linuxdebug/drivers/net/wireless/marvell/libertas/cfg.c

2167 lines
53 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Implement cfg80211 ("iw") support.
*
* Copyright (C) 2009 M&N Solutions GmbH, 61191 Rosbach, Germany
* Holger Schurig <hs4233@mail.mn-solutions.de>
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/hardirq.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/slab.h>
#include <linux/ieee80211.h>
#include <net/cfg80211.h>
#include <asm/unaligned.h>
#include "decl.h"
#include "cfg.h"
#include "cmd.h"
#include "mesh.h"
#define CHAN2G(_channel, _freq, _flags) { \
.band = NL80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
static struct ieee80211_channel lbs_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
#define RATETAB_ENT(_rate, _hw_value, _flags) { \
.bitrate = (_rate), \
.hw_value = (_hw_value), \
.flags = (_flags), \
}
/* Table 6 in section 3.2.1.1 */
static struct ieee80211_rate lbs_rates[] = {
RATETAB_ENT(10, 0, 0),
RATETAB_ENT(20, 1, 0),
RATETAB_ENT(55, 2, 0),
RATETAB_ENT(110, 3, 0),
RATETAB_ENT(60, 9, 0),
RATETAB_ENT(90, 6, 0),
RATETAB_ENT(120, 7, 0),
RATETAB_ENT(180, 8, 0),
RATETAB_ENT(240, 9, 0),
RATETAB_ENT(360, 10, 0),
RATETAB_ENT(480, 11, 0),
RATETAB_ENT(540, 12, 0),
};
static struct ieee80211_supported_band lbs_band_2ghz = {
.channels = lbs_2ghz_channels,
.n_channels = ARRAY_SIZE(lbs_2ghz_channels),
.bitrates = lbs_rates,
.n_bitrates = ARRAY_SIZE(lbs_rates),
};
static const u32 cipher_suites[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
};
/* Time to stay on the channel */
#define LBS_DWELL_PASSIVE 100
#define LBS_DWELL_ACTIVE 40
/***************************************************************************
* Misc utility functions
*
* TLVs are Marvell specific. They are very similar to IEs, they have the
* same structure: type, length, data*. The only difference: for IEs, the
* type and length are u8, but for TLVs they're __le16.
*/
/*
* Convert NL80211's auth_type to the one from Libertas, see chapter 5.9.1
* in the firmware spec
*/
static int lbs_auth_to_authtype(enum nl80211_auth_type auth_type)
{
int ret = -ENOTSUPP;
switch (auth_type) {
case NL80211_AUTHTYPE_OPEN_SYSTEM:
case NL80211_AUTHTYPE_SHARED_KEY:
ret = auth_type;
break;
case NL80211_AUTHTYPE_AUTOMATIC:
ret = NL80211_AUTHTYPE_OPEN_SYSTEM;
break;
case NL80211_AUTHTYPE_NETWORK_EAP:
ret = 0x80;
break;
default:
/* silence compiler */
break;
}
return ret;
}
/*
* Various firmware commands need the list of supported rates, but with
* the hight-bit set for basic rates
*/
static int lbs_add_rates(u8 *rates)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) {
u8 rate = lbs_rates[i].bitrate / 5;
if (rate == 0x02 || rate == 0x04 ||
rate == 0x0b || rate == 0x16)
rate |= 0x80;
rates[i] = rate;
}
return ARRAY_SIZE(lbs_rates);
}
/***************************************************************************
* TLV utility functions
*
* TLVs are Marvell specific. They are very similar to IEs, they have the
* same structure: type, length, data*. The only difference: for IEs, the
* type and length are u8, but for TLVs they're __le16.
*/
/*
* Add ssid TLV
*/
#define LBS_MAX_SSID_TLV_SIZE \
(sizeof(struct mrvl_ie_header) \
+ IEEE80211_MAX_SSID_LEN)
static int lbs_add_ssid_tlv(u8 *tlv, const u8 *ssid, int ssid_len)
{
struct mrvl_ie_ssid_param_set *ssid_tlv = (void *)tlv;
/*
* TLV-ID SSID 00 00
* length 06 00
* ssid 4d 4e 54 45 53 54
*/
ssid_tlv->header.type = cpu_to_le16(TLV_TYPE_SSID);
ssid_tlv->header.len = cpu_to_le16(ssid_len);
memcpy(ssid_tlv->ssid, ssid, ssid_len);
return sizeof(ssid_tlv->header) + ssid_len;
}
/*
* Add channel list TLV (section 8.4.2)
*
* Actual channel data comes from priv->wdev->wiphy->channels.
*/
#define LBS_MAX_CHANNEL_LIST_TLV_SIZE \
(sizeof(struct mrvl_ie_header) \
+ (LBS_SCAN_BEFORE_NAP * sizeof(struct chanscanparamset)))
static int lbs_add_channel_list_tlv(struct lbs_private *priv, u8 *tlv,
int last_channel, int active_scan)
{
int chanscanparamsize = sizeof(struct chanscanparamset) *
(last_channel - priv->scan_channel);
struct mrvl_ie_header *header = (void *) tlv;
/*
* TLV-ID CHANLIST 01 01
* length 0e 00
* channel 00 01 00 00 00 64 00
* radio type 00
* channel 01
* scan type 00
* min scan time 00 00
* max scan time 64 00
* channel 2 00 02 00 00 00 64 00
*
*/
header->type = cpu_to_le16(TLV_TYPE_CHANLIST);
header->len = cpu_to_le16(chanscanparamsize);
tlv += sizeof(struct mrvl_ie_header);
/* lbs_deb_scan("scan: channels %d to %d\n", priv->scan_channel,
last_channel); */
memset(tlv, 0, chanscanparamsize);
while (priv->scan_channel < last_channel) {
struct chanscanparamset *param = (void *) tlv;
param->radiotype = CMD_SCAN_RADIO_TYPE_BG;
param->channumber =
priv->scan_req->channels[priv->scan_channel]->hw_value;
if (active_scan) {
param->maxscantime = cpu_to_le16(LBS_DWELL_ACTIVE);
} else {
param->chanscanmode.passivescan = 1;
param->maxscantime = cpu_to_le16(LBS_DWELL_PASSIVE);
}
tlv += sizeof(struct chanscanparamset);
priv->scan_channel++;
}
return sizeof(struct mrvl_ie_header) + chanscanparamsize;
}
/*
* Add rates TLV
*
* The rates are in lbs_bg_rates[], but for the 802.11b
* rates the high bit is set. We add this TLV only because
* there's a firmware which otherwise doesn't report all
* APs in range.
*/
#define LBS_MAX_RATES_TLV_SIZE \
(sizeof(struct mrvl_ie_header) \
+ (ARRAY_SIZE(lbs_rates)))
/* Adds a TLV with all rates the hardware supports */
static int lbs_add_supported_rates_tlv(u8 *tlv)
{
size_t i;
struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv;
/*
* TLV-ID RATES 01 00
* length 0e 00
* rates 82 84 8b 96 0c 12 18 24 30 48 60 6c
*/
rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES);
tlv += sizeof(rate_tlv->header);
i = lbs_add_rates(tlv);
tlv += i;
rate_tlv->header.len = cpu_to_le16(i);
return sizeof(rate_tlv->header) + i;
}
/* Add common rates from a TLV and return the new end of the TLV */
static u8 *
add_ie_rates(u8 *tlv, const u8 *ie, int *nrates)
{
int hw, ap, ap_max = ie[1];
u8 hw_rate;
if (ap_max > MAX_RATES) {
lbs_deb_assoc("invalid rates\n");
return tlv;
}
/* Advance past IE header */
ie += 2;
lbs_deb_hex(LBS_DEB_ASSOC, "AP IE Rates", (u8 *) ie, ap_max);
for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) {
hw_rate = lbs_rates[hw].bitrate / 5;
for (ap = 0; ap < ap_max; ap++) {
if (hw_rate == (ie[ap] & 0x7f)) {
*tlv++ = ie[ap];
*nrates = *nrates + 1;
}
}
}
return tlv;
}
/*
* Adds a TLV with all rates the hardware *and* BSS supports.
*/
static int lbs_add_common_rates_tlv(u8 *tlv, struct cfg80211_bss *bss)
{
struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv;
const u8 *rates_eid, *ext_rates_eid;
int n = 0;
rcu_read_lock();
rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES);
ext_rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_EXT_SUPP_RATES);
/*
* 01 00 TLV_TYPE_RATES
* 04 00 len
* 82 84 8b 96 rates
*/
rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES);
tlv += sizeof(rate_tlv->header);
/* Add basic rates */
if (rates_eid) {
tlv = add_ie_rates(tlv, rates_eid, &n);
/* Add extended rates, if any */
if (ext_rates_eid)
tlv = add_ie_rates(tlv, ext_rates_eid, &n);
} else {
lbs_deb_assoc("assoc: bss had no basic rate IE\n");
/* Fallback: add basic 802.11b rates */
*tlv++ = 0x82;
*tlv++ = 0x84;
*tlv++ = 0x8b;
*tlv++ = 0x96;
n = 4;
}
rcu_read_unlock();
rate_tlv->header.len = cpu_to_le16(n);
return sizeof(rate_tlv->header) + n;
}
/*
* Add auth type TLV.
*
* This is only needed for newer firmware (V9 and up).
*/
#define LBS_MAX_AUTH_TYPE_TLV_SIZE \
sizeof(struct mrvl_ie_auth_type)
static int lbs_add_auth_type_tlv(u8 *tlv, enum nl80211_auth_type auth_type)
{
struct mrvl_ie_auth_type *auth = (void *) tlv;
/*
* 1f 01 TLV_TYPE_AUTH_TYPE
* 01 00 len
* 01 auth type
*/
auth->header.type = cpu_to_le16(TLV_TYPE_AUTH_TYPE);
auth->header.len = cpu_to_le16(sizeof(*auth)-sizeof(auth->header));
auth->auth = cpu_to_le16(lbs_auth_to_authtype(auth_type));
return sizeof(*auth);
}
/*
* Add channel (phy ds) TLV
*/
#define LBS_MAX_CHANNEL_TLV_SIZE \
sizeof(struct mrvl_ie_header)
static int lbs_add_channel_tlv(u8 *tlv, u8 channel)
{
struct mrvl_ie_ds_param_set *ds = (void *) tlv;
/*
* 03 00 TLV_TYPE_PHY_DS
* 01 00 len
* 06 channel
*/
ds->header.type = cpu_to_le16(TLV_TYPE_PHY_DS);
ds->header.len = cpu_to_le16(sizeof(*ds)-sizeof(ds->header));
ds->channel = channel;
return sizeof(*ds);
}
/*
* Add (empty) CF param TLV of the form:
*/
#define LBS_MAX_CF_PARAM_TLV_SIZE \
sizeof(struct mrvl_ie_header)
static int lbs_add_cf_param_tlv(u8 *tlv)
{
struct mrvl_ie_cf_param_set *cf = (void *)tlv;
/*
* 04 00 TLV_TYPE_CF
* 06 00 len
* 00 cfpcnt
* 00 cfpperiod
* 00 00 cfpmaxduration
* 00 00 cfpdurationremaining
*/
cf->header.type = cpu_to_le16(TLV_TYPE_CF);
cf->header.len = cpu_to_le16(sizeof(*cf)-sizeof(cf->header));
return sizeof(*cf);
}
/*
* Add WPA TLV
*/
#define LBS_MAX_WPA_TLV_SIZE \
(sizeof(struct mrvl_ie_header) \
+ 128 /* TODO: I guessed the size */)
static int lbs_add_wpa_tlv(u8 *tlv, const u8 *ie, u8 ie_len)
{
size_t tlv_len;
/*
* We need just convert an IE to an TLV. IEs use u8 for the header,
* u8 type
* u8 len
* u8[] data
* but TLVs use __le16 instead:
* __le16 type
* __le16 len
* u8[] data
*/
*tlv++ = *ie++;
*tlv++ = 0;
tlv_len = *tlv++ = *ie++;
*tlv++ = 0;
while (tlv_len--)
*tlv++ = *ie++;
/* the TLV is two bytes larger than the IE */
return ie_len + 2;
}
/*
* Set Channel
*/
static int lbs_cfg_set_monitor_channel(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef)
{
struct lbs_private *priv = wiphy_priv(wiphy);
int ret = -ENOTSUPP;
if (cfg80211_get_chandef_type(chandef) != NL80211_CHAN_NO_HT)
goto out;
ret = lbs_set_channel(priv, chandef->chan->hw_value);
out:
return ret;
}
static int lbs_cfg_set_mesh_channel(struct wiphy *wiphy,
struct net_device *netdev,
struct ieee80211_channel *channel)
{
struct lbs_private *priv = wiphy_priv(wiphy);
int ret = -ENOTSUPP;
if (netdev != priv->mesh_dev)
goto out;
ret = lbs_mesh_set_channel(priv, channel->hw_value);
out:
return ret;
}
/*
* Scanning
*/
/*
* When scanning, the firmware doesn't send a nul packet with the power-safe
* bit to the AP. So we cannot stay away from our current channel too long,
* otherwise we loose data. So take a "nap" while scanning every other
* while.
*/
#define LBS_SCAN_BEFORE_NAP 4
/*
* When the firmware reports back a scan-result, it gives us an "u8 rssi",
* which isn't really an RSSI, as it becomes larger when moving away from
* the AP. Anyway, we need to convert that into mBm.
*/
#define LBS_SCAN_RSSI_TO_MBM(rssi) \
((-(int)rssi + 3)*100)
static int lbs_ret_scan(struct lbs_private *priv, unsigned long dummy,
struct cmd_header *resp)
{
struct cfg80211_bss *bss;
struct cmd_ds_802_11_scan_rsp *scanresp = (void *)resp;
int bsssize;
const u8 *pos;
const u8 *tsfdesc;
int tsfsize;
int i;
int ret = -EILSEQ;
bsssize = get_unaligned_le16(&scanresp->bssdescriptsize);
lbs_deb_scan("scan response: %d BSSs (%d bytes); resp size %d bytes\n",
scanresp->nr_sets, bsssize, le16_to_cpu(resp->size));
if (scanresp->nr_sets == 0) {
ret = 0;
goto done;
}
/*
* The general layout of the scan response is described in chapter
* 5.7.1. Basically we have a common part, then any number of BSS
* descriptor sections. Finally we have section with the same number
* of TSFs.
*
* cmd_ds_802_11_scan_rsp
* cmd_header
* pos_size
* nr_sets
* bssdesc 1
* bssid
* rssi
* timestamp
* intvl
* capa
* IEs
* bssdesc 2
* bssdesc n
* MrvlIEtypes_TsfFimestamp_t
* TSF for BSS 1
* TSF for BSS 2
* TSF for BSS n
*/
pos = scanresp->bssdesc_and_tlvbuffer;
lbs_deb_hex(LBS_DEB_SCAN, "SCAN_RSP", scanresp->bssdesc_and_tlvbuffer,
bsssize);
tsfdesc = pos + bsssize;
tsfsize = 4 + 8 * scanresp->nr_sets;
lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TSF", (u8 *) tsfdesc, tsfsize);
/* Validity check: we expect a Marvell-Local TLV */
i = get_unaligned_le16(tsfdesc);
tsfdesc += 2;
if (i != TLV_TYPE_TSFTIMESTAMP) {
lbs_deb_scan("scan response: invalid TSF Timestamp %d\n", i);
goto done;
}
/*
* Validity check: the TLV holds TSF values with 8 bytes each, so
* the size in the TLV must match the nr_sets value
*/
i = get_unaligned_le16(tsfdesc);
tsfdesc += 2;
if (i / 8 != scanresp->nr_sets) {
lbs_deb_scan("scan response: invalid number of TSF timestamp "
"sets (expected %d got %d)\n", scanresp->nr_sets,
i / 8);
goto done;
}
for (i = 0; i < scanresp->nr_sets; i++) {
const u8 *bssid;
const u8 *ie;
int left;
int ielen;
int rssi;
u16 intvl;
u16 capa;
int chan_no = -1;
const u8 *ssid = NULL;
u8 ssid_len = 0;
int len = get_unaligned_le16(pos);
pos += 2;
/* BSSID */
bssid = pos;
pos += ETH_ALEN;
/* RSSI */
rssi = *pos++;
/* Packet time stamp */
pos += 8;
/* Beacon interval */
intvl = get_unaligned_le16(pos);
pos += 2;
/* Capabilities */
capa = get_unaligned_le16(pos);
pos += 2;
/* To find out the channel, we must parse the IEs */
ie = pos;
/*
* 6+1+8+2+2: size of BSSID, RSSI, time stamp, beacon
* interval, capabilities
*/
ielen = left = len - (6 + 1 + 8 + 2 + 2);
while (left >= 2) {
u8 id, elen;
id = *pos++;
elen = *pos++;
left -= 2;
if (elen > left) {
lbs_deb_scan("scan response: invalid IE fmt\n");
goto done;
}
if (id == WLAN_EID_DS_PARAMS)
chan_no = *pos;
if (id == WLAN_EID_SSID) {
ssid = pos;
ssid_len = elen;
}
left -= elen;
pos += elen;
}
/* No channel, no luck */
if (chan_no != -1) {
struct wiphy *wiphy = priv->wdev->wiphy;
int freq = ieee80211_channel_to_frequency(chan_no,
NL80211_BAND_2GHZ);
struct ieee80211_channel *channel =
ieee80211_get_channel(wiphy, freq);
lbs_deb_scan("scan: %pM, capa %04x, chan %2d, %*pE, %d dBm\n",
bssid, capa, chan_no, ssid_len, ssid,
LBS_SCAN_RSSI_TO_MBM(rssi)/100);
if (channel &&
!(channel->flags & IEEE80211_CHAN_DISABLED)) {
bss = cfg80211_inform_bss(wiphy, channel,
CFG80211_BSS_FTYPE_UNKNOWN,
bssid, get_unaligned_le64(tsfdesc),
capa, intvl, ie, ielen,
LBS_SCAN_RSSI_TO_MBM(rssi),
GFP_KERNEL);
cfg80211_put_bss(wiphy, bss);
}
} else
lbs_deb_scan("scan response: missing BSS channel IE\n");
tsfdesc += 8;
}
ret = 0;
done:
return ret;
}
/*
* Our scan command contains a TLV, consting of a SSID TLV, a channel list
* TLV and a rates TLV. Determine the maximum size of them:
*/
#define LBS_SCAN_MAX_CMD_SIZE \
(sizeof(struct cmd_ds_802_11_scan) \
+ LBS_MAX_SSID_TLV_SIZE \
+ LBS_MAX_CHANNEL_LIST_TLV_SIZE \
+ LBS_MAX_RATES_TLV_SIZE)
/*
* Assumes priv->scan_req is initialized and valid
* Assumes priv->scan_channel is initialized
*/
static void lbs_scan_worker(struct work_struct *work)
{
struct lbs_private *priv =
container_of(work, struct lbs_private, scan_work.work);
struct cmd_ds_802_11_scan *scan_cmd;
u8 *tlv; /* pointer into our current, growing TLV storage area */
int last_channel;
int running, carrier;
scan_cmd = kzalloc(LBS_SCAN_MAX_CMD_SIZE, GFP_KERNEL);
if (scan_cmd == NULL)
return;
/* prepare fixed part of scan command */
scan_cmd->bsstype = CMD_BSS_TYPE_ANY;
/* stop network while we're away from our main channel */
running = !netif_queue_stopped(priv->dev);
carrier = netif_carrier_ok(priv->dev);
if (running)
netif_stop_queue(priv->dev);
if (carrier)
netif_carrier_off(priv->dev);
/* prepare fixed part of scan command */
tlv = scan_cmd->tlvbuffer;
/* add SSID TLV */
if (priv->scan_req->n_ssids && priv->scan_req->ssids[0].ssid_len > 0)
tlv += lbs_add_ssid_tlv(tlv,
priv->scan_req->ssids[0].ssid,
priv->scan_req->ssids[0].ssid_len);
/* add channel TLVs */
last_channel = priv->scan_channel + LBS_SCAN_BEFORE_NAP;
if (last_channel > priv->scan_req->n_channels)
last_channel = priv->scan_req->n_channels;
tlv += lbs_add_channel_list_tlv(priv, tlv, last_channel,
priv->scan_req->n_ssids);
/* add rates TLV */
tlv += lbs_add_supported_rates_tlv(tlv);
if (priv->scan_channel < priv->scan_req->n_channels) {
cancel_delayed_work(&priv->scan_work);
if (netif_running(priv->dev))
queue_delayed_work(priv->work_thread, &priv->scan_work,
msecs_to_jiffies(300));
}
/* This is the final data we are about to send */
scan_cmd->hdr.size = cpu_to_le16(tlv - (u8 *)scan_cmd);
lbs_deb_hex(LBS_DEB_SCAN, "SCAN_CMD", (void *)scan_cmd,
sizeof(*scan_cmd));
lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TLV", scan_cmd->tlvbuffer,
tlv - scan_cmd->tlvbuffer);
__lbs_cmd(priv, CMD_802_11_SCAN, &scan_cmd->hdr,
le16_to_cpu(scan_cmd->hdr.size),
lbs_ret_scan, 0);
if (priv->scan_channel >= priv->scan_req->n_channels) {
/* Mark scan done */
cancel_delayed_work(&priv->scan_work);
lbs_scan_done(priv);
}
/* Restart network */
if (carrier)
netif_carrier_on(priv->dev);
if (running && !priv->tx_pending_len)
netif_wake_queue(priv->dev);
kfree(scan_cmd);
/* Wake up anything waiting on scan completion */
if (priv->scan_req == NULL) {
lbs_deb_scan("scan: waking up waiters\n");
wake_up_all(&priv->scan_q);
}
}
static void _internal_start_scan(struct lbs_private *priv, bool internal,
struct cfg80211_scan_request *request)
{
lbs_deb_scan("scan: ssids %d, channels %d, ie_len %zd\n",
request->n_ssids, request->n_channels, request->ie_len);
priv->scan_channel = 0;
priv->scan_req = request;
priv->internal_scan = internal;
queue_delayed_work(priv->work_thread, &priv->scan_work,
msecs_to_jiffies(50));
}
/*
* Clean up priv->scan_req. Should be used to handle the allocation details.
*/
void lbs_scan_done(struct lbs_private *priv)
{
WARN_ON(!priv->scan_req);
if (priv->internal_scan) {
kfree(priv->scan_req);
} else {
struct cfg80211_scan_info info = {
.aborted = false,
};
cfg80211_scan_done(priv->scan_req, &info);
}
priv->scan_req = NULL;
}
static int lbs_cfg_scan(struct wiphy *wiphy,
struct cfg80211_scan_request *request)
{
struct lbs_private *priv = wiphy_priv(wiphy);
int ret = 0;
if (priv->scan_req || delayed_work_pending(&priv->scan_work)) {
/* old scan request not yet processed */
ret = -EAGAIN;
goto out;
}
_internal_start_scan(priv, false, request);
if (priv->surpriseremoved)
ret = -EIO;
out:
return ret;
}
/*
* Events
*/
void lbs_send_disconnect_notification(struct lbs_private *priv,
bool locally_generated)
{
cfg80211_disconnected(priv->dev, 0, NULL, 0, locally_generated,
GFP_KERNEL);
}
void lbs_send_mic_failureevent(struct lbs_private *priv, u32 event)
{
cfg80211_michael_mic_failure(priv->dev,
priv->assoc_bss,
event == MACREG_INT_CODE_MIC_ERR_MULTICAST ?
NL80211_KEYTYPE_GROUP :
NL80211_KEYTYPE_PAIRWISE,
-1,
NULL,
GFP_KERNEL);
}
/*
* Connect/disconnect
*/
/*
* This removes all WEP keys
*/
static int lbs_remove_wep_keys(struct lbs_private *priv)
{
struct cmd_ds_802_11_set_wep cmd;
int ret;
memset(&cmd, 0, sizeof(cmd));
cmd.hdr.size = cpu_to_le16(sizeof(cmd));
cmd.keyindex = cpu_to_le16(priv->wep_tx_key);
cmd.action = cpu_to_le16(CMD_ACT_REMOVE);
ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd);
return ret;
}
/*
* Set WEP keys
*/
static int lbs_set_wep_keys(struct lbs_private *priv)
{
struct cmd_ds_802_11_set_wep cmd;
int i;
int ret;
/*
* command 13 00
* size 50 00
* sequence xx xx
* result 00 00
* action 02 00 ACT_ADD
* transmit key 00 00
* type for key 1 01 WEP40
* type for key 2 00
* type for key 3 00
* type for key 4 00
* key 1 39 39 39 39 39 00 00 00
* 00 00 00 00 00 00 00 00
* key 2 00 00 00 00 00 00 00 00
* 00 00 00 00 00 00 00 00
* key 3 00 00 00 00 00 00 00 00
* 00 00 00 00 00 00 00 00
* key 4 00 00 00 00 00 00 00 00
*/
if (priv->wep_key_len[0] || priv->wep_key_len[1] ||
priv->wep_key_len[2] || priv->wep_key_len[3]) {
/* Only set wep keys if we have at least one of them */
memset(&cmd, 0, sizeof(cmd));
cmd.hdr.size = cpu_to_le16(sizeof(cmd));
cmd.keyindex = cpu_to_le16(priv->wep_tx_key);
cmd.action = cpu_to_le16(CMD_ACT_ADD);
for (i = 0; i < 4; i++) {
switch (priv->wep_key_len[i]) {
case WLAN_KEY_LEN_WEP40:
cmd.keytype[i] = CMD_TYPE_WEP_40_BIT;
break;
case WLAN_KEY_LEN_WEP104:
cmd.keytype[i] = CMD_TYPE_WEP_104_BIT;
break;
default:
cmd.keytype[i] = 0;
break;
}
memcpy(cmd.keymaterial[i], priv->wep_key[i],
priv->wep_key_len[i]);
}
ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd);
} else {
/* Otherwise remove all wep keys */
ret = lbs_remove_wep_keys(priv);
}
return ret;
}
/*
* Enable/Disable RSN status
*/
static int lbs_enable_rsn(struct lbs_private *priv, int enable)
{
struct cmd_ds_802_11_enable_rsn cmd;
int ret;
/*
* cmd 2f 00
* size 0c 00
* sequence xx xx
* result 00 00
* action 01 00 ACT_SET
* enable 01 00
*/
memset(&cmd, 0, sizeof(cmd));
cmd.hdr.size = cpu_to_le16(sizeof(cmd));
cmd.action = cpu_to_le16(CMD_ACT_SET);
cmd.enable = cpu_to_le16(enable);
ret = lbs_cmd_with_response(priv, CMD_802_11_ENABLE_RSN, &cmd);
return ret;
}
/*
* Set WPA/WPA key material
*/
/*
* like "struct cmd_ds_802_11_key_material", but with cmd_header. Once we
* get rid of WEXT, this should go into host.h
*/
struct cmd_key_material {
struct cmd_header hdr;
__le16 action;
struct MrvlIEtype_keyParamSet param;
} __packed;
static int lbs_set_key_material(struct lbs_private *priv,
int key_type, int key_info,
const u8 *key, u16 key_len)
{
struct cmd_key_material cmd;
int ret;
/*
* Example for WPA (TKIP):
*
* cmd 5e 00
* size 34 00
* sequence xx xx
* result 00 00
* action 01 00
* TLV type 00 01 key param
* length 00 26
* key type 01 00 TKIP
* key info 06 00 UNICAST | ENABLED
* key len 20 00
* key 32 bytes
*/
memset(&cmd, 0, sizeof(cmd));
cmd.hdr.size = cpu_to_le16(sizeof(cmd));
cmd.action = cpu_to_le16(CMD_ACT_SET);
cmd.param.type = cpu_to_le16(TLV_TYPE_KEY_MATERIAL);
cmd.param.length = cpu_to_le16(sizeof(cmd.param) - 4);
cmd.param.keytypeid = cpu_to_le16(key_type);
cmd.param.keyinfo = cpu_to_le16(key_info);
cmd.param.keylen = cpu_to_le16(key_len);
if (key && key_len)
memcpy(cmd.param.key, key, key_len);
ret = lbs_cmd_with_response(priv, CMD_802_11_KEY_MATERIAL, &cmd);
return ret;
}
/*
* Sets the auth type (open, shared, etc) in the firmware. That
* we use CMD_802_11_AUTHENTICATE is misleading, this firmware
* command doesn't send an authentication frame at all, it just
* stores the auth_type.
*/
static int lbs_set_authtype(struct lbs_private *priv,
struct cfg80211_connect_params *sme)
{
struct cmd_ds_802_11_authenticate cmd;
int ret;
/*
* cmd 11 00
* size 19 00
* sequence xx xx
* result 00 00
* BSS id 00 13 19 80 da 30
* auth type 00
* reserved 00 00 00 00 00 00 00 00 00 00
*/
memset(&cmd, 0, sizeof(cmd));
cmd.hdr.size = cpu_to_le16(sizeof(cmd));
if (sme->bssid)
memcpy(cmd.bssid, sme->bssid, ETH_ALEN);
/* convert auth_type */
ret = lbs_auth_to_authtype(sme->auth_type);
if (ret < 0)
goto done;
cmd.authtype = ret;
ret = lbs_cmd_with_response(priv, CMD_802_11_AUTHENTICATE, &cmd);
done:
return ret;
}
/*
* Create association request
*/
#define LBS_ASSOC_MAX_CMD_SIZE \
(sizeof(struct cmd_ds_802_11_associate) \
+ LBS_MAX_SSID_TLV_SIZE \
+ LBS_MAX_CHANNEL_TLV_SIZE \
+ LBS_MAX_CF_PARAM_TLV_SIZE \
+ LBS_MAX_AUTH_TYPE_TLV_SIZE \
+ LBS_MAX_WPA_TLV_SIZE)
static int lbs_associate(struct lbs_private *priv,
struct cfg80211_bss *bss,
struct cfg80211_connect_params *sme)
{
struct cmd_ds_802_11_associate_response *resp;
struct cmd_ds_802_11_associate *cmd = kzalloc(LBS_ASSOC_MAX_CMD_SIZE,
GFP_KERNEL);
const u8 *ssid_eid;
size_t len, resp_ie_len;
int status;
int ret;
u8 *pos;
u8 *tmp;
if (!cmd) {
ret = -ENOMEM;
goto done;
}
pos = &cmd->iebuf[0];
/*
* cmd 50 00
* length 34 00
* sequence xx xx
* result 00 00
* BSS id 00 13 19 80 da 30
* capabilities 11 00
* listen interval 0a 00
* beacon interval 00 00
* DTIM period 00
* TLVs xx (up to 512 bytes)
*/
cmd->hdr.command = cpu_to_le16(CMD_802_11_ASSOCIATE);
/* Fill in static fields */
memcpy(cmd->bssid, bss->bssid, ETH_ALEN);
cmd->listeninterval = cpu_to_le16(MRVDRV_DEFAULT_LISTEN_INTERVAL);
cmd->capability = cpu_to_le16(bss->capability);
/* add SSID TLV */
rcu_read_lock();
ssid_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SSID);
if (ssid_eid)
pos += lbs_add_ssid_tlv(pos, ssid_eid + 2, ssid_eid[1]);
else
lbs_deb_assoc("no SSID\n");
rcu_read_unlock();
/* add DS param TLV */
if (bss->channel)
pos += lbs_add_channel_tlv(pos, bss->channel->hw_value);
else
lbs_deb_assoc("no channel\n");
/* add (empty) CF param TLV */
pos += lbs_add_cf_param_tlv(pos);
/* add rates TLV */
tmp = pos + 4; /* skip Marvell IE header */
pos += lbs_add_common_rates_tlv(pos, bss);
lbs_deb_hex(LBS_DEB_ASSOC, "Common Rates", tmp, pos - tmp);
/* add auth type TLV */
if (MRVL_FW_MAJOR_REV(priv->fwrelease) >= 9)
pos += lbs_add_auth_type_tlv(pos, sme->auth_type);
/* add WPA/WPA2 TLV */
if (sme->ie && sme->ie_len)
pos += lbs_add_wpa_tlv(pos, sme->ie, sme->ie_len);
len = sizeof(*cmd) + (u16)(pos - (u8 *) &cmd->iebuf);
cmd->hdr.size = cpu_to_le16(len);
lbs_deb_hex(LBS_DEB_ASSOC, "ASSOC_CMD", (u8 *) cmd,
le16_to_cpu(cmd->hdr.size));
/* store for later use */
memcpy(priv->assoc_bss, bss->bssid, ETH_ALEN);
ret = lbs_cmd_with_response(priv, CMD_802_11_ASSOCIATE, cmd);
if (ret)
goto done;
/* generate connect message to cfg80211 */
resp = (void *) cmd; /* recast for easier field access */
status = le16_to_cpu(resp->statuscode);
/* Older FW versions map the IEEE 802.11 Status Code in the association
* response to the following values returned in resp->statuscode:
*
* IEEE Status Code Marvell Status Code
* 0 -> 0x0000 ASSOC_RESULT_SUCCESS
* 13 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED
* 14 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED
* 15 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED
* 16 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED
* others -> 0x0003 ASSOC_RESULT_REFUSED
*
* Other response codes:
* 0x0001 -> ASSOC_RESULT_INVALID_PARAMETERS (unused)
* 0x0002 -> ASSOC_RESULT_TIMEOUT (internal timer expired waiting for
* association response from the AP)
*/
if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) {
switch (status) {
case 0:
break;
case 1:
lbs_deb_assoc("invalid association parameters\n");
status = WLAN_STATUS_CAPS_UNSUPPORTED;
break;
case 2:
lbs_deb_assoc("timer expired while waiting for AP\n");
status = WLAN_STATUS_AUTH_TIMEOUT;
break;
case 3:
lbs_deb_assoc("association refused by AP\n");
status = WLAN_STATUS_ASSOC_DENIED_UNSPEC;
break;
case 4:
lbs_deb_assoc("authentication refused by AP\n");
status = WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION;
break;
default:
lbs_deb_assoc("association failure %d\n", status);
/* v5 OLPC firmware does return the AP status code if
* it's not one of the values above. Let that through.
*/
break;
}
}
lbs_deb_assoc("status %d, statuscode 0x%04x, capability 0x%04x, "
"aid 0x%04x\n", status, le16_to_cpu(resp->statuscode),
le16_to_cpu(resp->capability), le16_to_cpu(resp->aid));
resp_ie_len = le16_to_cpu(resp->hdr.size)
- sizeof(resp->hdr)
- 6;
cfg80211_connect_result(priv->dev,
priv->assoc_bss,
sme->ie, sme->ie_len,
resp->iebuf, resp_ie_len,
status,
GFP_KERNEL);
if (status == 0) {
/* TODO: get rid of priv->connect_status */
priv->connect_status = LBS_CONNECTED;
netif_carrier_on(priv->dev);
if (!priv->tx_pending_len)
netif_tx_wake_all_queues(priv->dev);
}
kfree(cmd);
done:
return ret;
}
static struct cfg80211_scan_request *
_new_connect_scan_req(struct wiphy *wiphy, struct cfg80211_connect_params *sme)
{
struct cfg80211_scan_request *creq = NULL;
int i, n_channels = ieee80211_get_num_supported_channels(wiphy);
enum nl80211_band band;
creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
n_channels * sizeof(void *),
GFP_ATOMIC);
if (!creq)
return NULL;
/* SSIDs come after channels */
creq->ssids = (void *)&creq->channels[n_channels];
creq->n_channels = n_channels;
creq->n_ssids = 1;
/* Scan all available channels */
i = 0;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
int j;
if (!wiphy->bands[band])
continue;
for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
/* ignore disabled channels */
if (wiphy->bands[band]->channels[j].flags &
IEEE80211_CHAN_DISABLED)
continue;
creq->channels[i] = &wiphy->bands[band]->channels[j];
i++;
}
}
if (i) {
/* Set real number of channels specified in creq->channels[] */
creq->n_channels = i;
/* Scan for the SSID we're going to connect to */
memcpy(creq->ssids[0].ssid, sme->ssid, sme->ssid_len);
creq->ssids[0].ssid_len = sme->ssid_len;
} else {
/* No channels found... */
kfree(creq);
creq = NULL;
}
return creq;
}
static int lbs_cfg_connect(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_connect_params *sme)
{
struct lbs_private *priv = wiphy_priv(wiphy);
struct cfg80211_bss *bss = NULL;
int ret = 0;
u8 preamble = RADIO_PREAMBLE_SHORT;
if (dev == priv->mesh_dev)
return -EOPNOTSUPP;
if (!sme->bssid) {
struct cfg80211_scan_request *creq;
/*
* Scan for the requested network after waiting for existing
* scans to finish.
*/
lbs_deb_assoc("assoc: waiting for existing scans\n");
wait_event_interruptible_timeout(priv->scan_q,
(priv->scan_req == NULL),
(15 * HZ));
creq = _new_connect_scan_req(wiphy, sme);
if (!creq) {
ret = -EINVAL;
goto done;
}
lbs_deb_assoc("assoc: scanning for compatible AP\n");
_internal_start_scan(priv, true, creq);
lbs_deb_assoc("assoc: waiting for scan to complete\n");
wait_event_interruptible_timeout(priv->scan_q,
(priv->scan_req == NULL),
(15 * HZ));
lbs_deb_assoc("assoc: scanning completed\n");
}
/* Find the BSS we want using available scan results */
bss = cfg80211_get_bss(wiphy, sme->channel, sme->bssid,
sme->ssid, sme->ssid_len, IEEE80211_BSS_TYPE_ESS,
IEEE80211_PRIVACY_ANY);
if (!bss) {
wiphy_err(wiphy, "assoc: bss %pM not in scan results\n",
sme->bssid);
ret = -ENOENT;
goto done;
}
lbs_deb_assoc("trying %pM\n", bss->bssid);
lbs_deb_assoc("cipher 0x%x, key index %d, key len %d\n",
sme->crypto.cipher_group,
sme->key_idx, sme->key_len);
/* As this is a new connection, clear locally stored WEP keys */
priv->wep_tx_key = 0;
memset(priv->wep_key, 0, sizeof(priv->wep_key));
memset(priv->wep_key_len, 0, sizeof(priv->wep_key_len));
/* set/remove WEP keys */
switch (sme->crypto.cipher_group) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
/* Store provided WEP keys in priv-> */
priv->wep_tx_key = sme->key_idx;
priv->wep_key_len[sme->key_idx] = sme->key_len;
memcpy(priv->wep_key[sme->key_idx], sme->key, sme->key_len);
/* Set WEP keys and WEP mode */
lbs_set_wep_keys(priv);
priv->mac_control |= CMD_ACT_MAC_WEP_ENABLE;
lbs_set_mac_control(priv);
/* No RSN mode for WEP */
lbs_enable_rsn(priv, 0);
break;
case 0: /* there's no WLAN_CIPHER_SUITE_NONE definition */
/*
* If we don't have no WEP, no WPA and no WPA2,
* we remove all keys like in the WPA/WPA2 setup,
* we just don't set RSN.
*
* Therefore: fall-through
*/
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_CCMP:
/* Remove WEP keys and WEP mode */
lbs_remove_wep_keys(priv);
priv->mac_control &= ~CMD_ACT_MAC_WEP_ENABLE;
lbs_set_mac_control(priv);
/* clear the WPA/WPA2 keys */
lbs_set_key_material(priv,
KEY_TYPE_ID_WEP, /* doesn't matter */
KEY_INFO_WPA_UNICAST,
NULL, 0);
lbs_set_key_material(priv,
KEY_TYPE_ID_WEP, /* doesn't matter */
KEY_INFO_WPA_MCAST,
NULL, 0);
/* RSN mode for WPA/WPA2 */
lbs_enable_rsn(priv, sme->crypto.cipher_group != 0);
break;
default:
wiphy_err(wiphy, "unsupported cipher group 0x%x\n",
sme->crypto.cipher_group);
ret = -ENOTSUPP;
goto done;
}
ret = lbs_set_authtype(priv, sme);
if (ret == -ENOTSUPP) {
wiphy_err(wiphy, "unsupported authtype 0x%x\n", sme->auth_type);
goto done;
}
lbs_set_radio(priv, preamble, 1);
/* Do the actual association */
ret = lbs_associate(priv, bss, sme);
done:
if (bss)
cfg80211_put_bss(wiphy, bss);
return ret;
}
int lbs_disconnect(struct lbs_private *priv, u16 reason)
{
struct cmd_ds_802_11_deauthenticate cmd;
int ret;
memset(&cmd, 0, sizeof(cmd));
cmd.hdr.size = cpu_to_le16(sizeof(cmd));
/* Mildly ugly to use a locally store my own BSSID ... */
memcpy(cmd.macaddr, &priv->assoc_bss, ETH_ALEN);
cmd.reasoncode = cpu_to_le16(reason);
ret = lbs_cmd_with_response(priv, CMD_802_11_DEAUTHENTICATE, &cmd);
if (ret)
return ret;
cfg80211_disconnected(priv->dev,
reason,
NULL, 0, true,
GFP_KERNEL);
priv->connect_status = LBS_DISCONNECTED;
return 0;
}
static int lbs_cfg_disconnect(struct wiphy *wiphy, struct net_device *dev,
u16 reason_code)
{
struct lbs_private *priv = wiphy_priv(wiphy);
if (dev == priv->mesh_dev)
return -EOPNOTSUPP;
/* store for lbs_cfg_ret_disconnect() */
priv->disassoc_reason = reason_code;
return lbs_disconnect(priv, reason_code);
}
static int lbs_cfg_set_default_key(struct wiphy *wiphy,
struct net_device *netdev, int link_id,
u8 key_index, bool unicast,
bool multicast)
{
struct lbs_private *priv = wiphy_priv(wiphy);
if (netdev == priv->mesh_dev)
return -EOPNOTSUPP;
if (key_index != priv->wep_tx_key) {
lbs_deb_assoc("set_default_key: to %d\n", key_index);
priv->wep_tx_key = key_index;
lbs_set_wep_keys(priv);
}
return 0;
}
static int lbs_cfg_add_key(struct wiphy *wiphy, struct net_device *netdev,
int link_id, u8 idx, bool pairwise,
const u8 *mac_addr, struct key_params *params)
{
struct lbs_private *priv = wiphy_priv(wiphy);
u16 key_info;
u16 key_type;
int ret = 0;
if (netdev == priv->mesh_dev)
return -EOPNOTSUPP;
lbs_deb_assoc("add_key: cipher 0x%x, mac_addr %pM\n",
params->cipher, mac_addr);
lbs_deb_assoc("add_key: key index %d, key len %d\n",
idx, params->key_len);
if (params->key_len)
lbs_deb_hex(LBS_DEB_CFG80211, "KEY",
params->key, params->key_len);
lbs_deb_assoc("add_key: seq len %d\n", params->seq_len);
if (params->seq_len)
lbs_deb_hex(LBS_DEB_CFG80211, "SEQ",
params->seq, params->seq_len);
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
/* actually compare if something has changed ... */
if ((priv->wep_key_len[idx] != params->key_len) ||
memcmp(priv->wep_key[idx],
params->key, params->key_len) != 0) {
priv->wep_key_len[idx] = params->key_len;
memcpy(priv->wep_key[idx],
params->key, params->key_len);
lbs_set_wep_keys(priv);
}
break;
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_CCMP:
key_info = KEY_INFO_WPA_ENABLED | ((idx == 0)
? KEY_INFO_WPA_UNICAST
: KEY_INFO_WPA_MCAST);
key_type = (params->cipher == WLAN_CIPHER_SUITE_TKIP)
? KEY_TYPE_ID_TKIP
: KEY_TYPE_ID_AES;
lbs_set_key_material(priv,
key_type,
key_info,
params->key, params->key_len);
break;
default:
wiphy_err(wiphy, "unhandled cipher 0x%x\n", params->cipher);
ret = -ENOTSUPP;
break;
}
return ret;
}
static int lbs_cfg_del_key(struct wiphy *wiphy, struct net_device *netdev,
int link_id, u8 key_index, bool pairwise,
const u8 *mac_addr)
{
lbs_deb_assoc("del_key: key_idx %d, mac_addr %pM\n",
key_index, mac_addr);
#ifdef TODO
struct lbs_private *priv = wiphy_priv(wiphy);
/*
* I think can keep this a NO-OP, because:
* - we clear all keys whenever we do lbs_cfg_connect() anyway
* - neither "iw" nor "wpa_supplicant" won't call this during
* an ongoing connection
* - TODO: but I have to check if this is still true when
* I set the AP to periodic re-keying
* - we've not kzallec() something when we've added a key at
* lbs_cfg_connect() or lbs_cfg_add_key().
*
* This causes lbs_cfg_del_key() only called at disconnect time,
* where we'd just waste time deleting a key that is not going
* to be used anyway.
*/
if (key_index < 3 && priv->wep_key_len[key_index]) {
priv->wep_key_len[key_index] = 0;
lbs_set_wep_keys(priv);
}
#endif
return 0;
}
/*
* Get station
*/
static int lbs_cfg_get_station(struct wiphy *wiphy, struct net_device *dev,
const u8 *mac, struct station_info *sinfo)
{
struct lbs_private *priv = wiphy_priv(wiphy);
s8 signal, noise;
int ret;
size_t i;
sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES) |
BIT_ULL(NL80211_STA_INFO_TX_PACKETS) |
BIT_ULL(NL80211_STA_INFO_RX_BYTES) |
BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
sinfo->tx_bytes = priv->dev->stats.tx_bytes;
sinfo->tx_packets = priv->dev->stats.tx_packets;
sinfo->rx_bytes = priv->dev->stats.rx_bytes;
sinfo->rx_packets = priv->dev->stats.rx_packets;
/* Get current RSSI */
ret = lbs_get_rssi(priv, &signal, &noise);
if (ret == 0) {
sinfo->signal = signal;
sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
}
/* Convert priv->cur_rate from hw_value to NL80211 value */
for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) {
if (priv->cur_rate == lbs_rates[i].hw_value) {
sinfo->txrate.legacy = lbs_rates[i].bitrate;
sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
break;
}
}
return 0;
}
/*
* Change interface
*/
static int lbs_change_intf(struct wiphy *wiphy, struct net_device *dev,
enum nl80211_iftype type,
struct vif_params *params)
{
struct lbs_private *priv = wiphy_priv(wiphy);
int ret = 0;
if (dev == priv->mesh_dev)
return -EOPNOTSUPP;
switch (type) {
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
break;
default:
return -EOPNOTSUPP;
}
if (priv->iface_running)
ret = lbs_set_iface_type(priv, type);
if (!ret)
priv->wdev->iftype = type;
return ret;
}
/*
* IBSS (Ad-Hoc)
*/
/*
* The firmware needs the following bits masked out of the beacon-derived
* capability field when associating/joining to a BSS:
* 9 (QoS), 11 (APSD), 12 (unused), 14 (unused), 15 (unused)
*/
#define CAPINFO_MASK (~(0xda00))
static void lbs_join_post(struct lbs_private *priv,
struct cfg80211_ibss_params *params,
u8 *bssid, u16 capability)
{
u8 fake_ie[2 + IEEE80211_MAX_SSID_LEN + /* ssid */
2 + 4 + /* basic rates */
2 + 1 + /* DS parameter */
2 + 2 + /* atim */
2 + 8]; /* extended rates */
u8 *fake = fake_ie;
struct cfg80211_bss *bss;
/*
* For cfg80211_inform_bss, we'll need a fake IE, as we can't get
* the real IE from the firmware. So we fabricate a fake IE based on
* what the firmware actually sends (sniffed with wireshark).
*/
/* Fake SSID IE */
*fake++ = WLAN_EID_SSID;
*fake++ = params->ssid_len;
memcpy(fake, params->ssid, params->ssid_len);
fake += params->ssid_len;
/* Fake supported basic rates IE */
*fake++ = WLAN_EID_SUPP_RATES;
*fake++ = 4;
*fake++ = 0x82;
*fake++ = 0x84;
*fake++ = 0x8b;
*fake++ = 0x96;
/* Fake DS channel IE */
*fake++ = WLAN_EID_DS_PARAMS;
*fake++ = 1;
*fake++ = params->chandef.chan->hw_value;
/* Fake IBSS params IE */
*fake++ = WLAN_EID_IBSS_PARAMS;
*fake++ = 2;
*fake++ = 0; /* ATIM=0 */
*fake++ = 0;
/* Fake extended rates IE, TODO: don't add this for 802.11b only,
* but I don't know how this could be checked */
*fake++ = WLAN_EID_EXT_SUPP_RATES;
*fake++ = 8;
*fake++ = 0x0c;
*fake++ = 0x12;
*fake++ = 0x18;
*fake++ = 0x24;
*fake++ = 0x30;
*fake++ = 0x48;
*fake++ = 0x60;
*fake++ = 0x6c;
lbs_deb_hex(LBS_DEB_CFG80211, "IE", fake_ie, fake - fake_ie);
bss = cfg80211_inform_bss(priv->wdev->wiphy,
params->chandef.chan,
CFG80211_BSS_FTYPE_UNKNOWN,
bssid,
0,
capability,
params->beacon_interval,
fake_ie, fake - fake_ie,
0, GFP_KERNEL);
cfg80211_put_bss(priv->wdev->wiphy, bss);
cfg80211_ibss_joined(priv->dev, bssid, params->chandef.chan,
GFP_KERNEL);
/* TODO: consider doing this at MACREG_INT_CODE_LINK_SENSED time */
priv->connect_status = LBS_CONNECTED;
netif_carrier_on(priv->dev);
if (!priv->tx_pending_len)
netif_wake_queue(priv->dev);
}
static int lbs_ibss_join_existing(struct lbs_private *priv,
struct cfg80211_ibss_params *params,
struct cfg80211_bss *bss)
{
const u8 *rates_eid;
struct cmd_ds_802_11_ad_hoc_join cmd;
u8 preamble = RADIO_PREAMBLE_SHORT;
int ret = 0;
int hw, i;
u8 rates_max;
u8 *rates;
/* TODO: set preamble based on scan result */
ret = lbs_set_radio(priv, preamble, 1);
if (ret)
goto out;
/*
* Example CMD_802_11_AD_HOC_JOIN command:
*
* command 2c 00 CMD_802_11_AD_HOC_JOIN
* size 65 00
* sequence xx xx
* result 00 00
* bssid 02 27 27 97 2f 96
* ssid 49 42 53 53 00 00 00 00
* 00 00 00 00 00 00 00 00
* 00 00 00 00 00 00 00 00
* 00 00 00 00 00 00 00 00
* type 02 CMD_BSS_TYPE_IBSS
* beacon period 64 00
* dtim period 00
* timestamp 00 00 00 00 00 00 00 00
* localtime 00 00 00 00 00 00 00 00
* IE DS 03
* IE DS len 01
* IE DS channel 01
* reserveed 00 00 00 00
* IE IBSS 06
* IE IBSS len 02
* IE IBSS atim 00 00
* reserved 00 00 00 00
* capability 02 00
* rates 82 84 8b 96 0c 12 18 24 30 48 60 6c 00
* fail timeout ff 00
* probe delay 00 00
*/
memset(&cmd, 0, sizeof(cmd));
cmd.hdr.size = cpu_to_le16(sizeof(cmd));
memcpy(cmd.bss.bssid, bss->bssid, ETH_ALEN);
memcpy(cmd.bss.ssid, params->ssid, params->ssid_len);
cmd.bss.type = CMD_BSS_TYPE_IBSS;
cmd.bss.beaconperiod = cpu_to_le16(params->beacon_interval);
cmd.bss.ds.header.id = WLAN_EID_DS_PARAMS;
cmd.bss.ds.header.len = 1;
cmd.bss.ds.channel = params->chandef.chan->hw_value;
cmd.bss.ibss.header.id = WLAN_EID_IBSS_PARAMS;
cmd.bss.ibss.header.len = 2;
cmd.bss.ibss.atimwindow = 0;
cmd.bss.capability = cpu_to_le16(bss->capability & CAPINFO_MASK);
/* set rates to the intersection of our rates and the rates in the
bss */
rcu_read_lock();
rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES);
if (!rates_eid) {
lbs_add_rates(cmd.bss.rates);
} else {
rates_max = rates_eid[1];
if (rates_max > MAX_RATES) {
lbs_deb_join("invalid rates");
rcu_read_unlock();
ret = -EINVAL;
goto out;
}
rates = cmd.bss.rates;
for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) {
u8 hw_rate = lbs_rates[hw].bitrate / 5;
for (i = 0; i < rates_max; i++) {
if (hw_rate == (rates_eid[i+2] & 0x7f)) {
u8 rate = rates_eid[i+2];
if (rate == 0x02 || rate == 0x04 ||
rate == 0x0b || rate == 0x16)
rate |= 0x80;
*rates++ = rate;
}
}
}
}
rcu_read_unlock();
/* Only v8 and below support setting this */
if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) {
cmd.failtimeout = cpu_to_le16(MRVDRV_ASSOCIATION_TIME_OUT);
cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME);
}
ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_JOIN, &cmd);
if (ret)
goto out;
/*
* This is a sample response to CMD_802_11_AD_HOC_JOIN:
*
* response 2c 80
* size 09 00
* sequence xx xx
* result 00 00
* reserved 00
*/
lbs_join_post(priv, params, bss->bssid, bss->capability);
out:
return ret;
}
static int lbs_ibss_start_new(struct lbs_private *priv,
struct cfg80211_ibss_params *params)
{
struct cmd_ds_802_11_ad_hoc_start cmd;
struct cmd_ds_802_11_ad_hoc_result *resp =
(struct cmd_ds_802_11_ad_hoc_result *) &cmd;
u8 preamble = RADIO_PREAMBLE_SHORT;
int ret = 0;
u16 capability;
ret = lbs_set_radio(priv, preamble, 1);
if (ret)
goto out;
/*
* Example CMD_802_11_AD_HOC_START command:
*
* command 2b 00 CMD_802_11_AD_HOC_START
* size b1 00
* sequence xx xx
* result 00 00
* ssid 54 45 53 54 00 00 00 00
* 00 00 00 00 00 00 00 00
* 00 00 00 00 00 00 00 00
* 00 00 00 00 00 00 00 00
* bss type 02
* beacon period 64 00
* dtim period 00
* IE IBSS 06
* IE IBSS len 02
* IE IBSS atim 00 00
* reserved 00 00 00 00
* IE DS 03
* IE DS len 01
* IE DS channel 01
* reserved 00 00 00 00
* probe delay 00 00
* capability 02 00
* rates 82 84 8b 96 (basic rates with have bit 7 set)
* 0c 12 18 24 30 48 60 6c
* padding 100 bytes
*/
memset(&cmd, 0, sizeof(cmd));
cmd.hdr.size = cpu_to_le16(sizeof(cmd));
memcpy(cmd.ssid, params->ssid, params->ssid_len);
cmd.bsstype = CMD_BSS_TYPE_IBSS;
cmd.beaconperiod = cpu_to_le16(params->beacon_interval);
cmd.ibss.header.id = WLAN_EID_IBSS_PARAMS;
cmd.ibss.header.len = 2;
cmd.ibss.atimwindow = 0;
cmd.ds.header.id = WLAN_EID_DS_PARAMS;
cmd.ds.header.len = 1;
cmd.ds.channel = params->chandef.chan->hw_value;
/* Only v8 and below support setting probe delay */
if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8)
cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME);
/* TODO: mix in WLAN_CAPABILITY_PRIVACY */
capability = WLAN_CAPABILITY_IBSS;
cmd.capability = cpu_to_le16(capability);
lbs_add_rates(cmd.rates);
ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_START, &cmd);
if (ret)
goto out;
/*
* This is a sample response to CMD_802_11_AD_HOC_JOIN:
*
* response 2b 80
* size 14 00
* sequence xx xx
* result 00 00
* reserved 00
* bssid 02 2b 7b 0f 86 0e
*/
lbs_join_post(priv, params, resp->bssid, capability);
out:
return ret;
}
static int lbs_join_ibss(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ibss_params *params)
{
struct lbs_private *priv = wiphy_priv(wiphy);
int ret = 0;
struct cfg80211_bss *bss;
if (dev == priv->mesh_dev)
return -EOPNOTSUPP;
if (!params->chandef.chan) {
ret = -ENOTSUPP;
goto out;
}
ret = lbs_set_channel(priv, params->chandef.chan->hw_value);
if (ret)
goto out;
/* Search if someone is beaconing. This assumes that the
* bss list is populated already */
bss = cfg80211_get_bss(wiphy, params->chandef.chan, params->bssid,
params->ssid, params->ssid_len,
IEEE80211_BSS_TYPE_IBSS, IEEE80211_PRIVACY_ANY);
if (bss) {
ret = lbs_ibss_join_existing(priv, params, bss);
cfg80211_put_bss(wiphy, bss);
} else
ret = lbs_ibss_start_new(priv, params);
out:
return ret;
}
static int lbs_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
{
struct lbs_private *priv = wiphy_priv(wiphy);
struct cmd_ds_802_11_ad_hoc_stop cmd;
int ret = 0;
if (dev == priv->mesh_dev)
return -EOPNOTSUPP;
memset(&cmd, 0, sizeof(cmd));
cmd.hdr.size = cpu_to_le16(sizeof(cmd));
ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_STOP, &cmd);
/* TODO: consider doing this at MACREG_INT_CODE_ADHOC_BCN_LOST time */
lbs_mac_event_disconnected(priv, true);
return ret;
}
static int lbs_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev,
bool enabled, int timeout)
{
struct lbs_private *priv = wiphy_priv(wiphy);
if (!(priv->fwcapinfo & FW_CAPINFO_PS)) {
if (!enabled)
return 0;
else
return -EINVAL;
}
/* firmware does not work well with too long latency with power saving
* enabled, so do not enable it if there is only polling, no
* interrupts (like in some sdio hosts which can only
* poll for sdio irqs)
*/
if (priv->is_polling) {
if (!enabled)
return 0;
else
return -EINVAL;
}
if (!enabled) {
priv->psmode = LBS802_11POWERMODECAM;
if (priv->psstate != PS_STATE_FULL_POWER)
lbs_set_ps_mode(priv,
PS_MODE_ACTION_EXIT_PS,
true);
return 0;
}
if (priv->psmode != LBS802_11POWERMODECAM)
return 0;
priv->psmode = LBS802_11POWERMODEMAX_PSP;
if (priv->connect_status == LBS_CONNECTED)
lbs_set_ps_mode(priv, PS_MODE_ACTION_ENTER_PS, true);
return 0;
}
/*
* Initialization
*/
static const struct cfg80211_ops lbs_cfg80211_ops = {
.set_monitor_channel = lbs_cfg_set_monitor_channel,
.libertas_set_mesh_channel = lbs_cfg_set_mesh_channel,
.scan = lbs_cfg_scan,
.connect = lbs_cfg_connect,
.disconnect = lbs_cfg_disconnect,
.add_key = lbs_cfg_add_key,
.del_key = lbs_cfg_del_key,
.set_default_key = lbs_cfg_set_default_key,
.get_station = lbs_cfg_get_station,
.change_virtual_intf = lbs_change_intf,
.join_ibss = lbs_join_ibss,
.leave_ibss = lbs_leave_ibss,
.set_power_mgmt = lbs_set_power_mgmt,
};
/*
* At this time lbs_private *priv doesn't even exist, so we just allocate
* memory and don't initialize the wiphy further. This is postponed until we
* can talk to the firmware and happens at registration time in
* lbs_cfg_wiphy_register().
*/
struct wireless_dev *lbs_cfg_alloc(struct device *dev)
{
int ret = 0;
struct wireless_dev *wdev;
wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
if (!wdev)
return ERR_PTR(-ENOMEM);
wdev->wiphy = wiphy_new(&lbs_cfg80211_ops, sizeof(struct lbs_private));
if (!wdev->wiphy) {
dev_err(dev, "cannot allocate wiphy\n");
ret = -ENOMEM;
goto err_wiphy_new;
}
return wdev;
err_wiphy_new:
kfree(wdev);
return ERR_PTR(ret);
}
static void lbs_cfg_set_regulatory_hint(struct lbs_private *priv)
{
struct region_code_mapping {
const char *cn;
int code;
};
/* Section 5.17.2 */
static const struct region_code_mapping regmap[] = {
{"US ", 0x10}, /* US FCC */
{"CA ", 0x20}, /* Canada */
{"EU ", 0x30}, /* ETSI */
{"ES ", 0x31}, /* Spain */
{"FR ", 0x32}, /* France */
{"JP ", 0x40}, /* Japan */
};
size_t i;
for (i = 0; i < ARRAY_SIZE(regmap); i++)
if (regmap[i].code == priv->regioncode) {
regulatory_hint(priv->wdev->wiphy, regmap[i].cn);
break;
}
}
static void lbs_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct lbs_private *priv = wiphy_priv(wiphy);
memcpy(priv->country_code, request->alpha2, sizeof(request->alpha2));
if (lbs_iface_active(priv))
lbs_set_11d_domain_info(priv);
}
/*
* This function get's called after lbs_setup_firmware() determined the
* firmware capabities. So we can setup the wiphy according to our
* hardware/firmware.
*/
int lbs_cfg_register(struct lbs_private *priv)
{
struct wireless_dev *wdev = priv->wdev;
int ret;
wdev->wiphy->max_scan_ssids = 1;
wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
wdev->wiphy->interface_modes =
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC);
if (lbs_rtap_supported(priv))
wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MONITOR);
if (lbs_mesh_activated(priv))
wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MESH_POINT);
wdev->wiphy->bands[NL80211_BAND_2GHZ] = &lbs_band_2ghz;
/*
* We could check priv->fwcapinfo && FW_CAPINFO_WPA, but I have
* never seen a firmware without WPA
*/
wdev->wiphy->cipher_suites = cipher_suites;
wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
wdev->wiphy->reg_notifier = lbs_reg_notifier;
ret = wiphy_register(wdev->wiphy);
if (ret < 0)
pr_err("cannot register wiphy device\n");
priv->wiphy_registered = true;
ret = register_netdev(priv->dev);
if (ret)
pr_err("cannot register network device\n");
INIT_DELAYED_WORK(&priv->scan_work, lbs_scan_worker);
lbs_cfg_set_regulatory_hint(priv);
return ret;
}
void lbs_scan_deinit(struct lbs_private *priv)
{
cancel_delayed_work_sync(&priv->scan_work);
}
void lbs_cfg_free(struct lbs_private *priv)
{
struct wireless_dev *wdev = priv->wdev;
if (!wdev)
return;
if (priv->wiphy_registered)
wiphy_unregister(wdev->wiphy);
if (wdev->wiphy)
wiphy_free(wdev->wiphy);
kfree(wdev);
}