linuxdebug/drivers/net/wireless/ath/wil6210/txrx.c

2590 lines
69 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: ISC
/*
* Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
* Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
*/
#include <linux/etherdevice.h>
#include <net/ieee80211_radiotap.h>
#include <linux/if_arp.h>
#include <linux/moduleparam.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_vlan.h>
#include <net/ipv6.h>
#include <linux/prefetch.h>
#include "wil6210.h"
#include "wmi.h"
#include "txrx.h"
#include "trace.h"
#include "txrx_edma.h"
bool rx_align_2;
module_param(rx_align_2, bool, 0444);
MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
bool rx_large_buf;
module_param(rx_large_buf, bool, 0444);
MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
/* Drop Tx packets in case Tx ring is full */
bool drop_if_ring_full;
static inline uint wil_rx_snaplen(void)
{
return rx_align_2 ? 6 : 0;
}
/* wil_ring_wmark_low - low watermark for available descriptor space */
static inline int wil_ring_wmark_low(struct wil_ring *ring)
{
return ring->size / 8;
}
/* wil_ring_wmark_high - high watermark for available descriptor space */
static inline int wil_ring_wmark_high(struct wil_ring *ring)
{
return ring->size / 4;
}
/* returns true if num avail descriptors is lower than wmark_low */
static inline int wil_ring_avail_low(struct wil_ring *ring)
{
return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring);
}
/* returns true if num avail descriptors is higher than wmark_high */
static inline int wil_ring_avail_high(struct wil_ring *ring)
{
return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring);
}
/* returns true when all tx vrings are empty */
bool wil_is_tx_idle(struct wil6210_priv *wil)
{
int i;
unsigned long data_comp_to;
int min_ring_id = wil_get_min_tx_ring_id(wil);
for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
struct wil_ring *vring = &wil->ring_tx[i];
int vring_index = vring - wil->ring_tx;
struct wil_ring_tx_data *txdata =
&wil->ring_tx_data[vring_index];
spin_lock(&txdata->lock);
if (!vring->va || !txdata->enabled) {
spin_unlock(&txdata->lock);
continue;
}
data_comp_to = jiffies + msecs_to_jiffies(
WIL_DATA_COMPLETION_TO_MS);
if (test_bit(wil_status_napi_en, wil->status)) {
while (!wil_ring_is_empty(vring)) {
if (time_after(jiffies, data_comp_to)) {
wil_dbg_pm(wil,
"TO waiting for idle tx\n");
spin_unlock(&txdata->lock);
return false;
}
wil_dbg_ratelimited(wil,
"tx vring is not empty -> NAPI\n");
spin_unlock(&txdata->lock);
napi_synchronize(&wil->napi_tx);
msleep(20);
spin_lock(&txdata->lock);
if (!vring->va || !txdata->enabled)
break;
}
}
spin_unlock(&txdata->lock);
}
return true;
}
static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring)
{
struct device *dev = wil_to_dev(wil);
size_t sz = vring->size * sizeof(vring->va[0]);
uint i;
wil_dbg_misc(wil, "vring_alloc:\n");
BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
vring->swhead = 0;
vring->swtail = 0;
vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
if (!vring->ctx) {
vring->va = NULL;
return -ENOMEM;
}
/* vring->va should be aligned on its size rounded up to power of 2
* This is granted by the dma_alloc_coherent.
*
* HW has limitation that all vrings addresses must share the same
* upper 16 msb bits part of 48 bits address. To workaround that,
* if we are using more than 32 bit addresses switch to 32 bit
* allocation before allocating vring memory.
*
* There's no check for the return value of dma_set_mask_and_coherent,
* since we assume if we were able to set the mask during
* initialization in this system it will not fail if we set it again
*/
if (wil->dma_addr_size > 32)
dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
if (!vring->va) {
kfree(vring->ctx);
vring->ctx = NULL;
return -ENOMEM;
}
if (wil->dma_addr_size > 32)
dma_set_mask_and_coherent(dev,
DMA_BIT_MASK(wil->dma_addr_size));
/* initially, all descriptors are SW owned
* For Tx and Rx, ownership bit is at the same location, thus
* we can use any
*/
for (i = 0; i < vring->size; i++) {
volatile struct vring_tx_desc *_d =
&vring->va[i].tx.legacy;
_d->dma.status = TX_DMA_STATUS_DU;
}
wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
vring->va, &vring->pa, vring->ctx);
return 0;
}
static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc,
struct wil_ctx *ctx)
{
struct vring_tx_desc *d = &desc->legacy;
dma_addr_t pa = wil_desc_addr(&d->dma.addr);
u16 dmalen = le16_to_cpu(d->dma.length);
switch (ctx->mapped_as) {
case wil_mapped_as_single:
dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
break;
case wil_mapped_as_page:
dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
break;
default:
break;
}
}
static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring)
{
struct device *dev = wil_to_dev(wil);
size_t sz = vring->size * sizeof(vring->va[0]);
lockdep_assert_held(&wil->mutex);
if (!vring->is_rx) {
int vring_index = vring - wil->ring_tx;
wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
vring_index, vring->size, vring->va,
&vring->pa, vring->ctx);
} else {
wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
vring->size, vring->va,
&vring->pa, vring->ctx);
}
while (!wil_ring_is_empty(vring)) {
dma_addr_t pa;
u16 dmalen;
struct wil_ctx *ctx;
if (!vring->is_rx) {
struct vring_tx_desc dd, *d = &dd;
volatile struct vring_tx_desc *_d =
&vring->va[vring->swtail].tx.legacy;
ctx = &vring->ctx[vring->swtail];
if (!ctx) {
wil_dbg_txrx(wil,
"ctx(%d) was already completed\n",
vring->swtail);
vring->swtail = wil_ring_next_tail(vring);
continue;
}
*d = *_d;
wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
if (ctx->skb)
dev_kfree_skb_any(ctx->skb);
vring->swtail = wil_ring_next_tail(vring);
} else { /* rx */
struct vring_rx_desc dd, *d = &dd;
volatile struct vring_rx_desc *_d =
&vring->va[vring->swhead].rx.legacy;
ctx = &vring->ctx[vring->swhead];
*d = *_d;
pa = wil_desc_addr(&d->dma.addr);
dmalen = le16_to_cpu(d->dma.length);
dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
kfree_skb(ctx->skb);
wil_ring_advance_head(vring, 1);
}
}
dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
kfree(vring->ctx);
vring->pa = 0;
vring->va = NULL;
vring->ctx = NULL;
}
/* Allocate one skb for Rx VRING
*
* Safe to call from IRQ
*/
static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring,
u32 i, int headroom)
{
struct device *dev = wil_to_dev(wil);
unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
struct vring_rx_desc dd, *d = &dd;
volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy;
dma_addr_t pa;
struct sk_buff *skb = dev_alloc_skb(sz + headroom);
if (unlikely(!skb))
return -ENOMEM;
skb_reserve(skb, headroom);
skb_put(skb, sz);
/**
* Make sure that the network stack calculates checksum for packets
* which failed the HW checksum calculation
*/
skb->ip_summed = CHECKSUM_NONE;
pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(dev, pa))) {
kfree_skb(skb);
return -ENOMEM;
}
d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
wil_desc_addr_set(&d->dma.addr, pa);
/* ip_length don't care */
/* b11 don't care */
/* error don't care */
d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
d->dma.length = cpu_to_le16(sz);
*_d = *d;
vring->ctx[i].skb = skb;
return 0;
}
/* Adds radiotap header
*
* Any error indicated as "Bad FCS"
*
* Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
* - Rx descriptor: 32 bytes
* - Phy info
*/
static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
struct sk_buff *skb)
{
struct wil6210_rtap {
struct ieee80211_radiotap_header rthdr;
/* fields should be in the order of bits in rthdr.it_present */
/* flags */
u8 flags;
/* channel */
__le16 chnl_freq __aligned(2);
__le16 chnl_flags;
/* MCS */
u8 mcs_present;
u8 mcs_flags;
u8 mcs_index;
} __packed;
struct vring_rx_desc *d = wil_skb_rxdesc(skb);
struct wil6210_rtap *rtap;
int rtap_len = sizeof(struct wil6210_rtap);
struct ieee80211_channel *ch = wil->monitor_chandef.chan;
if (skb_headroom(skb) < rtap_len &&
pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
return;
}
rtap = skb_push(skb, rtap_len);
memset(rtap, 0, rtap_len);
rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
rtap->rthdr.it_len = cpu_to_le16(rtap_len);
rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_CHANNEL) |
(1 << IEEE80211_RADIOTAP_MCS));
if (d->dma.status & RX_DMA_STATUS_ERROR)
rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS;
rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
rtap->chnl_flags = cpu_to_le16(0);
rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
rtap->mcs_flags = 0;
rtap->mcs_index = wil_rxdesc_mcs(d);
}
static bool wil_is_rx_idle(struct wil6210_priv *wil)
{
struct vring_rx_desc *_d;
struct wil_ring *ring = &wil->ring_rx;
_d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy;
if (_d->dma.status & RX_DMA_STATUS_DU)
return false;
return true;
}
static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb)
{
struct vring_rx_desc *d = wil_skb_rxdesc(skb);
int mid = wil_rxdesc_mid(d);
struct wil6210_vif *vif = wil->vifs[mid];
/* cid from DMA descriptor is limited to 3 bits.
* In case of cid>=8, the value would be cid modulo 8 and we need to
* find real cid by locating the transmitter (ta) inside sta array
*/
int cid = wil_rxdesc_cid(d);
unsigned int snaplen = wil_rx_snaplen();
struct ieee80211_hdr_3addr *hdr;
int i;
unsigned char *ta;
u8 ftype;
/* in monitor mode there are no connections */
if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR)
return cid;
ftype = wil_rxdesc_ftype(d) << 2;
if (likely(ftype == IEEE80211_FTYPE_DATA)) {
if (unlikely(skb->len < ETH_HLEN + snaplen)) {
wil_err_ratelimited(wil,
"Short data frame, len = %d\n",
skb->len);
return -ENOENT;
}
ta = wil_skb_get_sa(skb);
} else {
if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) {
wil_err_ratelimited(wil, "Short frame, len = %d\n",
skb->len);
return -ENOENT;
}
hdr = (void *)skb->data;
ta = hdr->addr2;
}
if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID)
return cid;
/* assuming no concurrency between AP interfaces and STA interfaces.
* multista is used only in P2P_GO or AP mode. In other modes return
* cid from the rx descriptor
*/
if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO &&
vif->wdev.iftype != NL80211_IFTYPE_AP)
return cid;
/* For Rx packets cid from rx descriptor is limited to 3 bits (0..7),
* to find the real cid, compare transmitter address with the stored
* stations mac address in the driver sta array
*/
for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) {
if (wil->sta[i].status != wil_sta_unused &&
ether_addr_equal(wil->sta[i].addr, ta)) {
cid = i;
break;
}
}
if (i >= wil->max_assoc_sta) {
wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n",
ta, vif->wdev.iftype, ftype, skb->len);
cid = -ENOENT;
}
return cid;
}
/* reap 1 frame from @swhead
*
* Rx descriptor copied to skb->cb
*
* Safe to call from IRQ
*/
static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
struct wil_ring *vring)
{
struct device *dev = wil_to_dev(wil);
struct wil6210_vif *vif;
struct net_device *ndev;
volatile struct vring_rx_desc *_d;
struct vring_rx_desc *d;
struct sk_buff *skb;
dma_addr_t pa;
unsigned int snaplen = wil_rx_snaplen();
unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
u16 dmalen;
u8 ftype;
int cid, mid;
int i;
struct wil_net_stats *stats;
BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb));
again:
if (unlikely(wil_ring_is_empty(vring)))
return NULL;
i = (int)vring->swhead;
_d = &vring->va[i].rx.legacy;
if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
/* it is not error, we just reached end of Rx done area */
return NULL;
}
skb = vring->ctx[i].skb;
vring->ctx[i].skb = NULL;
wil_ring_advance_head(vring, 1);
if (!skb) {
wil_err(wil, "No Rx skb at [%d]\n", i);
goto again;
}
d = wil_skb_rxdesc(skb);
*d = *_d;
pa = wil_desc_addr(&d->dma.addr);
dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
dmalen = le16_to_cpu(d->dma.length);
trace_wil6210_rx(i, d);
wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
(const void *)d, sizeof(*d), false);
mid = wil_rxdesc_mid(d);
vif = wil->vifs[mid];
if (unlikely(!vif)) {
wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d",
mid);
kfree_skb(skb);
goto again;
}
ndev = vif_to_ndev(vif);
if (unlikely(dmalen > sz)) {
wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n",
dmalen);
kfree_skb(skb);
goto again;
}
skb_trim(skb, dmalen);
prefetch(skb->data);
wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
skb->data, skb_headlen(skb), false);
cid = wil_rx_get_cid_by_skb(wil, skb);
if (cid == -ENOENT) {
kfree_skb(skb);
goto again;
}
wil_skb_set_cid(skb, (u8)cid);
stats = &wil->sta[cid].stats;
stats->last_mcs_rx = wil_rxdesc_mcs(d);
if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
stats->rx_per_mcs[stats->last_mcs_rx]++;
/* use radiotap header only if required */
if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
wil_rx_add_radiotap_header(wil, skb);
/* no extra checks if in sniffer mode */
if (ndev->type != ARPHRD_ETHER)
return skb;
/* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
* Driver should recognize it by frame type, that is found
* in Rx descriptor. If type is not data, it is 802.11 frame as is
*/
ftype = wil_rxdesc_ftype(d) << 2;
if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
u8 fc1 = wil_rxdesc_fc1(d);
int tid = wil_rxdesc_tid(d);
u16 seq = wil_rxdesc_seq(d);
wil_dbg_txrx(wil,
"Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
fc1, mid, cid, tid, seq);
stats->rx_non_data_frame++;
if (wil_is_back_req(fc1)) {
wil_dbg_txrx(wil,
"BAR: MID %d CID %d TID %d Seq 0x%03x\n",
mid, cid, tid, seq);
wil_rx_bar(wil, vif, cid, tid, seq);
} else {
/* print again all info. One can enable only this
* without overhead for printing every Rx frame
*/
wil_dbg_txrx(wil,
"Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
fc1, mid, cid, tid, seq);
wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
(const void *)d, sizeof(*d), false);
wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
skb->data, skb_headlen(skb), false);
}
kfree_skb(skb);
goto again;
}
/* L4 IDENT is on when HW calculated checksum, check status
* and in case of error drop the packet
* higher stack layers will handle retransmission (if required)
*/
if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
/* L4 protocol identified, csum calculated */
if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
skb->ip_summed = CHECKSUM_UNNECESSARY;
/* If HW reports bad checksum, let IP stack re-check it
* For example, HW don't understand Microsoft IP stack that
* mis-calculates TCP checksum - if it should be 0x0,
* it writes 0xffff in violation of RFC 1624
*/
else
stats->rx_csum_err++;
}
if (snaplen) {
/* Packet layout
* +-------+-------+---------+------------+------+
* | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
* +-------+-------+---------+------------+------+
* Need to remove SNAP, shifting SA and DA forward
*/
memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
skb_pull(skb, snaplen);
}
return skb;
}
/* allocate and fill up to @count buffers in rx ring
* buffers posted at @swtail
* Note: we have a single RX queue for servicing all VIFs, but we
* allocate skbs with headroom according to main interface only. This
* means it will not work with monitor interface together with other VIFs.
* Currently we only support monitor interface on its own without other VIFs,
* and we will need to fix this code once we add support.
*/
static int wil_rx_refill(struct wil6210_priv *wil, int count)
{
struct net_device *ndev = wil->main_ndev;
struct wil_ring *v = &wil->ring_rx;
u32 next_tail;
int rc = 0;
int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
WIL6210_RTAP_SIZE : 0;
for (; next_tail = wil_ring_next_tail(v),
(next_tail != v->swhead) && (count-- > 0);
v->swtail = next_tail) {
rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
if (unlikely(rc)) {
wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n",
rc, v->swtail);
break;
}
}
/* make sure all writes to descriptors (shared memory) are done before
* committing them to HW
*/
wmb();
wil_w(wil, v->hwtail, v->swtail);
return rc;
}
/**
* reverse_memcmp - Compare two areas of memory, in reverse order
* @cs: One area of memory
* @ct: Another area of memory
* @count: The size of the area.
*
* Cut'n'paste from original memcmp (see lib/string.c)
* with minimal modifications
*/
int reverse_memcmp(const void *cs, const void *ct, size_t count)
{
const unsigned char *su1, *su2;
int res = 0;
for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
--su1, --su2, count--) {
res = *su1 - *su2;
if (res)
break;
}
return res;
}
static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
{
struct vring_rx_desc *d = wil_skb_rxdesc(skb);
int cid = wil_skb_get_cid(skb);
int tid = wil_rxdesc_tid(d);
int key_id = wil_rxdesc_key_id(d);
int mc = wil_rxdesc_mcast(d);
struct wil_sta_info *s = &wil->sta[cid];
struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
&s->tid_crypto_rx[tid];
struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
const u8 *pn = (u8 *)&d->mac.pn;
if (!cc->key_set) {
wil_err_ratelimited(wil,
"Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
cid, tid, mc, key_id);
return -EINVAL;
}
if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
wil_err_ratelimited(wil,
"Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
cid, tid, mc, key_id, pn, cc->pn);
return -EINVAL;
}
memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
return 0;
}
static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb,
struct wil_net_stats *stats)
{
struct vring_rx_desc *d = wil_skb_rxdesc(skb);
if ((d->dma.status & RX_DMA_STATUS_ERROR) &&
(d->dma.error & RX_DMA_ERROR_MIC)) {
stats->rx_mic_error++;
wil_dbg_txrx(wil, "MIC error, dropping packet\n");
return -EFAULT;
}
return 0;
}
static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid,
int *security)
{
struct vring_rx_desc *d = wil_skb_rxdesc(skb);
*cid = wil_skb_get_cid(skb);
*security = wil_rxdesc_security(d);
}
/*
* Check if skb is ptk eapol key message
*
* returns a pointer to the start of the eapol key structure, NULL
* if frame is not PTK eapol key
*/
static struct wil_eapol_key *wil_is_ptk_eapol_key(struct wil6210_priv *wil,
struct sk_buff *skb)
{
u8 *buf;
const struct wil_1x_hdr *hdr;
struct wil_eapol_key *key;
u16 key_info;
int len = skb->len;
if (!skb_mac_header_was_set(skb)) {
wil_err(wil, "mac header was not set\n");
return NULL;
}
len -= skb_mac_offset(skb);
if (len < sizeof(struct ethhdr) + sizeof(struct wil_1x_hdr) +
sizeof(struct wil_eapol_key))
return NULL;
buf = skb_mac_header(skb) + sizeof(struct ethhdr);
hdr = (const struct wil_1x_hdr *)buf;
if (hdr->type != WIL_1X_TYPE_EAPOL_KEY)
return NULL;
key = (struct wil_eapol_key *)(buf + sizeof(struct wil_1x_hdr));
if (key->type != WIL_EAPOL_KEY_TYPE_WPA &&
key->type != WIL_EAPOL_KEY_TYPE_RSN)
return NULL;
key_info = be16_to_cpu(key->key_info);
if (!(key_info & WIL_KEY_INFO_KEY_TYPE)) /* check if pairwise */
return NULL;
return key;
}
static bool wil_skb_is_eap_3(struct wil6210_priv *wil, struct sk_buff *skb)
{
struct wil_eapol_key *key;
u16 key_info;
key = wil_is_ptk_eapol_key(wil, skb);
if (!key)
return false;
key_info = be16_to_cpu(key->key_info);
if (key_info & (WIL_KEY_INFO_MIC |
WIL_KEY_INFO_ENCR_KEY_DATA)) {
/* 3/4 of 4-Way Handshake */
wil_dbg_misc(wil, "EAPOL key message 3\n");
return true;
}
/* 1/4 of 4-Way Handshake */
wil_dbg_misc(wil, "EAPOL key message 1\n");
return false;
}
static bool wil_skb_is_eap_4(struct wil6210_priv *wil, struct sk_buff *skb)
{
struct wil_eapol_key *key;
u32 *nonce, i;
key = wil_is_ptk_eapol_key(wil, skb);
if (!key)
return false;
nonce = (u32 *)key->key_nonce;
for (i = 0; i < WIL_EAP_NONCE_LEN / sizeof(u32); i++, nonce++) {
if (*nonce != 0) {
/* message 2/4 */
wil_dbg_misc(wil, "EAPOL key message 2\n");
return false;
}
}
wil_dbg_misc(wil, "EAPOL key message 4\n");
return true;
}
void wil_enable_tx_key_worker(struct work_struct *work)
{
struct wil6210_vif *vif = container_of(work,
struct wil6210_vif, enable_tx_key_worker);
struct wil6210_priv *wil = vif_to_wil(vif);
int rc, cid;
rtnl_lock();
if (vif->ptk_rekey_state != WIL_REKEY_WAIT_M4_SENT) {
wil_dbg_misc(wil, "Invalid rekey state = %d\n",
vif->ptk_rekey_state);
rtnl_unlock();
return;
}
cid = wil_find_cid_by_idx(wil, vif->mid, 0);
if (!wil_cid_valid(wil, cid)) {
wil_err(wil, "Invalid cid = %d\n", cid);
rtnl_unlock();
return;
}
wil_dbg_misc(wil, "Apply PTK key after eapol was sent out\n");
rc = wmi_add_cipher_key(vif, 0, wil->sta[cid].addr, 0, NULL,
WMI_KEY_USE_APPLY_PTK);
vif->ptk_rekey_state = WIL_REKEY_IDLE;
rtnl_unlock();
if (rc)
wil_err(wil, "Apply PTK key failed %d\n", rc);
}
void wil_tx_complete_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wireless_dev *wdev = vif_to_wdev(vif);
bool q = false;
if (wdev->iftype != NL80211_IFTYPE_STATION ||
!test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
return;
/* check if skb is an EAP message 4/4 */
if (!wil_skb_is_eap_4(wil, skb))
return;
spin_lock_bh(&wil->eap_lock);
switch (vif->ptk_rekey_state) {
case WIL_REKEY_IDLE:
/* ignore idle state, can happen due to M4 retransmission */
break;
case WIL_REKEY_M3_RECEIVED:
vif->ptk_rekey_state = WIL_REKEY_IDLE;
break;
case WIL_REKEY_WAIT_M4_SENT:
q = true;
break;
default:
wil_err(wil, "Unknown rekey state = %d",
vif->ptk_rekey_state);
}
spin_unlock_bh(&wil->eap_lock);
if (q) {
q = queue_work(wil->wmi_wq, &vif->enable_tx_key_worker);
wil_dbg_misc(wil, "queue_work of enable_tx_key_worker -> %d\n",
q);
}
}
static void wil_rx_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wireless_dev *wdev = vif_to_wdev(vif);
if (wdev->iftype != NL80211_IFTYPE_STATION ||
!test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
return;
/* check if skb is a EAP message 3/4 */
if (!wil_skb_is_eap_3(wil, skb))
return;
if (vif->ptk_rekey_state == WIL_REKEY_IDLE)
vif->ptk_rekey_state = WIL_REKEY_M3_RECEIVED;
}
/*
* Pass Rx packet to the netif. Update statistics.
* Called in softirq context (NAPI poll).
*/
void wil_netif_rx(struct sk_buff *skb, struct net_device *ndev, int cid,
struct wil_net_stats *stats, bool gro)
{
struct wil6210_vif *vif = ndev_to_vif(ndev);
struct wil6210_priv *wil = ndev_to_wil(ndev);
struct wireless_dev *wdev = vif_to_wdev(vif);
unsigned int len = skb->len;
u8 *sa, *da = wil_skb_get_da(skb);
/* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
* is not suitable, need to look at data
*/
int mcast = is_multicast_ether_addr(da);
struct sk_buff *xmit_skb = NULL;
if (wdev->iftype == NL80211_IFTYPE_STATION) {
sa = wil_skb_get_sa(skb);
if (mcast && ether_addr_equal(sa, ndev->dev_addr)) {
/* mcast packet looped back to us */
dev_kfree_skb(skb);
ndev->stats.rx_dropped++;
stats->rx_dropped++;
wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
return;
}
} else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) {
if (mcast) {
/* send multicast frames both to higher layers in
* local net stack and back to the wireless medium
*/
xmit_skb = skb_copy(skb, GFP_ATOMIC);
} else {
int xmit_cid = wil_find_cid(wil, vif->mid, da);
if (xmit_cid >= 0) {
/* The destination station is associated to
* this AP (in this VLAN), so send the frame
* directly to it and do not pass it to local
* net stack.
*/
xmit_skb = skb;
skb = NULL;
}
}
}
if (xmit_skb) {
/* Send to wireless media and increase priority by 256 to
* keep the received priority instead of reclassifying
* the frame (see cfg80211_classify8021d).
*/
xmit_skb->dev = ndev;
xmit_skb->priority += 256;
xmit_skb->protocol = htons(ETH_P_802_3);
skb_reset_network_header(xmit_skb);
skb_reset_mac_header(xmit_skb);
wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
dev_queue_xmit(xmit_skb);
}
if (skb) { /* deliver to local stack */
skb->protocol = eth_type_trans(skb, ndev);
skb->dev = ndev;
if (skb->protocol == cpu_to_be16(ETH_P_PAE))
wil_rx_handle_eapol(vif, skb);
if (gro)
napi_gro_receive(&wil->napi_rx, skb);
else
netif_rx(skb);
}
ndev->stats.rx_packets++;
stats->rx_packets++;
ndev->stats.rx_bytes += len;
stats->rx_bytes += len;
if (mcast)
ndev->stats.multicast++;
}
void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
{
int cid, security;
struct wil6210_priv *wil = ndev_to_wil(ndev);
struct wil_net_stats *stats;
wil->txrx_ops.get_netif_rx_params(skb, &cid, &security);
stats = &wil->sta[cid].stats;
skb_orphan(skb);
if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) {
wil_dbg_txrx(wil, "Rx drop %d bytes\n", skb->len);
dev_kfree_skb(skb);
ndev->stats.rx_dropped++;
stats->rx_replay++;
stats->rx_dropped++;
return;
}
/* check errors reported by HW and update statistics */
if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) {
dev_kfree_skb(skb);
return;
}
wil_netif_rx(skb, ndev, cid, stats, true);
}
/* Proceed all completed skb's from Rx VRING
*
* Safe to call from NAPI poll, i.e. softirq with interrupts enabled
*/
void wil_rx_handle(struct wil6210_priv *wil, int *quota)
{
struct net_device *ndev = wil->main_ndev;
struct wireless_dev *wdev = ndev->ieee80211_ptr;
struct wil_ring *v = &wil->ring_rx;
struct sk_buff *skb;
if (unlikely(!v->va)) {
wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
return;
}
wil_dbg_txrx(wil, "rx_handle\n");
while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
(*quota)--;
/* monitor is currently supported on main interface only */
if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
skb->dev = ndev;
skb_reset_mac_header(skb);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
wil_netif_rx_any(skb, ndev);
} else {
wil_rx_reorder(wil, skb);
}
}
wil_rx_refill(wil, v->size);
}
static void wil_rx_buf_len_init(struct wil6210_priv *wil)
{
wil->rx_buf_len = rx_large_buf ?
WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
if (mtu_max > wil->rx_buf_len) {
/* do not allow RX buffers to be smaller than mtu_max, for
* backward compatibility (mtu_max parameter was also used
* to support receiving large packets)
*/
wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
wil->rx_buf_len = mtu_max;
}
}
static int wil_rx_init(struct wil6210_priv *wil, uint order)
{
struct wil_ring *vring = &wil->ring_rx;
int rc;
wil_dbg_misc(wil, "rx_init\n");
if (vring->va) {
wil_err(wil, "Rx ring already allocated\n");
return -EINVAL;
}
wil_rx_buf_len_init(wil);
vring->size = 1 << order;
vring->is_rx = true;
rc = wil_vring_alloc(wil, vring);
if (rc)
return rc;
rc = wmi_rx_chain_add(wil, vring);
if (rc)
goto err_free;
rc = wil_rx_refill(wil, vring->size);
if (rc)
goto err_free;
return 0;
err_free:
wil_vring_free(wil, vring);
return rc;
}
static void wil_rx_fini(struct wil6210_priv *wil)
{
struct wil_ring *vring = &wil->ring_rx;
wil_dbg_misc(wil, "rx_fini\n");
if (vring->va)
wil_vring_free(wil, vring);
}
static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa,
u32 len, int vring_index)
{
struct vring_tx_desc *d = &desc->legacy;
wil_desc_addr_set(&d->dma.addr, pa);
d->dma.ip_length = 0;
/* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
d->dma.b11 = 0/*14 | BIT(7)*/;
d->dma.error = 0;
d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
d->dma.length = cpu_to_le16((u16)len);
d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
d->mac.d[0] = 0;
d->mac.d[1] = 0;
d->mac.d[2] = 0;
d->mac.ucode_cmd = 0;
/* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
(1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
return 0;
}
void wil_tx_data_init(struct wil_ring_tx_data *txdata)
{
spin_lock_bh(&txdata->lock);
txdata->dot1x_open = false;
txdata->enabled = 0;
txdata->idle = 0;
txdata->last_idle = 0;
txdata->begin = 0;
txdata->agg_wsize = 0;
txdata->agg_timeout = 0;
txdata->agg_amsdu = 0;
txdata->addba_in_progress = false;
txdata->mid = U8_MAX;
spin_unlock_bh(&txdata->lock);
}
static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size,
int cid, int tid)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc;
struct wmi_vring_cfg_cmd cmd = {
.action = cpu_to_le32(WMI_VRING_CMD_ADD),
.vring_cfg = {
.tx_sw_ring = {
.max_mpdu_size =
cpu_to_le16(wil_mtu2macbuf(mtu_max)),
.ring_size = cpu_to_le16(size),
},
.ringid = id,
.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
.mac_ctrl = 0,
.to_resolution = 0,
.agg_max_wsize = 0,
.schd_params = {
.priority = cpu_to_le16(0),
.timeslot_us = cpu_to_le16(0xfff),
},
},
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_vring_cfg_done_event cmd;
} __packed reply = {
.cmd = {.status = WMI_FW_STATUS_FAILURE},
};
struct wil_ring *vring = &wil->ring_tx[id];
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
if (cid >= WIL6210_RX_DESC_MAX_CID) {
cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID;
cmd.vring_cfg.cid = cid;
cmd.vring_cfg.tid = tid;
} else {
cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid);
}
wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
lockdep_assert_held(&wil->mutex);
if (vring->va) {
wil_err(wil, "Tx ring [%d] already allocated\n", id);
rc = -EINVAL;
goto out;
}
wil_tx_data_init(txdata);
vring->is_rx = false;
vring->size = size;
rc = wil_vring_alloc(wil, vring);
if (rc)
goto out;
wil->ring2cid_tid[id][0] = cid;
wil->ring2cid_tid[id][1] = tid;
cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
if (!vif->privacy)
txdata->dot1x_open = true;
rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
WIL_WMI_CALL_GENERAL_TO_MS);
if (rc)
goto out_free;
if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "Tx config failed, status 0x%02x\n",
reply.cmd.status);
rc = -EINVAL;
goto out_free;
}
spin_lock_bh(&txdata->lock);
vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
txdata->mid = vif->mid;
txdata->enabled = 1;
spin_unlock_bh(&txdata->lock);
if (txdata->dot1x_open && (agg_wsize >= 0))
wil_addba_tx_request(wil, id, agg_wsize);
return 0;
out_free:
spin_lock_bh(&txdata->lock);
txdata->dot1x_open = false;
txdata->enabled = 0;
spin_unlock_bh(&txdata->lock);
wil_vring_free(wil, vring);
wil->ring2cid_tid[id][0] = wil->max_assoc_sta;
wil->ring2cid_tid[id][1] = 0;
out:
return rc;
}
static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid,
int tid)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc;
struct wmi_vring_cfg_cmd cmd = {
.action = cpu_to_le32(WMI_VRING_CMD_MODIFY),
.vring_cfg = {
.tx_sw_ring = {
.max_mpdu_size =
cpu_to_le16(wil_mtu2macbuf(mtu_max)),
.ring_size = 0,
},
.ringid = ring_id,
.cidxtid = mk_cidxtid(cid, tid),
.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
.mac_ctrl = 0,
.to_resolution = 0,
.agg_max_wsize = 0,
.schd_params = {
.priority = cpu_to_le16(0),
.timeslot_us = cpu_to_le16(0xfff),
},
},
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_vring_cfg_done_event cmd;
} __packed reply = {
.cmd = {.status = WMI_FW_STATUS_FAILURE},
};
struct wil_ring *vring = &wil->ring_tx[ring_id];
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id,
cid, tid);
lockdep_assert_held(&wil->mutex);
if (!vring->va) {
wil_err(wil, "Tx ring [%d] not allocated\n", ring_id);
return -EINVAL;
}
if (wil->ring2cid_tid[ring_id][0] != cid ||
wil->ring2cid_tid[ring_id][1] != tid) {
wil_err(wil, "ring info does not match cid=%u tid=%u\n",
wil->ring2cid_tid[ring_id][0],
wil->ring2cid_tid[ring_id][1]);
}
cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
WIL_WMI_CALL_GENERAL_TO_MS);
if (rc)
goto fail;
if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "Tx modify failed, status 0x%02x\n",
reply.cmd.status);
rc = -EINVAL;
goto fail;
}
/* set BA aggregation window size to 0 to force a new BA with the
* new AP
*/
txdata->agg_wsize = 0;
if (txdata->dot1x_open && agg_wsize >= 0)
wil_addba_tx_request(wil, ring_id, agg_wsize);
return 0;
fail:
spin_lock_bh(&txdata->lock);
txdata->dot1x_open = false;
txdata->enabled = 0;
spin_unlock_bh(&txdata->lock);
wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta;
wil->ring2cid_tid[ring_id][1] = 0;
return rc;
}
int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc;
struct wmi_bcast_vring_cfg_cmd cmd = {
.action = cpu_to_le32(WMI_VRING_CMD_ADD),
.vring_cfg = {
.tx_sw_ring = {
.max_mpdu_size =
cpu_to_le16(wil_mtu2macbuf(mtu_max)),
.ring_size = cpu_to_le16(size),
},
.ringid = id,
.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
},
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_vring_cfg_done_event cmd;
} __packed reply = {
.cmd = {.status = WMI_FW_STATUS_FAILURE},
};
struct wil_ring *vring = &wil->ring_tx[id];
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
lockdep_assert_held(&wil->mutex);
if (vring->va) {
wil_err(wil, "Tx ring [%d] already allocated\n", id);
rc = -EINVAL;
goto out;
}
wil_tx_data_init(txdata);
vring->is_rx = false;
vring->size = size;
rc = wil_vring_alloc(wil, vring);
if (rc)
goto out;
wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */
wil->ring2cid_tid[id][1] = 0; /* TID */
cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
if (!vif->privacy)
txdata->dot1x_open = true;
rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid,
&cmd, sizeof(cmd),
WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
WIL_WMI_CALL_GENERAL_TO_MS);
if (rc)
goto out_free;
if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "Tx config failed, status 0x%02x\n",
reply.cmd.status);
rc = -EINVAL;
goto out_free;
}
spin_lock_bh(&txdata->lock);
vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
txdata->mid = vif->mid;
txdata->enabled = 1;
spin_unlock_bh(&txdata->lock);
return 0;
out_free:
spin_lock_bh(&txdata->lock);
txdata->enabled = 0;
txdata->dot1x_open = false;
spin_unlock_bh(&txdata->lock);
wil_vring_free(wil, vring);
out:
return rc;
}
static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil,
struct wil6210_vif *vif,
struct sk_buff *skb)
{
int i, cid;
const u8 *da = wil_skb_get_da(skb);
int min_ring_id = wil_get_min_tx_ring_id(wil);
cid = wil_find_cid(wil, vif->mid, da);
if (cid < 0 || cid >= wil->max_assoc_sta)
return NULL;
/* TODO: fix for multiple TID */
for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
if (!wil->ring_tx_data[i].dot1x_open &&
skb->protocol != cpu_to_be16(ETH_P_PAE))
continue;
if (wil->ring2cid_tid[i][0] == cid) {
struct wil_ring *v = &wil->ring_tx[i];
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
da, i);
if (v->va && txdata->enabled) {
return v;
} else {
wil_dbg_txrx(wil,
"find_tx_ucast: vring[%d] not valid\n",
i);
return NULL;
}
}
}
return NULL;
}
static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
struct wil_ring *ring, struct sk_buff *skb);
static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil,
struct wil6210_vif *vif,
struct sk_buff *skb)
{
struct wil_ring *ring;
int i;
u8 cid;
struct wil_ring_tx_data *txdata;
int min_ring_id = wil_get_min_tx_ring_id(wil);
/* In the STA mode, it is expected to have only 1 VRING
* for the AP we connected to.
* find 1-st vring eligible for this skb and use it.
*/
for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
ring = &wil->ring_tx[i];
txdata = &wil->ring_tx_data[i];
if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
continue;
cid = wil->ring2cid_tid[i][0];
if (cid >= wil->max_assoc_sta) /* skip BCAST */
continue;
if (!wil->ring_tx_data[i].dot1x_open &&
skb->protocol != cpu_to_be16(ETH_P_PAE))
continue;
wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
return ring;
}
wil_dbg_txrx(wil, "Tx while no rings active?\n");
return NULL;
}
/* Use one of 2 strategies:
*
* 1. New (real broadcast):
* use dedicated broadcast vring
* 2. Old (pseudo-DMS):
* Find 1-st vring and return it;
* duplicate skb and send it to other active vrings;
* in all cases override dest address to unicast peer's address
* Use old strategy when new is not supported yet:
* - for PBSS
*/
static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
struct wil6210_vif *vif,
struct sk_buff *skb)
{
struct wil_ring *v;
struct wil_ring_tx_data *txdata;
int i = vif->bcast_ring;
if (i < 0)
return NULL;
v = &wil->ring_tx[i];
txdata = &wil->ring_tx_data[i];
if (!v->va || !txdata->enabled)
return NULL;
if (!wil->ring_tx_data[i].dot1x_open &&
skb->protocol != cpu_to_be16(ETH_P_PAE))
return NULL;
return v;
}
/* apply multicast to unicast only for ARP and IP packets
* (see NL80211_CMD_SET_MULTICAST_TO_UNICAST for more info)
*/
static bool wil_check_multicast_to_unicast(struct wil6210_priv *wil,
struct sk_buff *skb)
{
const struct ethhdr *eth = (void *)skb->data;
const struct vlan_ethhdr *ethvlan = (void *)skb->data;
__be16 ethertype;
if (!wil->multicast_to_unicast)
return false;
/* multicast to unicast conversion only for some payload */
ethertype = eth->h_proto;
if (ethertype == htons(ETH_P_8021Q) && skb->len >= VLAN_ETH_HLEN)
ethertype = ethvlan->h_vlan_encapsulated_proto;
switch (ethertype) {
case htons(ETH_P_ARP):
case htons(ETH_P_IP):
case htons(ETH_P_IPV6):
break;
default:
return false;
}
return true;
}
static void wil_set_da_for_vring(struct wil6210_priv *wil,
struct sk_buff *skb, int vring_index)
{
u8 *da = wil_skb_get_da(skb);
int cid = wil->ring2cid_tid[vring_index][0];
ether_addr_copy(da, wil->sta[cid].addr);
}
static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
struct wil6210_vif *vif,
struct sk_buff *skb)
{
struct wil_ring *v, *v2;
struct sk_buff *skb2;
int i;
u8 cid;
const u8 *src = wil_skb_get_sa(skb);
struct wil_ring_tx_data *txdata, *txdata2;
int min_ring_id = wil_get_min_tx_ring_id(wil);
/* find 1-st vring eligible for data */
for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
v = &wil->ring_tx[i];
txdata = &wil->ring_tx_data[i];
if (!v->va || !txdata->enabled || txdata->mid != vif->mid)
continue;
cid = wil->ring2cid_tid[i][0];
if (cid >= wil->max_assoc_sta) /* skip BCAST */
continue;
if (!wil->ring_tx_data[i].dot1x_open &&
skb->protocol != cpu_to_be16(ETH_P_PAE))
continue;
/* don't Tx back to source when re-routing Rx->Tx at the AP */
if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
continue;
goto found;
}
wil_dbg_txrx(wil, "Tx while no vrings active?\n");
return NULL;
found:
wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
wil_set_da_for_vring(wil, skb, i);
/* find other active vrings and duplicate skb for each */
for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
v2 = &wil->ring_tx[i];
txdata2 = &wil->ring_tx_data[i];
if (!v2->va || txdata2->mid != vif->mid)
continue;
cid = wil->ring2cid_tid[i][0];
if (cid >= wil->max_assoc_sta) /* skip BCAST */
continue;
if (!wil->ring_tx_data[i].dot1x_open &&
skb->protocol != cpu_to_be16(ETH_P_PAE))
continue;
if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
continue;
skb2 = skb_copy(skb, GFP_ATOMIC);
if (skb2) {
wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
wil_set_da_for_vring(wil, skb2, i);
wil_tx_ring(wil, vif, v2, skb2);
/* successful call to wil_tx_ring takes skb2 ref */
dev_kfree_skb_any(skb2);
} else {
wil_err(wil, "skb_copy failed\n");
}
}
return v;
}
static inline
void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
{
d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
}
/* Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
* @skb is used to obtain the protocol and headers length.
* @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
* 2 - middle, 3 - last descriptor.
*/
static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
struct sk_buff *skb,
int tso_desc_type, bool is_ipv4,
int tcp_hdr_len, int skb_net_hdr_len)
{
d->dma.b11 = ETH_HLEN; /* MAC header length */
d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
/* L4 header len: TCP header length */
d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
/* Setup TSO: bit and desc type */
d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
(tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
d->dma.ip_length = skb_net_hdr_len;
/* Enable TCP/UDP checksum */
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
/* Calculate pseudo-header */
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
}
/* Sets the descriptor @d up for csum. The corresponding
* @skb is used to obtain the protocol and headers length.
* Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
* Note, if d==NULL, the function only returns the protocol result.
*
* It is very similar to previous wil_tx_desc_offload_setup_tso. This
* is "if unrolling" to optimize the critical path.
*/
static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
struct sk_buff *skb){
int protocol;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
d->dma.b11 = ETH_HLEN; /* MAC header length */
switch (skb->protocol) {
case cpu_to_be16(ETH_P_IP):
protocol = ip_hdr(skb)->protocol;
d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
break;
case cpu_to_be16(ETH_P_IPV6):
protocol = ipv6_hdr(skb)->nexthdr;
break;
default:
return -EINVAL;
}
switch (protocol) {
case IPPROTO_TCP:
d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
/* L4 header len: TCP header length */
d->dma.d0 |=
(tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
break;
case IPPROTO_UDP:
/* L4 header len: UDP header length */
d->dma.d0 |=
(sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
break;
default:
return -EINVAL;
}
d->dma.ip_length = skb_network_header_len(skb);
/* Enable TCP/UDP checksum */
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
/* Calculate pseudo-header */
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
return 0;
}
static inline void wil_tx_last_desc(struct vring_tx_desc *d)
{
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
}
static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
{
d->dma.d0 |= wil_tso_type_lst <<
DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
}
static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif,
struct wil_ring *vring, struct sk_buff *skb)
{
struct device *dev = wil_to_dev(wil);
/* point to descriptors in shared memory */
volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
*_first_desc = NULL;
/* pointers to shadow descriptors */
struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
*d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
*first_desc = &first_desc_mem;
/* pointer to shadow descriptors' context */
struct wil_ctx *hdr_ctx, *first_ctx = NULL;
int descs_used = 0; /* total number of used descriptors */
int sg_desc_cnt = 0; /* number of descriptors for current mss*/
u32 swhead = vring->swhead;
int used, avail = wil_ring_avail_tx(vring);
int nr_frags = skb_shinfo(skb)->nr_frags;
int min_desc_required = nr_frags + 1;
int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */
int f, len, hdrlen, headlen;
int vring_index = vring - wil->ring_tx;
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index];
uint i = swhead;
dma_addr_t pa;
const skb_frag_t *frag = NULL;
int rem_data = mss;
int lenmss;
int hdr_compensation_need = true;
int desc_tso_type = wil_tso_type_first;
bool is_ipv4;
int tcp_hdr_len;
int skb_net_hdr_len;
int gso_type;
int rc = -EINVAL;
wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
vring_index);
if (unlikely(!txdata->enabled))
return -EINVAL;
/* A typical page 4K is 3-4 payloads, we assume each fragment
* is a full payload, that's how min_desc_required has been
* calculated. In real we might need more or less descriptors,
* this is the initial check only.
*/
if (unlikely(avail < min_desc_required)) {
wil_err_ratelimited(wil,
"TSO: Tx ring[%2d] full. No space for %d fragments\n",
vring_index, min_desc_required);
return -ENOMEM;
}
/* Header Length = MAC header len + IP header len + TCP header len*/
hdrlen = skb_tcp_all_headers(skb);
gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
switch (gso_type) {
case SKB_GSO_TCPV4:
/* TCP v4, zero out the IP length and IPv4 checksum fields
* as required by the offloading doc
*/
ip_hdr(skb)->tot_len = 0;
ip_hdr(skb)->check = 0;
is_ipv4 = true;
break;
case SKB_GSO_TCPV6:
/* TCP v6, zero out the payload length */
ipv6_hdr(skb)->payload_len = 0;
is_ipv4 = false;
break;
default:
/* other than TCPv4 or TCPv6 types are not supported for TSO.
* It is also illegal for both to be set simultaneously
*/
return -EINVAL;
}
if (skb->ip_summed != CHECKSUM_PARTIAL)
return -EINVAL;
/* tcp header length and skb network header length are fixed for all
* packet's descriptors - read then once here
*/
tcp_hdr_len = tcp_hdrlen(skb);
skb_net_hdr_len = skb_network_header_len(skb);
_hdr_desc = &vring->va[i].tx.legacy;
pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, pa))) {
wil_err(wil, "TSO: Skb head DMA map error\n");
goto err_exit;
}
wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa,
hdrlen, vring_index);
wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
tcp_hdr_len, skb_net_hdr_len);
wil_tx_last_desc(hdr_desc);
vring->ctx[i].mapped_as = wil_mapped_as_single;
hdr_ctx = &vring->ctx[i];
descs_used++;
headlen = skb_headlen(skb) - hdrlen;
for (f = headlen ? -1 : 0; f < nr_frags; f++) {
if (headlen) {
len = headlen;
wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
len);
} else {
frag = &skb_shinfo(skb)->frags[f];
len = skb_frag_size(frag);
wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
}
while (len) {
wil_dbg_txrx(wil,
"TSO: len %d, rem_data %d, descs_used %d\n",
len, rem_data, descs_used);
if (descs_used == avail) {
wil_err_ratelimited(wil, "TSO: ring overflow\n");
rc = -ENOMEM;
goto mem_error;
}
lenmss = min_t(int, rem_data, len);
i = (swhead + descs_used) % vring->size;
wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
if (!headlen) {
pa = skb_frag_dma_map(dev, frag,
skb_frag_size(frag) - len,
lenmss, DMA_TO_DEVICE);
vring->ctx[i].mapped_as = wil_mapped_as_page;
} else {
pa = dma_map_single(dev,
skb->data +
skb_headlen(skb) - headlen,
lenmss,
DMA_TO_DEVICE);
vring->ctx[i].mapped_as = wil_mapped_as_single;
headlen -= lenmss;
}
if (unlikely(dma_mapping_error(dev, pa))) {
wil_err(wil, "TSO: DMA map page error\n");
goto mem_error;
}
_desc = &vring->va[i].tx.legacy;
if (!_first_desc) {
_first_desc = _desc;
first_ctx = &vring->ctx[i];
d = first_desc;
} else {
d = &desc_mem;
}
wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
pa, lenmss, vring_index);
wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
is_ipv4, tcp_hdr_len,
skb_net_hdr_len);
/* use tso_type_first only once */
desc_tso_type = wil_tso_type_mid;
descs_used++; /* desc used so far */
sg_desc_cnt++; /* desc used for this segment */
len -= lenmss;
rem_data -= lenmss;
wil_dbg_txrx(wil,
"TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
len, rem_data, descs_used, sg_desc_cnt);
/* Close the segment if reached mss size or last frag*/
if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
if (hdr_compensation_need) {
/* first segment include hdr desc for
* release
*/
hdr_ctx->nr_frags = sg_desc_cnt;
wil_tx_desc_set_nr_frags(first_desc,
sg_desc_cnt +
1);
hdr_compensation_need = false;
} else {
wil_tx_desc_set_nr_frags(first_desc,
sg_desc_cnt);
}
first_ctx->nr_frags = sg_desc_cnt - 1;
wil_tx_last_desc(d);
/* first descriptor may also be the last
* for this mss - make sure not to copy
* it twice
*/
if (first_desc != d)
*_first_desc = *first_desc;
/*last descriptor will be copied at the end
* of this TS processing
*/
if (f < nr_frags - 1 || len > 0)
*_desc = *d;
rem_data = mss;
_first_desc = NULL;
sg_desc_cnt = 0;
} else if (first_desc != d) /* update mid descriptor */
*_desc = *d;
}
}
if (!_desc)
goto mem_error;
/* first descriptor may also be the last.
* in this case d pointer is invalid
*/
if (_first_desc == _desc)
d = first_desc;
/* Last data descriptor */
wil_set_tx_desc_last_tso(d);
*_desc = *d;
/* Fill the total number of descriptors in first desc (hdr)*/
wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
*_hdr_desc = *hdr_desc;
/* hold reference to skb
* to prevent skb release before accounting
* in case of immediate "tx done"
*/
vring->ctx[i].skb = skb_get(skb);
/* performance monitoring */
used = wil_ring_used_tx(vring);
if (wil_val_in_range(wil->ring_idle_trsh,
used, used + descs_used)) {
txdata->idle += get_cycles() - txdata->last_idle;
wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
vring_index, used, used + descs_used);
}
/* Make sure to advance the head only after descriptor update is done.
* This will prevent a race condition where the completion thread
* will see the DU bit set from previous run and will handle the
* skb before it was completed.
*/
wmb();
/* advance swhead */
wil_ring_advance_head(vring, descs_used);
wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
/* make sure all writes to descriptors (shared memory) are done before
* committing them to HW
*/
wmb();
if (wil->tx_latency)
*(ktime_t *)&skb->cb = ktime_get();
else
memset(skb->cb, 0, sizeof(ktime_t));
wil_w(wil, vring->hwtail, vring->swhead);
return 0;
mem_error:
while (descs_used > 0) {
struct wil_ctx *ctx;
i = (swhead + descs_used - 1) % vring->size;
d = (struct vring_tx_desc *)&vring->va[i].tx.legacy;
_desc = &vring->va[i].tx.legacy;
*d = *_desc;
_desc->dma.status = TX_DMA_STATUS_DU;
ctx = &vring->ctx[i];
wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
memset(ctx, 0, sizeof(*ctx));
descs_used--;
}
err_exit:
return rc;
}
static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
struct wil_ring *ring, struct sk_buff *skb)
{
struct device *dev = wil_to_dev(wil);
struct vring_tx_desc dd, *d = &dd;
volatile struct vring_tx_desc *_d;
u32 swhead = ring->swhead;
int avail = wil_ring_avail_tx(ring);
int nr_frags = skb_shinfo(skb)->nr_frags;
uint f = 0;
int ring_index = ring - wil->ring_tx;
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
uint i = swhead;
dma_addr_t pa;
int used;
bool mcast = (ring_index == vif->bcast_ring);
uint len = skb_headlen(skb);
wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n",
skb->len, ring_index, nr_frags);
if (unlikely(!txdata->enabled))
return -EINVAL;
if (unlikely(avail < 1 + nr_frags)) {
wil_err_ratelimited(wil,
"Tx ring[%2d] full. No space for %d fragments\n",
ring_index, 1 + nr_frags);
return -ENOMEM;
}
_d = &ring->va[i].tx.legacy;
pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index,
skb_headlen(skb), skb->data, &pa);
wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
skb->data, skb_headlen(skb), false);
if (unlikely(dma_mapping_error(dev, pa)))
return -EINVAL;
ring->ctx[i].mapped_as = wil_mapped_as_single;
/* 1-st segment */
wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len,
ring_index);
if (unlikely(mcast)) {
d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
}
/* Process TCP/UDP checksum offloading */
if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
ring_index);
goto dma_error;
}
ring->ctx[i].nr_frags = nr_frags;
wil_tx_desc_set_nr_frags(d, nr_frags + 1);
/* middle segments */
for (; f < nr_frags; f++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
int len = skb_frag_size(frag);
*_d = *d;
wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
(const void *)d, sizeof(*d), false);
i = (swhead + f + 1) % ring->size;
_d = &ring->va[i].tx.legacy;
pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, pa))) {
wil_err(wil, "Tx[%2d] failed to map fragment\n",
ring_index);
goto dma_error;
}
ring->ctx[i].mapped_as = wil_mapped_as_page;
wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
pa, len, ring_index);
/* no need to check return code -
* if it succeeded for 1-st descriptor,
* it will succeed here too
*/
wil_tx_desc_offload_setup(d, skb);
}
/* for the last seg only */
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
*_d = *d;
wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
(const void *)d, sizeof(*d), false);
/* hold reference to skb
* to prevent skb release before accounting
* in case of immediate "tx done"
*/
ring->ctx[i].skb = skb_get(skb);
/* performance monitoring */
used = wil_ring_used_tx(ring);
if (wil_val_in_range(wil->ring_idle_trsh,
used, used + nr_frags + 1)) {
txdata->idle += get_cycles() - txdata->last_idle;
wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
ring_index, used, used + nr_frags + 1);
}
/* Make sure to advance the head only after descriptor update is done.
* This will prevent a race condition where the completion thread
* will see the DU bit set from previous run and will handle the
* skb before it was completed.
*/
wmb();
/* advance swhead */
wil_ring_advance_head(ring, nr_frags + 1);
wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead,
ring->swhead);
trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags);
/* make sure all writes to descriptors (shared memory) are done before
* committing them to HW
*/
wmb();
if (wil->tx_latency)
*(ktime_t *)&skb->cb = ktime_get();
else
memset(skb->cb, 0, sizeof(ktime_t));
wil_w(wil, ring->hwtail, ring->swhead);
return 0;
dma_error:
/* unmap what we have mapped */
nr_frags = f + 1; /* frags mapped + one for skb head */
for (f = 0; f < nr_frags; f++) {
struct wil_ctx *ctx;
i = (swhead + f) % ring->size;
ctx = &ring->ctx[i];
_d = &ring->va[i].tx.legacy;
*d = *_d;
_d->dma.status = TX_DMA_STATUS_DU;
wil->txrx_ops.tx_desc_unmap(dev,
(union wil_tx_desc *)d,
ctx);
memset(ctx, 0, sizeof(*ctx));
}
return -EINVAL;
}
static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
struct wil_ring *ring, struct sk_buff *skb)
{
int ring_index = ring - wil->ring_tx;
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
int rc;
spin_lock(&txdata->lock);
if (test_bit(wil_status_suspending, wil->status) ||
test_bit(wil_status_suspended, wil->status) ||
test_bit(wil_status_resuming, wil->status)) {
wil_dbg_txrx(wil,
"suspend/resume in progress. drop packet\n");
spin_unlock(&txdata->lock);
return -EINVAL;
}
rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring)
(wil, vif, ring, skb);
spin_unlock(&txdata->lock);
return rc;
}
/* Check status of tx vrings and stop/wake net queues if needed
* It will start/stop net queues of a specific VIF net_device.
*
* This function does one of two checks:
* In case check_stop is true, will check if net queues need to be stopped. If
* the conditions for stopping are met, netif_tx_stop_all_queues() is called.
* In case check_stop is false, will check if net queues need to be waked. If
* the conditions for waking are met, netif_tx_wake_all_queues() is called.
* vring is the vring which is currently being modified by either adding
* descriptors (tx) into it or removing descriptors (tx complete) from it. Can
* be null when irrelevant (e.g. connect/disconnect events).
*
* The implementation is to stop net queues if modified vring has low
* descriptor availability. Wake if all vrings are not in low descriptor
* availability and modified vring has high descriptor availability.
*/
static inline void __wil_update_net_queues(struct wil6210_priv *wil,
struct wil6210_vif *vif,
struct wil_ring *ring,
bool check_stop)
{
int i;
int min_ring_id = wil_get_min_tx_ring_id(wil);
if (unlikely(!vif))
return;
if (ring)
wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d",
(int)(ring - wil->ring_tx), vif->mid, check_stop,
vif->net_queue_stopped);
else
wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d",
check_stop, vif->mid, vif->net_queue_stopped);
if (ring && drop_if_ring_full)
/* no need to stop/wake net queues */
return;
if (check_stop == vif->net_queue_stopped)
/* net queues already in desired state */
return;
if (check_stop) {
if (!ring || unlikely(wil_ring_avail_low(ring))) {
/* not enough room in the vring */
netif_tx_stop_all_queues(vif_to_ndev(vif));
vif->net_queue_stopped = true;
wil_dbg_txrx(wil, "netif_tx_stop called\n");
}
return;
}
/* Do not wake the queues in suspend flow */
if (test_bit(wil_status_suspending, wil->status) ||
test_bit(wil_status_suspended, wil->status))
return;
/* check wake */
for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
struct wil_ring *cur_ring = &wil->ring_tx[i];
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
if (txdata->mid != vif->mid || !cur_ring->va ||
!txdata->enabled || cur_ring == ring)
continue;
if (wil_ring_avail_low(cur_ring)) {
wil_dbg_txrx(wil, "ring %d full, can't wake\n",
(int)(cur_ring - wil->ring_tx));
return;
}
}
if (!ring || wil_ring_avail_high(ring)) {
/* enough room in the ring */
wil_dbg_txrx(wil, "calling netif_tx_wake\n");
netif_tx_wake_all_queues(vif_to_ndev(vif));
vif->net_queue_stopped = false;
}
}
void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif,
struct wil_ring *ring, bool check_stop)
{
spin_lock(&wil->net_queue_lock);
__wil_update_net_queues(wil, vif, ring, check_stop);
spin_unlock(&wil->net_queue_lock);
}
void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif,
struct wil_ring *ring, bool check_stop)
{
spin_lock_bh(&wil->net_queue_lock);
__wil_update_net_queues(wil, vif, ring, check_stop);
spin_unlock_bh(&wil->net_queue_lock);
}
netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct wil6210_vif *vif = ndev_to_vif(ndev);
struct wil6210_priv *wil = vif_to_wil(vif);
const u8 *da = wil_skb_get_da(skb);
bool bcast = is_multicast_ether_addr(da);
struct wil_ring *ring;
static bool pr_once_fw;
int rc;
wil_dbg_txrx(wil, "start_xmit\n");
if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
if (!pr_once_fw) {
wil_err(wil, "FW not ready\n");
pr_once_fw = true;
}
goto drop;
}
if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) {
wil_dbg_ratelimited(wil,
"VIF not connected, packet dropped\n");
goto drop;
}
if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) {
wil_err(wil, "Xmit in monitor mode not supported\n");
goto drop;
}
pr_once_fw = false;
/* find vring */
if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) {
/* in STA mode (ESS), all to same VRING (to AP) */
ring = wil_find_tx_ring_sta(wil, vif, skb);
} else if (bcast) {
if (vif->pbss || wil_check_multicast_to_unicast(wil, skb))
/* in pbss, no bcast VRING - duplicate skb in
* all stations VRINGs
*/
ring = wil_find_tx_bcast_2(wil, vif, skb);
else if (vif->wdev.iftype == NL80211_IFTYPE_AP)
/* AP has a dedicated bcast VRING */
ring = wil_find_tx_bcast_1(wil, vif, skb);
else
/* unexpected combination, fallback to duplicating
* the skb in all stations VRINGs
*/
ring = wil_find_tx_bcast_2(wil, vif, skb);
} else {
/* unicast, find specific VRING by dest. address */
ring = wil_find_tx_ucast(wil, vif, skb);
}
if (unlikely(!ring)) {
wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da);
goto drop;
}
/* set up vring entry */
rc = wil_tx_ring(wil, vif, ring, skb);
switch (rc) {
case 0:
/* shall we stop net queues? */
wil_update_net_queues_bh(wil, vif, ring, true);
/* statistics will be updated on the tx_complete */
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
case -ENOMEM:
if (drop_if_ring_full)
goto drop;
return NETDEV_TX_BUSY;
default:
break; /* goto drop; */
}
drop:
ndev->stats.tx_dropped++;
dev_kfree_skb_any(skb);
return NET_XMIT_DROP;
}
void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb,
struct wil_sta_info *sta)
{
int skb_time_us;
int bin;
if (!wil->tx_latency)
return;
if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0)
return;
skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb);
bin = skb_time_us / wil->tx_latency_res;
bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1);
wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin);
sta->tx_latency_bins[bin]++;
sta->stats.tx_latency_total_us += skb_time_us;
if (skb_time_us < sta->stats.tx_latency_min_us)
sta->stats.tx_latency_min_us = skb_time_us;
if (skb_time_us > sta->stats.tx_latency_max_us)
sta->stats.tx_latency_max_us = skb_time_us;
}
/* Clean up transmitted skb's from the Tx VRING
*
* Return number of descriptors cleared
*
* Safe to call from IRQ
*/
int wil_tx_complete(struct wil6210_vif *vif, int ringid)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct net_device *ndev = vif_to_ndev(vif);
struct device *dev = wil_to_dev(wil);
struct wil_ring *vring = &wil->ring_tx[ringid];
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid];
int done = 0;
int cid = wil->ring2cid_tid[ringid][0];
struct wil_net_stats *stats = NULL;
volatile struct vring_tx_desc *_d;
int used_before_complete;
int used_new;
if (unlikely(!vring->va)) {
wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
return 0;
}
if (unlikely(!txdata->enabled)) {
wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
return 0;
}
wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
used_before_complete = wil_ring_used_tx(vring);
if (cid < wil->max_assoc_sta)
stats = &wil->sta[cid].stats;
while (!wil_ring_is_empty(vring)) {
int new_swtail;
struct wil_ctx *ctx = &vring->ctx[vring->swtail];
/* For the fragmented skb, HW will set DU bit only for the
* last fragment. look for it.
* In TSO the first DU will include hdr desc
*/
int lf = (vring->swtail + ctx->nr_frags) % vring->size;
/* TODO: check we are not past head */
_d = &vring->va[lf].tx.legacy;
if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
break;
new_swtail = (lf + 1) % vring->size;
while (vring->swtail != new_swtail) {
struct vring_tx_desc dd, *d = &dd;
u16 dmalen;
struct sk_buff *skb;
ctx = &vring->ctx[vring->swtail];
skb = ctx->skb;
_d = &vring->va[vring->swtail].tx.legacy;
*d = *_d;
dmalen = le16_to_cpu(d->dma.length);
trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
d->dma.error);
wil_dbg_txrx(wil,
"TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
ringid, vring->swtail, dmalen,
d->dma.status, d->dma.error);
wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
(const void *)d, sizeof(*d), false);
wil->txrx_ops.tx_desc_unmap(dev,
(union wil_tx_desc *)d,
ctx);
if (skb) {
if (likely(d->dma.error == 0)) {
ndev->stats.tx_packets++;
ndev->stats.tx_bytes += skb->len;
if (stats) {
stats->tx_packets++;
stats->tx_bytes += skb->len;
wil_tx_latency_calc(wil, skb,
&wil->sta[cid]);
}
} else {
ndev->stats.tx_errors++;
if (stats)
stats->tx_errors++;
}
if (skb->protocol == cpu_to_be16(ETH_P_PAE))
wil_tx_complete_handle_eapol(vif, skb);
wil_consume_skb(skb, d->dma.error == 0);
}
memset(ctx, 0, sizeof(*ctx));
/* Make sure the ctx is zeroed before updating the tail
* to prevent a case where wil_tx_ring will see
* this descriptor as used and handle it before ctx zero
* is completed.
*/
wmb();
/* There is no need to touch HW descriptor:
* - ststus bit TX_DMA_STATUS_DU is set by design,
* so hardware will not try to process this desc.,
* - rest of descriptor will be initialized on Tx.
*/
vring->swtail = wil_ring_next_tail(vring);
done++;
}
}
/* performance monitoring */
used_new = wil_ring_used_tx(vring);
if (wil_val_in_range(wil->ring_idle_trsh,
used_new, used_before_complete)) {
wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
ringid, used_before_complete, used_new);
txdata->last_idle = get_cycles();
}
/* shall we wake net queues? */
if (done)
wil_update_net_queues(wil, vif, vring, false);
return done;
}
static inline int wil_tx_init(struct wil6210_priv *wil)
{
return 0;
}
static inline void wil_tx_fini(struct wil6210_priv *wil) {}
static void wil_get_reorder_params(struct wil6210_priv *wil,
struct sk_buff *skb, int *tid, int *cid,
int *mid, u16 *seq, int *mcast, int *retry)
{
struct vring_rx_desc *d = wil_skb_rxdesc(skb);
*tid = wil_rxdesc_tid(d);
*cid = wil_skb_get_cid(skb);
*mid = wil_rxdesc_mid(d);
*seq = wil_rxdesc_seq(d);
*mcast = wil_rxdesc_mcast(d);
*retry = wil_rxdesc_retry(d);
}
void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil)
{
wil->txrx_ops.configure_interrupt_moderation =
wil_configure_interrupt_moderation;
/* TX ops */
wil->txrx_ops.tx_desc_map = wil_tx_desc_map;
wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap;
wil->txrx_ops.tx_ring_tso = __wil_tx_vring_tso;
wil->txrx_ops.ring_init_tx = wil_vring_init_tx;
wil->txrx_ops.ring_fini_tx = wil_vring_free;
wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast;
wil->txrx_ops.tx_init = wil_tx_init;
wil->txrx_ops.tx_fini = wil_tx_fini;
wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify;
/* RX ops */
wil->txrx_ops.rx_init = wil_rx_init;
wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp;
wil->txrx_ops.get_reorder_params = wil_get_reorder_params;
wil->txrx_ops.get_netif_rx_params =
wil_get_netif_rx_params;
wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check;
wil->txrx_ops.rx_error_check = wil_rx_error_check;
wil->txrx_ops.is_rx_idle = wil_is_rx_idle;
wil->txrx_ops.rx_fini = wil_rx_fini;
}