_READ_CMD");
if (status < 0)
return status;
adapter->flash_capacity = read_flash_capacity(adapter);
if (adapter->flash_capacity <= 0) {
rsi_dbg(ERR_ZONE,
"%s: Unable to read flash size from EEPROM\n",
__func__);
return -EINVAL;
}
metadata_p = &metadata_flash_content[adapter->priv->coex_mode];
rsi_dbg(INIT_ZONE, "%s: Loading file %s\n", __func__, metadata_p->name);
adapter->fw_file_name = metadata_p->name;
status = request_firmware(&fw_entry, metadata_p->name, adapter->device);
if (status < 0) {
rsi_dbg(ERR_ZONE, "%s: Failed to open file %s\n",
__func__, metadata_p->name);
return status;
}
content_size = fw_entry->size;
rsi_dbg(INFO_ZONE, "FW Length = %d bytes\n", content_size);
/* Get the firmware version */
common->lmac_ver.ver.info.fw_ver[0] =
fw_entry->data[LMAC_VER_OFFSET_9113] & 0xFF;
common->lmac_ver.ver.info.fw_ver[1] =
fw_entry->data[LMAC_VER_OFFSET_9113 + 1] & 0xFF;
common->lmac_ver.major =
fw_entry->data[LMAC_VER_OFFSET_9113 + 2] & 0xFF;
common->lmac_ver.release_num =
fw_entry->data[LMAC_VER_OFFSET_9113 + 3] & 0xFF;
common->lmac_ver.minor =
fw_entry->data[LMAC_VER_OFFSET_9113 + 4] & 0xFF;
common->lmac_ver.patch_num = 0;
rsi_print_version(common);
status = bl_write_header(adapter, (u8 *)fw_entry->data, content_size);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: RPS Image header loading failed\n",
__func__);
goto fail;
}
bl_start_cmd_timer(adapter, BL_CMD_TIMEOUT);
status = bl_write_cmd(adapter, CHECK_CRC, CMD_PASS, &tmp_regout_val);
if (status) {
bl_stop_cmd_timer(adapter);
rsi_dbg(ERR_ZONE,
"%s: CHECK_CRC Command writing failed..\n",
__func__);
if ((tmp_regout_val & 0xff) == CMD_FAIL) {
rsi_dbg(ERR_ZONE,
"CRC Fail.. Proceeding to Upgrade mode\n");
goto fw_upgrade;
}
}
bl_stop_cmd_timer(adapter);
status = bl_cmd(adapter, POLLING_MODE, CMD_PASS, "POLLING_MODE");
if (status)
goto fail;
load_image_cmd:
status = bl_cmd(adapter, LOAD_HOSTED_FW, LOADING_INITIATED,
"LOAD_HOSTED_FW");
if (status)
goto fail;
rsi_dbg(INFO_ZONE, "Load Image command passed..\n");
goto success;
fw_upgrade:
status = bl_cmd(adapter, BURN_HOSTED_FW, SEND_RPS_FILE, "FW_UPGRADE");
if (status)
goto fail;
rsi_dbg(INFO_ZONE, "Burn Command Pass.. Upgrading the firmware\n");
status = auto_fw_upgrade(adapter, (u8 *)fw_entry->data, content_size);
if (status == 0) {
rsi_dbg(ERR_ZONE, "Firmware upgradation Done\n");
goto load_image_cmd;
}
rsi_dbg(ERR_ZONE, "Firmware upgrade failed\n");
status = bl_cmd(adapter, CONFIG_AUTO_READ_MODE, CMD_PASS,
"AUTO_READ_MODE");
if (status)
goto fail;
success:
rsi_dbg(ERR_ZONE, "***** Firmware Loading successful *****\n");
release_firmware(fw_entry);
return 0;
fail:
rsi_dbg(ERR_ZONE, "##### Firmware loading failed #####\n");
release_firmware(fw_entry);
return status;
}
static int rsi_load_9116_firmware(struct rsi_hw *adapter)
{
struct rsi_common *common = adapter->priv;
struct rsi_host_intf_ops *hif_ops = adapter->host_intf_ops;
const struct firmware *fw_entry;
struct ta_metadata *metadata_p;
u8 *ta_firmware, *fw_p;
struct bootload_ds bootload_ds;
u32 instructions_sz, base_address;
u16 block_size = adapter->block_size;
u32 dest, len;
int status, cnt;
rsi_dbg(INIT_ZONE, "***** Load 9116 TA Instructions *****\n");
if (adapter->rsi_host_intf == RSI_HOST_INTF_USB) {
status = bl_cmd(adapter, POLLING_MODE, CMD_PASS,
"POLLING_MODE");
if (status < 0)
return status;
}
status = hif_ops->master_reg_write(adapter, MEM_ACCESS_CTRL_FROM_HOST,
RAM_384K_ACCESS_FROM_TA,
RSI_9116_REG_SIZE);
if (status < 0) {
rsi_dbg(ERR_ZONE, "%s: Unable to access full RAM memory\n",
__func__);
return status;
}
metadata_p = &metadata[adapter->priv->coex_mode];
rsi_dbg(INIT_ZONE, "%s: loading file %s\n", __func__, metadata_p->name);
status = request_firmware(&fw_entry, metadata_p->name, adapter->device);
if (status < 0) {
rsi_dbg(ERR_ZONE, "%s: Failed to open file %s\n",
__func__, metadata_p->name);
return status;
}
ta_firmware = kmemdup(fw_entry->data, fw_entry->size, GFP_KERNEL);
if (!ta_firmware) {
status = -ENOMEM;
goto fail_release_fw;
}
fw_p = ta_firmware;
instructions_sz = fw_entry->size;
rsi_dbg(INFO_ZONE, "FW Length = %d bytes\n", instructions_sz);
common->lmac_ver.major = ta_firmware[LMAC_VER_OFFSET_9116];
common->lmac_ver.minor = ta_firmware[LMAC_VER_OFFSET_9116 + 1];
common->lmac_ver.release_num = ta_firmware[LMAC_VER_OFFSET_9116 + 2];
common->lmac_ver.patch_num = ta_firmware[LMAC_VER_OFFSET_9116 + 3];
common->lmac_ver.ver.info.fw_ver[0] =
ta_firmware[LMAC_VER_OFFSET_9116 + 4];
if (instructions_sz % FW_ALIGN_SIZE)
instructions_sz +=
(FW_ALIGN_SIZE - (instructions_sz % FW_ALIGN_SIZE));
rsi_dbg(INFO_ZONE, "instructions_sz : %d\n", instructions_sz);
if (*(u16 *)fw_p == RSI_9116_FW_MAGIC_WORD) {
memcpy(&bootload_ds, fw_p, sizeof(struct bootload_ds));
fw_p += le16_to_cpu(bootload_ds.offset);
rsi_dbg(INFO_ZONE, "FW start = %x\n", *(u32 *)fw_p);
cnt = 0;
do {
rsi_dbg(ERR_ZONE, "%s: Loading chunk %d\n",
__func__, cnt);
dest = le32_to_cpu(bootload_ds.bl_entry[cnt].dst_addr);
len = le32_to_cpu(bootload_ds.bl_entry[cnt].control) &
RSI_BL_CTRL_LEN_MASK;
rsi_dbg(INFO_ZONE, "length %d destination %x\n",
len, dest);
status = hif_ops->load_data_master_write(adapter, dest,
len,
block_size,
fw_p);
if (status < 0) {
rsi_dbg(ERR_ZONE,
"Failed to load chunk %d\n", cnt);
break;
}
fw_p += len;
if (le32_to_cpu(bootload_ds.bl_entry[cnt].control) &
RSI_BL_CTRL_LAST_ENTRY)
break;
cnt++;
} while (1);
} else {
base_address = metadata_p->address;
status = hif_ops->load_data_master_write(adapter,
base_address,
instructions_sz,
block_size,
ta_firmware);
}
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Unable to load %s blk\n",
__func__, metadata_p->name);
goto fail_free_fw;
}
rsi_dbg(INIT_ZONE, "%s: Successfully loaded %s instructions\n",
__func__, metadata_p->name);
if (adapter->rsi_host_intf == RSI_HOST_INTF_SDIO) {
if (hif_ops->ta_reset(adapter))
rsi_dbg(ERR_ZONE, "Unable to put ta in reset\n");
} else {
if (bl_cmd(adapter, JUMP_TO_ZERO_PC,
CMD_PASS, "JUMP_TO_ZERO") < 0)
rsi_dbg(INFO_ZONE, "Jump to zero command failed\n");
else
rsi_dbg(INFO_ZONE, "Jump to zero command successful\n");
}
fail_free_fw:
kfree(ta_firmware);
fail_release_fw:
release_firmware(fw_entry);
return status;
}
int rsi_hal_device_init(struct rsi_hw *adapter)
{
struct rsi_common *common = adapter->priv;
int status;
switch (adapter->device_model) {
case RSI_DEV_9113:
status = rsi_hal_prepare_fwload(adapter);
if (status < 0)
return status;
if (rsi_load_9113_firmware(adapter)) {
rsi_dbg(ERR_ZONE,
"%s: Failed to load TA instructions\n",
__func__);
return -EINVAL;
}
break;
case RSI_DEV_9116:
status = rsi_hal_prepare_fwload(adapter);
if (status < 0)
return status;
if (rsi_load_9116_firmware(adapter)) {
rsi_dbg(ERR_ZONE,
"%s: Failed to load firmware to 9116 device\n",
__func__);
return -EINVAL;
}
break;
default:
return -EINVAL;
}
common->fsm_state = FSM_CARD_NOT_READY;
return 0;
}
EXPORT_SYMBOL_GPL(rsi_hal_device_init);