linuxdebug/drivers/net/wireless/ath/ath9k/xmit.c

2945 lines
74 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
/*
* Copyright (c) 2008-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/dma-mapping.h>
#include "ath9k.h"
#include "ar9003_mac.h"
#define BITS_PER_BYTE 8
#define OFDM_PLCP_BITS 22
#define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
#define L_STF 8
#define L_LTF 8
#define L_SIG 4
#define HT_SIG 8
#define HT_STF 4
#define HT_LTF(_ns) (4 * (_ns))
#define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
#define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
#define TIME_SYMBOLS(t) ((t) >> 2)
#define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
#define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
#define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
static u16 bits_per_symbol[][2] = {
/* 20MHz 40MHz */
{ 26, 54 }, /* 0: BPSK */
{ 52, 108 }, /* 1: QPSK 1/2 */
{ 78, 162 }, /* 2: QPSK 3/4 */
{ 104, 216 }, /* 3: 16-QAM 1/2 */
{ 156, 324 }, /* 4: 16-QAM 3/4 */
{ 208, 432 }, /* 5: 64-QAM 2/3 */
{ 234, 486 }, /* 6: 64-QAM 3/4 */
{ 260, 540 }, /* 7: 64-QAM 5/6 */
};
static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
struct ath_atx_tid *tid, struct sk_buff *skb);
static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
int tx_flags, struct ath_txq *txq,
struct ieee80211_sta *sta);
static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
struct ath_txq *txq, struct list_head *bf_q,
struct ieee80211_sta *sta,
struct ath_tx_status *ts, int txok);
static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
struct list_head *head, bool internal);
static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
struct ath_tx_status *ts, int nframes, int nbad,
int txok);
static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
struct ath_buf *bf);
static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
struct ath_txq *txq,
struct ath_atx_tid *tid,
struct sk_buff *skb);
static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ath_tx_control *txctl);
enum {
MCS_HT20,
MCS_HT20_SGI,
MCS_HT40,
MCS_HT40_SGI,
};
/*********************/
/* Aggregation logic */
/*********************/
static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_sta *sta = info->status.status_driver_data[0];
if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS |
IEEE80211_TX_STATUS_EOSP)) {
ieee80211_tx_status(hw, skb);
return;
}
if (sta)
ieee80211_tx_status_noskb(hw, sta, info);
dev_kfree_skb(skb);
}
void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
__releases(&txq->axq_lock)
{
struct ieee80211_hw *hw = sc->hw;
struct sk_buff_head q;
struct sk_buff *skb;
__skb_queue_head_init(&q);
skb_queue_splice_init(&txq->complete_q, &q);
spin_unlock_bh(&txq->axq_lock);
while ((skb = __skb_dequeue(&q)))
ath_tx_status(hw, skb);
}
void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
{
struct ieee80211_txq *queue =
container_of((void *)tid, struct ieee80211_txq, drv_priv);
ieee80211_schedule_txq(sc->hw, queue);
}
void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
{
struct ath_softc *sc = hw->priv;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
struct ath_txq *txq = tid->txq;
ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
queue->sta ? queue->sta->addr : queue->vif->addr,
tid->tidno);
ath_txq_lock(sc, txq);
ath_txq_schedule(sc, txq);
ath_txq_unlock(sc, txq);
}
static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
{
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
BUILD_BUG_ON(sizeof(struct ath_frame_info) >
sizeof(tx_info->status.status_driver_data));
return (struct ath_frame_info *) &tx_info->status.status_driver_data[0];
}
static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
{
if (!tid->an->sta)
return;
ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
seqno << IEEE80211_SEQ_SEQ_SHIFT);
}
static bool ath_merge_ratetbl(struct ieee80211_sta *sta, struct ath_buf *bf,
struct ieee80211_tx_info *tx_info)
{
struct ieee80211_sta_rates *ratetbl;
u8 i;
if (!sta)
return false;
ratetbl = rcu_dereference(sta->rates);
if (!ratetbl)
return false;
if (tx_info->control.rates[0].idx < 0 ||
tx_info->control.rates[0].count == 0)
{
i = 0;
} else {
bf->rates[0] = tx_info->control.rates[0];
i = 1;
}
for ( ; i < IEEE80211_TX_MAX_RATES; i++) {
bf->rates[i].idx = ratetbl->rate[i].idx;
bf->rates[i].flags = ratetbl->rate[i].flags;
if (tx_info->control.use_rts)
bf->rates[i].count = ratetbl->rate[i].count_rts;
else if (tx_info->control.use_cts_prot)
bf->rates[i].count = ratetbl->rate[i].count_cts;
else
bf->rates[i].count = ratetbl->rate[i].count;
}
return true;
}
static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ath_buf *bf)
{
struct ieee80211_tx_info *tx_info;
tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
if (!ath_merge_ratetbl(sta, bf, tx_info))
ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
ARRAY_SIZE(bf->rates));
}
static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
struct sk_buff *skb)
{
struct ath_frame_info *fi = get_frame_info(skb);
int q = fi->txq;
if (q < 0)
return;
txq = sc->tx.txq_map[q];
if (WARN_ON(--txq->pending_frames < 0))
txq->pending_frames = 0;
}
static struct ath_atx_tid *
ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
{
u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
return ATH_AN_2_TID(an, tidno);
}
static int
ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf)
{
struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
struct ath_softc *sc = tid->an->sc;
struct ieee80211_hw *hw = sc->hw;
struct ath_tx_control txctl = {
.txq = tid->txq,
.sta = tid->an->sta,
};
struct sk_buff *skb;
struct ath_frame_info *fi;
int q, ret;
skb = ieee80211_tx_dequeue(hw, txq);
if (!skb)
return -ENOENT;
ret = ath_tx_prepare(hw, skb, &txctl);
if (ret) {
ieee80211_free_txskb(hw, skb);
return ret;
}
q = skb_get_queue_mapping(skb);
if (tid->txq == sc->tx.txq_map[q]) {
fi = get_frame_info(skb);
fi->txq = q;
++tid->txq->pending_frames;
}
*skbuf = skb;
return 0;
}
static int ath_tid_dequeue(struct ath_atx_tid *tid,
struct sk_buff **skb)
{
int ret = 0;
*skb = __skb_dequeue(&tid->retry_q);
if (!*skb)
ret = ath_tid_pull(tid, skb);
return ret;
}
static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
{
struct ath_txq *txq = tid->txq;
struct sk_buff *skb;
struct ath_buf *bf;
struct list_head bf_head;
struct ath_tx_status ts;
struct ath_frame_info *fi;
bool sendbar = false;
INIT_LIST_HEAD(&bf_head);
memset(&ts, 0, sizeof(ts));
while ((skb = __skb_dequeue(&tid->retry_q))) {
fi = get_frame_info(skb);
bf = fi->bf;
if (!bf) {
ath_txq_skb_done(sc, txq, skb);
ieee80211_free_txskb(sc->hw, skb);
continue;
}
if (fi->baw_tracked) {
ath_tx_update_baw(sc, tid, bf);
sendbar = true;
}
list_add_tail(&bf->list, &bf_head);
ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
}
if (sendbar) {
ath_txq_unlock(sc, txq);
ath_send_bar(tid, tid->seq_start);
ath_txq_lock(sc, txq);
}
}
static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
struct ath_buf *bf)
{
struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
u16 seqno = bf->bf_state.seqno;
int index, cindex;
if (!fi->baw_tracked)
return;
index = ATH_BA_INDEX(tid->seq_start, seqno);
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
__clear_bit(cindex, tid->tx_buf);
while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
INCR(tid->seq_start, IEEE80211_SEQ_MAX);
INCR(tid->baw_head, ATH_TID_MAX_BUFS);
if (tid->bar_index >= 0)
tid->bar_index--;
}
}
static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
struct ath_buf *bf)
{
struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
u16 seqno = bf->bf_state.seqno;
int index, cindex;
if (fi->baw_tracked)
return;
index = ATH_BA_INDEX(tid->seq_start, seqno);
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
__set_bit(cindex, tid->tx_buf);
fi->baw_tracked = 1;
if (index >= ((tid->baw_tail - tid->baw_head) &
(ATH_TID_MAX_BUFS - 1))) {
tid->baw_tail = cindex;
INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
}
}
static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
struct ath_atx_tid *tid)
{
struct sk_buff *skb;
struct ath_buf *bf;
struct list_head bf_head;
struct ath_tx_status ts;
struct ath_frame_info *fi;
int ret;
memset(&ts, 0, sizeof(ts));
INIT_LIST_HEAD(&bf_head);
while ((ret = ath_tid_dequeue(tid, &skb)) == 0) {
fi = get_frame_info(skb);
bf = fi->bf;
if (!bf) {
ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
continue;
}
list_add_tail(&bf->list, &bf_head);
ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
}
}
static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
struct sk_buff *skb, int count)
{
struct ath_frame_info *fi = get_frame_info(skb);
struct ath_buf *bf = fi->bf;
struct ieee80211_hdr *hdr;
int prev = fi->retries;
TX_STAT_INC(sc, txq->axq_qnum, a_retries);
fi->retries += count;
if (prev > 0)
return;
hdr = (struct ieee80211_hdr *)skb->data;
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
sizeof(*hdr), DMA_TO_DEVICE);
}
static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
{
struct ath_buf *bf = NULL;
spin_lock_bh(&sc->tx.txbuflock);
if (unlikely(list_empty(&sc->tx.txbuf))) {
spin_unlock_bh(&sc->tx.txbuflock);
return NULL;
}
bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
list_del(&bf->list);
spin_unlock_bh(&sc->tx.txbuflock);
return bf;
}
static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
{
spin_lock_bh(&sc->tx.txbuflock);
list_add_tail(&bf->list, &sc->tx.txbuf);
spin_unlock_bh(&sc->tx.txbuflock);
}
static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_buf *tbf;
tbf = ath_tx_get_buffer(sc);
if (WARN_ON(!tbf))
return NULL;
ATH_TXBUF_RESET(tbf);
tbf->bf_mpdu = bf->bf_mpdu;
tbf->bf_buf_addr = bf->bf_buf_addr;
memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
tbf->bf_state = bf->bf_state;
tbf->bf_state.stale = false;
return tbf;
}
static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
struct ath_tx_status *ts, int txok,
int *nframes, int *nbad)
{
u16 seq_st = 0;
u32 ba[WME_BA_BMP_SIZE >> 5];
int ba_index;
int isaggr = 0;
*nbad = 0;
*nframes = 0;
isaggr = bf_isaggr(bf);
if (isaggr) {
seq_st = ts->ts_seqnum;
memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3);
}
while (bf) {
ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
(*nframes)++;
if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
(*nbad)++;
bf = bf->bf_next;
}
}
static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
struct ath_buf *bf, struct list_head *bf_q,
struct ieee80211_sta *sta,
struct ath_atx_tid *tid,
struct ath_tx_status *ts, int txok)
{
struct ath_node *an = NULL;
struct sk_buff *skb;
struct ieee80211_tx_info *tx_info;
struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
struct list_head bf_head;
struct sk_buff_head bf_pending;
u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
u32 ba[WME_BA_BMP_SIZE >> 5];
int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
bool rc_update = true, isba;
struct ieee80211_tx_rate rates[4];
struct ath_frame_info *fi;
int nframes;
bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
int i, retries;
int bar_index = -1;
skb = bf->bf_mpdu;
tx_info = IEEE80211_SKB_CB(skb);
memcpy(rates, bf->rates, sizeof(rates));
retries = ts->ts_longretry + 1;
for (i = 0; i < ts->ts_rateindex; i++)
retries += rates[i].count;
if (!sta) {
INIT_LIST_HEAD(&bf_head);
while (bf) {
bf_next = bf->bf_next;
if (!bf->bf_state.stale || bf_next != NULL)
list_move_tail(&bf->list, &bf_head);
ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
bf = bf_next;
}
return;
}
an = (struct ath_node *)sta->drv_priv;
seq_first = tid->seq_start;
isba = ts->ts_flags & ATH9K_TX_BA;
/*
* The hardware occasionally sends a tx status for the wrong TID.
* In this case, the BA status cannot be considered valid and all
* subframes need to be retransmitted
*
* Only BlockAcks have a TID and therefore normal Acks cannot be
* checked
*/
if (isba && tid->tidno != ts->tid)
txok = false;
isaggr = bf_isaggr(bf);
memset(ba, 0, WME_BA_BMP_SIZE >> 3);
if (isaggr && txok) {
if (ts->ts_flags & ATH9K_TX_BA) {
seq_st = ts->ts_seqnum;
memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3);
} else {
/*
* AR5416 can become deaf/mute when BA
* issue happens. Chip needs to be reset.
* But AP code may have sychronization issues
* when perform internal reset in this routine.
* Only enable reset in STA mode for now.
*/
if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
needreset = 1;
}
}
__skb_queue_head_init(&bf_pending);
ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
while (bf) {
u16 seqno = bf->bf_state.seqno;
txfail = txpending = sendbar = 0;
bf_next = bf->bf_next;
skb = bf->bf_mpdu;
tx_info = IEEE80211_SKB_CB(skb);
fi = get_frame_info(skb);
if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
!tid->active) {
/*
* Outside of the current BlockAck window,
* maybe part of a previous session
*/
txfail = 1;
} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
/* transmit completion, subframe is
* acked by block ack */
acked_cnt++;
} else if (!isaggr && txok) {
/* transmit completion */
acked_cnt++;
} else if (flush) {
txpending = 1;
} else if (fi->retries < ATH_MAX_SW_RETRIES) {
if (txok || !an->sleeping)
ath_tx_set_retry(sc, txq, bf->bf_mpdu,
retries);
txpending = 1;
} else {
txfail = 1;
txfail_cnt++;
bar_index = max_t(int, bar_index,
ATH_BA_INDEX(seq_first, seqno));
}
/*
* Make sure the last desc is reclaimed if it
* not a holding desc.
*/
INIT_LIST_HEAD(&bf_head);
if (bf_next != NULL || !bf_last->bf_state.stale)
list_move_tail(&bf->list, &bf_head);
if (!txpending) {
/*
* complete the acked-ones/xretried ones; update
* block-ack window
*/
ath_tx_update_baw(sc, tid, bf);
if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
memcpy(tx_info->control.rates, rates, sizeof(rates));
ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
rc_update = false;
if (bf == bf->bf_lastbf)
ath_dynack_sample_tx_ts(sc->sc_ah,
bf->bf_mpdu,
ts, sta);
}
ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
!txfail);
} else {
if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
ieee80211_sta_eosp(sta);
}
/* retry the un-acked ones */
if (bf->bf_next == NULL && bf_last->bf_state.stale) {
struct ath_buf *tbf;
tbf = ath_clone_txbuf(sc, bf_last);
/*
* Update tx baw and complete the
* frame with failed status if we
* run out of tx buf.
*/
if (!tbf) {
ath_tx_update_baw(sc, tid, bf);
ath_tx_complete_buf(sc, bf, txq,
&bf_head, NULL, ts,
0);
bar_index = max_t(int, bar_index,
ATH_BA_INDEX(seq_first, seqno));
break;
}
fi->bf = tbf;
}
/*
* Put this buffer to the temporary pending
* queue to retain ordering
*/
__skb_queue_tail(&bf_pending, skb);
}
bf = bf_next;
}
/* prepend un-acked frames to the beginning of the pending frame queue */
if (!skb_queue_empty(&bf_pending)) {
if (an->sleeping)
ieee80211_sta_set_buffered(sta, tid->tidno, true);
skb_queue_splice_tail(&bf_pending, &tid->retry_q);
if (!an->sleeping) {
ath_tx_queue_tid(sc, tid);
if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
tid->clear_ps_filter = true;
}
}
if (bar_index >= 0) {
u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
ath_txq_unlock(sc, txq);
ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
ath_txq_lock(sc, txq);
}
if (needreset)
ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
}
static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
}
static void ath_tx_count_airtime(struct ath_softc *sc,
struct ieee80211_sta *sta,
struct ath_buf *bf,
struct ath_tx_status *ts,
u8 tid)
{
u32 airtime = 0;
int i;
airtime += ts->duration * (ts->ts_longretry + 1);
for(i = 0; i < ts->ts_rateindex; i++) {
int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i);
airtime += rate_dur * bf->rates[i].count;
}
ieee80211_sta_register_airtime(sta, tid, airtime, 0);
}
static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
struct ath_tx_status *ts, struct ath_buf *bf,
struct list_head *bf_head)
{
struct ieee80211_hw *hw = sc->hw;
struct ieee80211_tx_info *info;
struct ieee80211_sta *sta;
struct ieee80211_hdr *hdr;
struct ath_atx_tid *tid = NULL;
bool txok, flush;
txok = !(ts->ts_status & ATH9K_TXERR_MASK);
flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
txq->axq_tx_inprogress = false;
txq->axq_depth--;
if (bf_is_ampdu_not_probing(bf))
txq->axq_ampdu_depth--;
ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
ts->ts_rateindex);
hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
if (sta) {
struct ath_node *an = (struct ath_node *)sta->drv_priv;
tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
ath_tx_count_airtime(sc, sta, bf, ts, tid->tidno);
if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
tid->clear_ps_filter = true;
}
if (!bf_isampdu(bf)) {
if (!flush) {
info = IEEE80211_SKB_CB(bf->bf_mpdu);
memcpy(info->control.rates, bf->rates,
sizeof(info->control.rates));
ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts,
sta);
}
ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
} else
ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
if (!flush)
ath_txq_schedule(sc, txq);
}
static bool ath_lookup_legacy(struct ath_buf *bf)
{
struct sk_buff *skb;
struct ieee80211_tx_info *tx_info;
struct ieee80211_tx_rate *rates;
int i;
skb = bf->bf_mpdu;
tx_info = IEEE80211_SKB_CB(skb);
rates = tx_info->control.rates;
for (i = 0; i < 4; i++) {
if (!rates[i].count || rates[i].idx < 0)
break;
if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
return true;
}
return false;
}
static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
struct ath_atx_tid *tid)
{
struct sk_buff *skb;
struct ieee80211_tx_info *tx_info;
struct ieee80211_tx_rate *rates;
u32 max_4ms_framelen, frmlen;
u16 aggr_limit, bt_aggr_limit, legacy = 0;
int q = tid->txq->mac80211_qnum;
int i;
skb = bf->bf_mpdu;
tx_info = IEEE80211_SKB_CB(skb);
rates = bf->rates;
/*
* Find the lowest frame length among the rate series that will have a
* 4ms (or TXOP limited) transmit duration.
*/
max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
for (i = 0; i < 4; i++) {
int modeidx;
if (!rates[i].count)
continue;
if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
legacy = 1;
break;
}
if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
modeidx = MCS_HT40;
else
modeidx = MCS_HT20;
if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
modeidx++;
frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
max_4ms_framelen = min(max_4ms_framelen, frmlen);
}
/*
* limit aggregate size by the minimum rate if rate selected is
* not a probe rate, if rate selected is a probe rate then
* avoid aggregation of this packet.
*/
if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
return 0;
aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
/*
* Override the default aggregation limit for BTCOEX.
*/
bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
if (bt_aggr_limit)
aggr_limit = bt_aggr_limit;
if (tid->an->maxampdu)
aggr_limit = min(aggr_limit, tid->an->maxampdu);
return aggr_limit;
}
/*
* Returns the number of delimiters to be added to
* meet the minimum required mpdudensity.
*/
static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
struct ath_buf *bf, u16 frmlen,
bool first_subfrm)
{
#define FIRST_DESC_NDELIMS 60
u32 nsymbits, nsymbols;
u16 minlen;
u8 flags, rix;
int width, streams, half_gi, ndelim, mindelim;
struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
/* Select standard number of delimiters based on frame length alone */
ndelim = ATH_AGGR_GET_NDELIM(frmlen);
/*
* If encryption enabled, hardware requires some more padding between
* subframes.
* TODO - this could be improved to be dependent on the rate.
* The hardware can keep up at lower rates, but not higher rates
*/
if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
ndelim += ATH_AGGR_ENCRYPTDELIM;
/*
* Add delimiter when using RTS/CTS with aggregation
* and non enterprise AR9003 card
*/
if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
(sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
ndelim = max(ndelim, FIRST_DESC_NDELIMS);
/*
* Convert desired mpdu density from microeconds to bytes based
* on highest rate in rate series (i.e. first rate) to determine
* required minimum length for subframe. Take into account
* whether high rate is 20 or 40Mhz and half or full GI.
*
* If there is no mpdu density restriction, no further calculation
* is needed.
*/
if (tid->an->mpdudensity == 0)
return ndelim;
rix = bf->rates[0].idx;
flags = bf->rates[0].flags;
width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
if (half_gi)
nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
else
nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
if (nsymbols == 0)
nsymbols = 1;
streams = HT_RC_2_STREAMS(rix);
nsymbits = bits_per_symbol[rix % 8][width] * streams;
minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
if (frmlen < minlen) {
mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
ndelim = max(mindelim, ndelim);
}
return ndelim;
}
static int
ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
struct ath_atx_tid *tid, struct ath_buf **buf)
{
struct ieee80211_tx_info *tx_info;
struct ath_frame_info *fi;
struct ath_buf *bf;
struct sk_buff *skb, *first_skb = NULL;
u16 seqno;
int ret;
while (1) {
ret = ath_tid_dequeue(tid, &skb);
if (ret < 0)
return ret;
fi = get_frame_info(skb);
bf = fi->bf;
if (!fi->bf)
bf = ath_tx_setup_buffer(sc, txq, tid, skb);
else
bf->bf_state.stale = false;
if (!bf) {
ath_txq_skb_done(sc, txq, skb);
ieee80211_free_txskb(sc->hw, skb);
continue;
}
bf->bf_next = NULL;
bf->bf_lastbf = bf;
tx_info = IEEE80211_SKB_CB(skb);
tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
IEEE80211_TX_STATUS_EOSP);
/*
* No aggregation session is running, but there may be frames
* from a previous session or a failed attempt in the queue.
* Send them out as normal data frames
*/
if (!tid->active)
tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
bf->bf_state.bf_type = 0;
break;
}
bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
seqno = bf->bf_state.seqno;
/* do not step over block-ack window */
if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
__skb_queue_tail(&tid->retry_q, skb);
/* If there are other skbs in the retry q, they are
* probably within the BAW, so loop immediately to get
* one of them. Otherwise the queue can get stuck. */
if (!skb_queue_is_first(&tid->retry_q, skb) &&
!WARN_ON(skb == first_skb)) {
if(!first_skb) /* infinite loop prevention */
first_skb = skb;
continue;
}
return -EINPROGRESS;
}
if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
struct ath_tx_status ts = {};
struct list_head bf_head;
INIT_LIST_HEAD(&bf_head);
list_add(&bf->list, &bf_head);
ath_tx_update_baw(sc, tid, bf);
ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
continue;
}
if (bf_isampdu(bf))
ath_tx_addto_baw(sc, tid, bf);
break;
}
*buf = bf;
return 0;
}
static int
ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
struct ath_atx_tid *tid, struct list_head *bf_q,
struct ath_buf *bf_first)
{
#define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
struct ath_buf *bf = bf_first, *bf_prev = NULL;
int nframes = 0, ndelim, ret;
u16 aggr_limit = 0, al = 0, bpad = 0,
al_delta, h_baw = tid->baw_size / 2;
struct ieee80211_tx_info *tx_info;
struct ath_frame_info *fi;
struct sk_buff *skb;
bf = bf_first;
aggr_limit = ath_lookup_rate(sc, bf, tid);
while (bf)
{
skb = bf->bf_mpdu;
fi = get_frame_info(skb);
/* do not exceed aggregation limit */
al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
if (nframes) {
if (aggr_limit < al + bpad + al_delta ||
ath_lookup_legacy(bf) || nframes >= h_baw)
goto stop;
tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
!(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
goto stop;
}
/* add padding for previous frame to aggregation length */
al += bpad + al_delta;
/*
* Get the delimiters needed to meet the MPDU
* density for this node.
*/
ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
!nframes);
bpad = PADBYTES(al_delta) + (ndelim << 2);
nframes++;
bf->bf_next = NULL;
/* link buffers of this frame to the aggregate */
bf->bf_state.ndelim = ndelim;
list_add_tail(&bf->list, bf_q);
if (bf_prev)
bf_prev->bf_next = bf;
bf_prev = bf;
ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
if (ret < 0)
break;
}
goto finish;
stop:
__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
finish:
bf = bf_first;
bf->bf_lastbf = bf_prev;
if (bf == bf_prev) {
al = get_frame_info(bf->bf_mpdu)->framelen;
bf->bf_state.bf_type = BUF_AMPDU;
} else {
TX_STAT_INC(sc, txq->axq_qnum, a_aggr);
}
return al;
#undef PADBYTES
}
/*
* rix - rate index
* pktlen - total bytes (delims + data + fcs + pads + pad delims)
* width - 0 for 20 MHz, 1 for 40 MHz
* half_gi - to use 4us v/s 3.6 us for symbol time
*/
u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
int width, int half_gi, bool shortPreamble)
{
u32 nbits, nsymbits, duration, nsymbols;
int streams;
/* find number of symbols: PLCP + data */
streams = HT_RC_2_STREAMS(rix);
nbits = (pktlen << 3) + OFDM_PLCP_BITS;
nsymbits = bits_per_symbol[rix % 8][width] * streams;
nsymbols = (nbits + nsymbits - 1) / nsymbits;
if (!half_gi)
duration = SYMBOL_TIME(nsymbols);
else
duration = SYMBOL_TIME_HALFGI(nsymbols);
/* addup duration for legacy/ht training and signal fields */
duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
return duration;
}
static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
{
int streams = HT_RC_2_STREAMS(mcs);
int symbols, bits;
int bytes = 0;
usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
bits -= OFDM_PLCP_BITS;
bytes = bits / 8;
if (bytes > 65532)
bytes = 65532;
return bytes;
}
void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
{
u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
int mcs;
/* 4ms is the default (and maximum) duration */
if (!txop || txop > 4096)
txop = 4096;
cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
for (mcs = 0; mcs < 32; mcs++) {
cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
}
}
static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
u8 rateidx, bool is_40, bool is_cck)
{
u8 max_power;
struct sk_buff *skb;
struct ath_frame_info *fi;
struct ieee80211_tx_info *info;
struct ath_hw *ah = sc->sc_ah;
if (sc->tx99_state || !ah->tpc_enabled)
return MAX_RATE_POWER;
skb = bf->bf_mpdu;
fi = get_frame_info(skb);
info = IEEE80211_SKB_CB(skb);
if (!AR_SREV_9300_20_OR_LATER(ah)) {
int txpower = fi->tx_power;
if (is_40) {
u8 power_ht40delta;
struct ar5416_eeprom_def *eep = &ah->eeprom.def;
u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah);
if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) {
bool is_2ghz;
struct modal_eep_header *pmodal;
is_2ghz = info->band == NL80211_BAND_2GHZ;
pmodal = &eep->modalHeader[is_2ghz];
power_ht40delta = pmodal->ht40PowerIncForPdadc;
} else {
power_ht40delta = 2;
}
txpower += power_ht40delta;
}
if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
AR_SREV_9271(ah)) {
txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
} else if (AR_SREV_9280_20_OR_LATER(ah)) {
s8 power_offset;
power_offset = ah->eep_ops->get_eeprom(ah,
EEP_PWR_TABLE_OFFSET);
txpower -= 2 * power_offset;
}
if (OLC_FOR_AR9280_20_LATER && is_cck)
txpower -= 2;
txpower = max(txpower, 0);
max_power = min_t(u8, ah->tx_power[rateidx], txpower);
/* XXX: clamp minimum TX power at 1 for AR9160 since if
* max_power is set to 0, frames are transmitted at max
* TX power
*/
if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
max_power = 1;
} else if (!bf->bf_state.bfs_paprd) {
if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
max_power = min_t(u8, ah->tx_power_stbc[rateidx],
fi->tx_power);
else
max_power = min_t(u8, ah->tx_power[rateidx],
fi->tx_power);
} else {
max_power = ah->paprd_training_power;
}
return max_power;
}
static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
struct ath_tx_info *info, int len, bool rts)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct sk_buff *skb;
struct ieee80211_tx_info *tx_info;
struct ieee80211_tx_rate *rates;
const struct ieee80211_rate *rate;
struct ieee80211_hdr *hdr;
struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
u32 rts_thresh = sc->hw->wiphy->rts_threshold;
int i;
u8 rix = 0;
skb = bf->bf_mpdu;
tx_info = IEEE80211_SKB_CB(skb);
rates = bf->rates;
hdr = (struct ieee80211_hdr *)skb->data;
/* set dur_update_en for l-sig computation except for PS-Poll frames */
info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
info->rtscts_rate = fi->rtscts_rate;
for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
bool is_40, is_sgi, is_sp, is_cck;
int phy;
if (!rates[i].count || (rates[i].idx < 0))
break;
rix = rates[i].idx;
info->rates[i].Tries = rates[i].count;
/*
* Handle RTS threshold for unaggregated HT frames.
*/
if (bf_isampdu(bf) && !bf_isaggr(bf) &&
(rates[i].flags & IEEE80211_TX_RC_MCS) &&
unlikely(rts_thresh != (u32) -1)) {
if (!rts_thresh || (len > rts_thresh))
rts = true;
}
if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
info->flags |= ATH9K_TXDESC_RTSENA;
} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
info->flags |= ATH9K_TXDESC_CTSENA;
}
if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
if (rates[i].flags & IEEE80211_TX_RC_MCS) {
/* MCS rates */
info->rates[i].Rate = rix | 0x80;
info->rates[i].ChSel = ath_txchainmask_reduction(sc,
ah->txchainmask, info->rates[i].Rate);
info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
is_40, is_sgi, is_sp);
if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
if (rix >= 8 && fi->dyn_smps) {
info->rates[i].RateFlags |=
ATH9K_RATESERIES_RTS_CTS;
info->flags |= ATH9K_TXDESC_CTSENA;
}
info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
is_40, false);
continue;
}
/* legacy rates */
rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
if ((tx_info->band == NL80211_BAND_2GHZ) &&
!(rate->flags & IEEE80211_RATE_ERP_G))
phy = WLAN_RC_PHY_CCK;
else
phy = WLAN_RC_PHY_OFDM;
info->rates[i].Rate = rate->hw_value;
if (rate->hw_value_short) {
if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
info->rates[i].Rate |= rate->hw_value_short;
} else {
is_sp = false;
}
if (bf->bf_state.bfs_paprd)
info->rates[i].ChSel = ah->txchainmask;
else
info->rates[i].ChSel = ath_txchainmask_reduction(sc,
ah->txchainmask, info->rates[i].Rate);
info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
phy, rate->bitrate * 100, len, rix, is_sp);
is_cck = IS_CCK_RATE(info->rates[i].Rate);
info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
is_cck);
}
/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
info->flags &= ~ATH9K_TXDESC_RTSENA;
/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
if (info->flags & ATH9K_TXDESC_RTSENA)
info->flags &= ~ATH9K_TXDESC_CTSENA;
}
static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
enum ath9k_pkt_type htype;
__le16 fc;
hdr = (struct ieee80211_hdr *)skb->data;
fc = hdr->frame_control;
if (ieee80211_is_beacon(fc))
htype = ATH9K_PKT_TYPE_BEACON;
else if (ieee80211_is_probe_resp(fc))
htype = ATH9K_PKT_TYPE_PROBE_RESP;
else if (ieee80211_is_atim(fc))
htype = ATH9K_PKT_TYPE_ATIM;
else if (ieee80211_is_pspoll(fc))
htype = ATH9K_PKT_TYPE_PSPOLL;
else
htype = ATH9K_PKT_TYPE_NORMAL;
return htype;
}
static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
struct ath_txq *txq, int len)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_buf *bf_first = NULL;
struct ath_tx_info info;
u32 rts_thresh = sc->hw->wiphy->rts_threshold;
bool rts = false;
memset(&info, 0, sizeof(info));
info.is_first = true;
info.is_last = true;
info.qcu = txq->axq_qnum;
while (bf) {
struct sk_buff *skb = bf->bf_mpdu;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ath_frame_info *fi = get_frame_info(skb);
bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
info.type = get_hw_packet_type(skb);
if (bf->bf_next)
info.link = bf->bf_next->bf_daddr;
else
info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
if (!bf_first) {
bf_first = bf;
if (!sc->tx99_state)
info.flags = ATH9K_TXDESC_INTREQ;
if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
txq == sc->tx.uapsdq)
info.flags |= ATH9K_TXDESC_CLRDMASK;
if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
info.flags |= ATH9K_TXDESC_NOACK;
if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
info.flags |= ATH9K_TXDESC_LDPC;
if (bf->bf_state.bfs_paprd)
info.flags |= (u32) bf->bf_state.bfs_paprd <<
ATH9K_TXDESC_PAPRD_S;
/*
* mac80211 doesn't handle RTS threshold for HT because
* the decision has to be taken based on AMPDU length
* and aggregation is done entirely inside ath9k.
* Set the RTS/CTS flag for the first subframe based
* on the threshold.
*/
if (aggr && (bf == bf_first) &&
unlikely(rts_thresh != (u32) -1)) {
/*
* "len" is the size of the entire AMPDU.
*/
if (!rts_thresh || (len > rts_thresh))
rts = true;
}
if (!aggr)
len = fi->framelen;
ath_buf_set_rate(sc, bf, &info, len, rts);
}
info.buf_addr[0] = bf->bf_buf_addr;
info.buf_len[0] = skb->len;
info.pkt_len = fi->framelen;
info.keyix = fi->keyix;
info.keytype = fi->keytype;
if (aggr) {
if (bf == bf_first)
info.aggr = AGGR_BUF_FIRST;
else if (bf == bf_first->bf_lastbf)
info.aggr = AGGR_BUF_LAST;
else
info.aggr = AGGR_BUF_MIDDLE;
info.ndelim = bf->bf_state.ndelim;
info.aggr_len = len;
}
if (bf == bf_first->bf_lastbf)
bf_first = NULL;
ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
bf = bf->bf_next;
}
}
static void
ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
struct ath_atx_tid *tid, struct list_head *bf_q,
struct ath_buf *bf_first)
{
struct ath_buf *bf = bf_first, *bf_prev = NULL;
int nframes = 0, ret;
do {
struct ieee80211_tx_info *tx_info;
nframes++;
list_add_tail(&bf->list, bf_q);
if (bf_prev)
bf_prev->bf_next = bf;
bf_prev = bf;
if (nframes >= 2)
break;
ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
if (ret < 0)
break;
tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
break;
}
ath_set_rates(tid->an->vif, tid->an->sta, bf);
} while (1);
}
static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
struct ath_atx_tid *tid)
{
struct ath_buf *bf = NULL;
struct ieee80211_tx_info *tx_info;
struct list_head bf_q;
int aggr_len = 0, ret;
bool aggr;
INIT_LIST_HEAD(&bf_q);
ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
if (ret < 0)
return ret;
tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
(!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
return -EBUSY;
}
ath_set_rates(tid->an->vif, tid->an->sta, bf);
if (aggr)
aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
else
ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
if (list_empty(&bf_q))
return -EAGAIN;
if (tid->clear_ps_filter || tid->an->no_ps_filter) {
tid->clear_ps_filter = false;
tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
}
ath_tx_fill_desc(sc, bf, txq, aggr_len);
ath_tx_txqaddbuf(sc, txq, &bf_q, false);
return 0;
}
int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
u16 tid, u16 *ssn)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_atx_tid *txtid;
struct ath_txq *txq;
struct ath_node *an;
u8 density;
ath_dbg(common, XMIT, "%s called\n", __func__);
an = (struct ath_node *)sta->drv_priv;
txtid = ATH_AN_2_TID(an, tid);
txq = txtid->txq;
ath_txq_lock(sc, txq);
/* update ampdu factor/density, they may have changed. This may happen
* in HT IBSS when a beacon with HT-info is received after the station
* has already been added.
*/
if (sta->deflink.ht_cap.ht_supported) {
an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
sta->deflink.ht_cap.ampdu_factor)) - 1;
density = ath9k_parse_mpdudensity(sta->deflink.ht_cap.ampdu_density);
an->mpdudensity = density;
}
txtid->active = true;
*ssn = txtid->seq_start = txtid->seq_next;
txtid->bar_index = -1;
memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
txtid->baw_head = txtid->baw_tail = 0;
ath_txq_unlock_complete(sc, txq);
return 0;
}
void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_node *an = (struct ath_node *)sta->drv_priv;
struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
struct ath_txq *txq = txtid->txq;
ath_dbg(common, XMIT, "%s called\n", __func__);
ath_txq_lock(sc, txq);
txtid->active = false;
ath_tx_flush_tid(sc, txtid);
ath_txq_unlock_complete(sc, txq);
}
void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
struct ath_node *an)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_atx_tid *tid;
int tidno;
ath_dbg(common, XMIT, "%s called\n", __func__);
for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
tid = ath_node_to_tid(an, tidno);
if (!skb_queue_empty(&tid->retry_q))
ieee80211_sta_set_buffered(sta, tid->tidno, true);
}
}
void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_atx_tid *tid;
struct ath_txq *txq;
int tidno;
ath_dbg(common, XMIT, "%s called\n", __func__);
for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
tid = ath_node_to_tid(an, tidno);
txq = tid->txq;
ath_txq_lock(sc, txq);
tid->clear_ps_filter = true;
if (!skb_queue_empty(&tid->retry_q)) {
ath_tx_queue_tid(sc, tid);
ath_txq_schedule(sc, txq);
}
ath_txq_unlock_complete(sc, txq);
}
}
static void
ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val)
{
struct ieee80211_hdr *hdr;
u16 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA);
u16 mask_val = mask * val;
hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
if ((hdr->frame_control & mask) != mask_val) {
hdr->frame_control = (hdr->frame_control & ~mask) | mask_val;
dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
sizeof(*hdr), DMA_TO_DEVICE);
}
}
void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
u16 tids, int nframes,
enum ieee80211_frame_release_type reason,
bool more_data)
{
struct ath_softc *sc = hw->priv;
struct ath_node *an = (struct ath_node *)sta->drv_priv;
struct ath_txq *txq = sc->tx.uapsdq;
struct ieee80211_tx_info *info;
struct list_head bf_q;
struct ath_buf *bf_tail = NULL, *bf = NULL;
int sent = 0;
int i, ret;
INIT_LIST_HEAD(&bf_q);
for (i = 0; tids && nframes; i++, tids >>= 1) {
struct ath_atx_tid *tid;
if (!(tids & 1))
continue;
tid = ATH_AN_2_TID(an, i);
ath_txq_lock(sc, tid->txq);
while (nframes > 0) {
ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq,
tid, &bf);
if (ret < 0)
break;
ath9k_set_moredata(sc, bf, true);
list_add_tail(&bf->list, &bf_q);
ath_set_rates(tid->an->vif, tid->an->sta, bf);
if (bf_isampdu(bf))
bf->bf_state.bf_type &= ~BUF_AGGR;
if (bf_tail)
bf_tail->bf_next = bf;
bf_tail = bf;
nframes--;
sent++;
TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw);
if (an->sta && skb_queue_empty(&tid->retry_q))
ieee80211_sta_set_buffered(an->sta, i, false);
}
ath_txq_unlock_complete(sc, tid->txq);
}
if (list_empty(&bf_q))
return;
if (!more_data)
ath9k_set_moredata(sc, bf_tail, false);
info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
info->flags |= IEEE80211_TX_STATUS_EOSP;
bf = list_first_entry(&bf_q, struct ath_buf, list);
ath_txq_lock(sc, txq);
ath_tx_fill_desc(sc, bf, txq, 0);
ath_tx_txqaddbuf(sc, txq, &bf_q, false);
ath_txq_unlock(sc, txq);
}
/********************/
/* Queue Management */
/********************/
struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
{
struct ath_hw *ah = sc->sc_ah;
struct ath9k_tx_queue_info qi;
static const int subtype_txq_to_hwq[] = {
[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
};
int axq_qnum, i;
memset(&qi, 0, sizeof(qi));
qi.tqi_subtype = subtype_txq_to_hwq[subtype];
qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
qi.tqi_physCompBuf = 0;
/*
* Enable interrupts only for EOL and DESC conditions.
* We mark tx descriptors to receive a DESC interrupt
* when a tx queue gets deep; otherwise waiting for the
* EOL to reap descriptors. Note that this is done to
* reduce interrupt load and this only defers reaping
* descriptors, never transmitting frames. Aside from
* reducing interrupts this also permits more concurrency.
* The only potential downside is if the tx queue backs
* up in which case the top half of the kernel may backup
* due to a lack of tx descriptors.
*
* The UAPSD queue is an exception, since we take a desc-
* based intr on the EOSP frames.
*/
if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
} else {
if (qtype == ATH9K_TX_QUEUE_UAPSD)
qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
else
qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
TXQ_FLAG_TXDESCINT_ENABLE;
}
axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
if (axq_qnum == -1) {
/*
* NB: don't print a message, this happens
* normally on parts with too few tx queues
*/
return NULL;
}
if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
struct ath_txq *txq = &sc->tx.txq[axq_qnum];
txq->axq_qnum = axq_qnum;
txq->mac80211_qnum = -1;
txq->axq_link = NULL;
__skb_queue_head_init(&txq->complete_q);
INIT_LIST_HEAD(&txq->axq_q);
spin_lock_init(&txq->axq_lock);
txq->axq_depth = 0;
txq->axq_ampdu_depth = 0;
txq->axq_tx_inprogress = false;
sc->tx.txqsetup |= 1<<axq_qnum;
txq->txq_headidx = txq->txq_tailidx = 0;
for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
INIT_LIST_HEAD(&txq->txq_fifo[i]);
}
return &sc->tx.txq[axq_qnum];
}
int ath_txq_update(struct ath_softc *sc, int qnum,
struct ath9k_tx_queue_info *qinfo)
{
struct ath_hw *ah = sc->sc_ah;
int error = 0;
struct ath9k_tx_queue_info qi;
BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
ath9k_hw_get_txq_props(ah, qnum, &qi);
qi.tqi_aifs = qinfo->tqi_aifs;
qi.tqi_cwmin = qinfo->tqi_cwmin;
qi.tqi_cwmax = qinfo->tqi_cwmax;
qi.tqi_burstTime = qinfo->tqi_burstTime;
qi.tqi_readyTime = qinfo->tqi_readyTime;
if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
ath_err(ath9k_hw_common(sc->sc_ah),
"Unable to update hardware queue %u!\n", qnum);
error = -EIO;
} else {
ath9k_hw_resettxqueue(ah, qnum);
}
return error;
}
int ath_cabq_update(struct ath_softc *sc)
{
struct ath9k_tx_queue_info qi;
struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
int qnum = sc->beacon.cabq->axq_qnum;
ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
ATH_CABQ_READY_TIME) / 100;
ath_txq_update(sc, qnum, &qi);
return 0;
}
static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
struct list_head *list)
{
struct ath_buf *bf, *lastbf;
struct list_head bf_head;
struct ath_tx_status ts;
memset(&ts, 0, sizeof(ts));
ts.ts_status = ATH9K_TX_FLUSH;
INIT_LIST_HEAD(&bf_head);
while (!list_empty(list)) {
bf = list_first_entry(list, struct ath_buf, list);
if (bf->bf_state.stale) {
list_del(&bf->list);
ath_tx_return_buffer(sc, bf);
continue;
}
lastbf = bf->bf_lastbf;
list_cut_position(&bf_head, list, &lastbf->list);
ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
}
}
/*
* Drain a given TX queue (could be Beacon or Data)
*
* This assumes output has been stopped and
* we do not need to block ath_tx_tasklet.
*/
void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
{
rcu_read_lock();
ath_txq_lock(sc, txq);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
int idx = txq->txq_tailidx;
while (!list_empty(&txq->txq_fifo[idx])) {
ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
INCR(idx, ATH_TXFIFO_DEPTH);
}
txq->txq_tailidx = idx;
}
txq->axq_link = NULL;
txq->axq_tx_inprogress = false;
ath_drain_txq_list(sc, txq, &txq->axq_q);
ath_txq_unlock_complete(sc, txq);
rcu_read_unlock();
}
bool ath_drain_all_txq(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_txq *txq;
int i;
u32 npend = 0;
if (test_bit(ATH_OP_INVALID, &common->op_flags))
return true;
ath9k_hw_abort_tx_dma(ah);
/* Check if any queue remains active */
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (!ATH_TXQ_SETUP(sc, i))
continue;
if (!sc->tx.txq[i].axq_depth)
continue;
if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
npend |= BIT(i);
}
if (npend) {
RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
ath_dbg(common, RESET,
"Failed to stop TX DMA, queues=0x%03x!\n", npend);
}
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (!ATH_TXQ_SETUP(sc, i))
continue;
txq = &sc->tx.txq[i];
ath_draintxq(sc, txq);
}
return !npend;
}
void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
{
ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
}
/* For each acq entry, for each tid, try to schedule packets
* for transmit until ampdu_depth has reached min Q depth.
*/
void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
{
struct ieee80211_hw *hw = sc->hw;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ieee80211_txq *queue;
struct ath_atx_tid *tid;
int ret;
if (txq->mac80211_qnum < 0)
return;
if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
return;
ieee80211_txq_schedule_start(hw, txq->mac80211_qnum);
spin_lock_bh(&sc->chan_lock);
rcu_read_lock();
if (sc->cur_chan->stopped)
goto out;
while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) {
bool force;
tid = (struct ath_atx_tid *)queue->drv_priv;
ret = ath_tx_sched_aggr(sc, txq, tid);
ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret);
force = !skb_queue_empty(&tid->retry_q);
ieee80211_return_txq(hw, queue, force);
}
out:
rcu_read_unlock();
spin_unlock_bh(&sc->chan_lock);
ieee80211_txq_schedule_end(hw, txq->mac80211_qnum);
}
void ath_txq_schedule_all(struct ath_softc *sc)
{
struct ath_txq *txq;
int i;
for (i = 0; i < IEEE80211_NUM_ACS; i++) {
txq = sc->tx.txq_map[i];
spin_lock_bh(&txq->axq_lock);
ath_txq_schedule(sc, txq);
spin_unlock_bh(&txq->axq_lock);
}
}
/***********/
/* TX, DMA */
/***********/
/*
* Insert a chain of ath_buf (descriptors) on a txq and
* assume the descriptors are already chained together by caller.
*/
static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
struct list_head *head, bool internal)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_buf *bf, *bf_last;
bool puttxbuf = false;
bool edma;
/*
* Insert the frame on the outbound list and
* pass it on to the hardware.
*/
if (list_empty(head))
return;
edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
bf = list_first_entry(head, struct ath_buf, list);
bf_last = list_entry(head->prev, struct ath_buf, list);
ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
txq->axq_qnum, txq->axq_depth);
if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
puttxbuf = true;
} else {
list_splice_tail_init(head, &txq->axq_q);
if (txq->axq_link) {
ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
txq->axq_qnum, txq->axq_link,
ito64(bf->bf_daddr), bf->bf_desc);
} else if (!edma)
puttxbuf = true;
txq->axq_link = bf_last->bf_desc;
}
if (puttxbuf) {
TX_STAT_INC(sc, txq->axq_qnum, puttxbuf);
ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
}
if (!edma || sc->tx99_state) {
TX_STAT_INC(sc, txq->axq_qnum, txstart);
ath9k_hw_txstart(ah, txq->axq_qnum);
}
if (!internal) {
while (bf) {
txq->axq_depth++;
if (bf_is_ampdu_not_probing(bf))
txq->axq_ampdu_depth++;
bf_last = bf->bf_lastbf;
bf = bf_last->bf_next;
bf_last->bf_next = NULL;
}
}
}
static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
struct ath_atx_tid *tid, struct sk_buff *skb)
{
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ath_frame_info *fi = get_frame_info(skb);
struct list_head bf_head;
struct ath_buf *bf = fi->bf;
INIT_LIST_HEAD(&bf_head);
list_add_tail(&bf->list, &bf_head);
bf->bf_state.bf_type = 0;
if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
bf->bf_state.bf_type = BUF_AMPDU;
ath_tx_addto_baw(sc, tid, bf);
}
bf->bf_next = NULL;
bf->bf_lastbf = bf;
ath_tx_fill_desc(sc, bf, txq, fi->framelen);
ath_tx_txqaddbuf(sc, txq, &bf_head, false);
TX_STAT_INC(sc, txq->axq_qnum, queued);
}
static void setup_frame_info(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
struct sk_buff *skb,
int framelen)
{
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
const struct ieee80211_rate *rate;
struct ath_frame_info *fi = get_frame_info(skb);
struct ath_node *an = NULL;
enum ath9k_key_type keytype;
bool short_preamble = false;
u8 txpower;
/*
* We check if Short Preamble is needed for the CTS rate by
* checking the BSS's global flag.
* But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
*/
if (tx_info->control.vif &&
tx_info->control.vif->bss_conf.use_short_preamble)
short_preamble = true;
rate = ieee80211_get_rts_cts_rate(hw, tx_info);
keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
if (sta)
an = (struct ath_node *) sta->drv_priv;
if (tx_info->control.vif) {
struct ieee80211_vif *vif = tx_info->control.vif;
if (vif->bss_conf.txpower == INT_MIN)
goto nonvifpower;
txpower = 2 * vif->bss_conf.txpower;
} else {
struct ath_softc *sc;
nonvifpower:
sc = hw->priv;
txpower = sc->cur_chan->cur_txpower;
}
memset(fi, 0, sizeof(*fi));
fi->txq = -1;
if (hw_key)
fi->keyix = hw_key->hw_key_idx;
else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
fi->keyix = an->ps_key;
else
fi->keyix = ATH9K_TXKEYIX_INVALID;
fi->dyn_smps = sta && sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC;
fi->keytype = keytype;
fi->framelen = framelen;
fi->tx_power = txpower;
if (!rate)
return;
fi->rtscts_rate = rate->hw_value;
if (short_preamble)
fi->rtscts_rate |= rate->hw_value_short;
}
u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
{
struct ath_hw *ah = sc->sc_ah;
struct ath9k_channel *curchan = ah->curchan;
if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
(chainmask == 0x7) && (rate < 0x90))
return 0x3;
else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
IS_CCK_RATE(rate))
return 0x2;
else
return chainmask;
}
/*
* Assign a descriptor (and sequence number if necessary,
* and map buffer for DMA. Frees skb on error
*/
static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
struct ath_txq *txq,
struct ath_atx_tid *tid,
struct sk_buff *skb)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_frame_info *fi = get_frame_info(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ath_buf *bf;
int fragno;
u16 seqno;
bf = ath_tx_get_buffer(sc);
if (!bf) {
ath_dbg(common, XMIT, "TX buffers are full\n");
return NULL;
}
ATH_TXBUF_RESET(bf);
if (tid && ieee80211_is_data_present(hdr->frame_control)) {
fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
seqno = tid->seq_next;
hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
if (fragno)
hdr->seq_ctrl |= cpu_to_le16(fragno);
if (!ieee80211_has_morefrags(hdr->frame_control))
INCR(tid->seq_next, IEEE80211_SEQ_MAX);
bf->bf_state.seqno = seqno;
}
bf->bf_mpdu = skb;
bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
skb->len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
bf->bf_mpdu = NULL;
bf->bf_buf_addr = 0;
ath_err(ath9k_hw_common(sc->sc_ah),
"dma_mapping_error() on TX\n");
ath_tx_return_buffer(sc, bf);
return NULL;
}
fi->bf = bf;
return bf;
}
void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_vif *vif = info->control.vif;
struct ath_vif *avp;
if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
return;
if (!vif)
return;
avp = (struct ath_vif *)vif->drv_priv;
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
avp->seq_no += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
}
static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ath_tx_control *txctl)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_sta *sta = txctl->sta;
struct ieee80211_vif *vif = info->control.vif;
struct ath_vif *avp;
struct ath_softc *sc = hw->priv;
int frmlen = skb->len + FCS_LEN;
int padpos, padsize;
/* NOTE: sta can be NULL according to net/mac80211.h */
if (sta)
txctl->an = (struct ath_node *)sta->drv_priv;
else if (vif && ieee80211_is_data(hdr->frame_control)) {
avp = (void *)vif->drv_priv;
txctl->an = &avp->mcast_node;
}
if (info->control.hw_key)
frmlen += info->control.hw_key->icv_len;
ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
if ((vif && vif->type != NL80211_IFTYPE_AP &&
vif->type != NL80211_IFTYPE_AP_VLAN) ||
!ieee80211_is_data(hdr->frame_control))
info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
/* Add the padding after the header if this is not already done */
padpos = ieee80211_hdrlen(hdr->frame_control);
padsize = padpos & 3;
if (padsize && skb->len > padpos) {
if (skb_headroom(skb) < padsize)
return -ENOMEM;
skb_push(skb, padsize);
memmove(skb->data, skb->data + padsize, padpos);
}
setup_frame_info(hw, sta, skb, frmlen);
return 0;
}
/* Upon failure caller should free skb */
int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ath_tx_control *txctl)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_sta *sta = txctl->sta;
struct ieee80211_vif *vif = info->control.vif;
struct ath_frame_info *fi = get_frame_info(skb);
struct ath_softc *sc = hw->priv;
struct ath_txq *txq = txctl->txq;
struct ath_atx_tid *tid = NULL;
struct ath_node *an = NULL;
struct ath_buf *bf;
bool ps_resp;
int q, ret;
ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
ret = ath_tx_prepare(hw, skb, txctl);
if (ret)
return ret;
/*
* At this point, the vif, hw_key and sta pointers in the tx control
* info are no longer valid (overwritten by the ath_frame_info data.
*/
q = skb_get_queue_mapping(skb);
if (ps_resp)
txq = sc->tx.uapsdq;
if (txctl->sta) {
an = (struct ath_node *) sta->drv_priv;
tid = ath_get_skb_tid(sc, an, skb);
}
ath_txq_lock(sc, txq);
if (txq == sc->tx.txq_map[q]) {
fi->txq = q;
++txq->pending_frames;
}
bf = ath_tx_setup_buffer(sc, txq, tid, skb);
if (!bf) {
ath_txq_skb_done(sc, txq, skb);
if (txctl->paprd)
dev_kfree_skb_any(skb);
else
ieee80211_free_txskb(sc->hw, skb);
goto out;
}
bf->bf_state.bfs_paprd = txctl->paprd;
if (txctl->paprd)
bf->bf_state.bfs_paprd_timestamp = jiffies;
ath_set_rates(vif, sta, bf);
ath_tx_send_normal(sc, txq, tid, skb);
out:
ath_txq_unlock(sc, txq);
return 0;
}
void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct sk_buff *skb)
{
struct ath_softc *sc = hw->priv;
struct ath_tx_control txctl = {
.txq = sc->beacon.cabq
};
struct ath_tx_info info = {};
struct ath_buf *bf_tail = NULL;
struct ath_buf *bf;
LIST_HEAD(bf_q);
int duration = 0;
int max_duration;
max_duration =
sc->cur_chan->beacon.beacon_interval * 1000 *
sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
do {
struct ath_frame_info *fi = get_frame_info(skb);
if (ath_tx_prepare(hw, skb, &txctl))
break;
bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
if (!bf)
break;
bf->bf_lastbf = bf;
ath_set_rates(vif, NULL, bf);
ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
duration += info.rates[0].PktDuration;
if (bf_tail)
bf_tail->bf_next = bf;
list_add_tail(&bf->list, &bf_q);
bf_tail = bf;
skb = NULL;
if (duration > max_duration)
break;
skb = ieee80211_get_buffered_bc(hw, vif);
} while(skb);
if (skb)
ieee80211_free_txskb(hw, skb);
if (list_empty(&bf_q))
return;
bf = list_last_entry(&bf_q, struct ath_buf, list);
ath9k_set_moredata(sc, bf, false);
bf = list_first_entry(&bf_q, struct ath_buf, list);
ath_txq_lock(sc, txctl.txq);
ath_tx_fill_desc(sc, bf, txctl.txq, 0);
ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
TX_STAT_INC(sc, txctl.txq->axq_qnum, queued);
ath_txq_unlock(sc, txctl.txq);
}
/*****************/
/* TX Completion */
/*****************/
static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
int tx_flags, struct ath_txq *txq,
struct ieee80211_sta *sta)
{
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
int padpos, padsize;
unsigned long flags;
ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
if (sc->sc_ah->caldata)
set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
if (!(tx_flags & ATH_TX_ERROR)) {
if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
else
tx_info->flags |= IEEE80211_TX_STAT_ACK;
}
if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
padpos = ieee80211_hdrlen(hdr->frame_control);
padsize = padpos & 3;
if (padsize && skb->len>padpos+padsize) {
/*
* Remove MAC header padding before giving the frame back to
* mac80211.
*/
memmove(skb->data + padsize, skb->data, padpos);
skb_pull(skb, padsize);
}
}
spin_lock_irqsave(&sc->sc_pm_lock, flags);
if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
ath_dbg(common, PS,
"Going back to sleep after having received TX status (0x%lx)\n",
sc->ps_flags & (PS_WAIT_FOR_BEACON |
PS_WAIT_FOR_CAB |
PS_WAIT_FOR_PSPOLL_DATA |
PS_WAIT_FOR_TX_ACK));
}
spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
ath_txq_skb_done(sc, txq, skb);
tx_info->status.status_driver_data[0] = sta;
__skb_queue_tail(&txq->complete_q, skb);
}
static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
struct ath_txq *txq, struct list_head *bf_q,
struct ieee80211_sta *sta,
struct ath_tx_status *ts, int txok)
{
struct sk_buff *skb = bf->bf_mpdu;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
unsigned long flags;
int tx_flags = 0;
if (!txok)
tx_flags |= ATH_TX_ERROR;
if (ts->ts_status & ATH9K_TXERR_FILT)
tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
bf->bf_buf_addr = 0;
if (sc->tx99_state)
goto skip_tx_complete;
if (bf->bf_state.bfs_paprd) {
if (time_after(jiffies,
bf->bf_state.bfs_paprd_timestamp +
msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
dev_kfree_skb_any(skb);
else
complete(&sc->paprd_complete);
} else {
ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
ath_tx_complete(sc, skb, tx_flags, txq, sta);
}
skip_tx_complete:
/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
* accidentally reference it later.
*/
bf->bf_mpdu = NULL;
/*
* Return the list of ath_buf of this mpdu to free queue
*/
spin_lock_irqsave(&sc->tx.txbuflock, flags);
list_splice_tail_init(bf_q, &sc->tx.txbuf);
spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
}
static void ath_clear_tx_status(struct ieee80211_tx_info *tx_info)
{
void *ptr = &tx_info->status;
memset(ptr + sizeof(tx_info->status.rates), 0,
sizeof(tx_info->status) -
sizeof(tx_info->status.rates) -
sizeof(tx_info->status.status_driver_data));
}
static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
struct ath_tx_status *ts, int nframes, int nbad,
int txok)
{
struct sk_buff *skb = bf->bf_mpdu;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ieee80211_hw *hw = sc->hw;
struct ath_hw *ah = sc->sc_ah;
u8 i, tx_rateindex;
ath_clear_tx_status(tx_info);
if (txok)
tx_info->status.ack_signal = ts->ts_rssi;
tx_rateindex = ts->ts_rateindex;
WARN_ON(tx_rateindex >= hw->max_rates);
if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
BUG_ON(nbad > nframes);
}
tx_info->status.ampdu_len = nframes;
tx_info->status.ampdu_ack_len = nframes - nbad;
tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
tx_info->status.rates[i].count = 0;
tx_info->status.rates[i].idx = -1;
}
if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
(tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
/*
* If an underrun error is seen assume it as an excessive
* retry only if max frame trigger level has been reached
* (2 KB for single stream, and 4 KB for dual stream).
* Adjust the long retry as if the frame was tried
* hw->max_rate_tries times to affect how rate control updates
* PER for the failed rate.
* In case of congestion on the bus penalizing this type of
* underruns should help hardware actually transmit new frames
* successfully by eventually preferring slower rates.
* This itself should also alleviate congestion on the bus.
*/
if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
ATH9K_TX_DELIM_UNDERRUN)) &&
ieee80211_is_data(hdr->frame_control) &&
ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
tx_info->status.rates[tx_rateindex].count =
hw->max_rate_tries;
}
}
static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_buf *bf, *lastbf, *bf_held = NULL;
struct list_head bf_head;
struct ath_desc *ds;
struct ath_tx_status ts;
int status;
ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
txq->axq_link);
ath_txq_lock(sc, txq);
for (;;) {
if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
break;
if (list_empty(&txq->axq_q)) {
txq->axq_link = NULL;
ath_txq_schedule(sc, txq);
break;
}
bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
/*
* There is a race condition that a BH gets scheduled
* after sw writes TxE and before hw re-load the last
* descriptor to get the newly chained one.
* Software must keep the last DONE descriptor as a
* holding descriptor - software does so by marking
* it with the STALE flag.
*/
bf_held = NULL;
if (bf->bf_state.stale) {
bf_held = bf;
if (list_is_last(&bf_held->list, &txq->axq_q))
break;
bf = list_entry(bf_held->list.next, struct ath_buf,
list);
}
lastbf = bf->bf_lastbf;
ds = lastbf->bf_desc;
memset(&ts, 0, sizeof(ts));
status = ath9k_hw_txprocdesc(ah, ds, &ts);
if (status == -EINPROGRESS)
break;
TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
/*
* Remove ath_buf's of the same transmit unit from txq,
* however leave the last descriptor back as the holding
* descriptor for hw.
*/
lastbf->bf_state.stale = true;
INIT_LIST_HEAD(&bf_head);
if (!list_is_singular(&lastbf->list))
list_cut_position(&bf_head,
&txq->axq_q, lastbf->list.prev);
if (bf_held) {
list_del(&bf_held->list);
ath_tx_return_buffer(sc, bf_held);
}
ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
}
ath_txq_unlock_complete(sc, txq);
}
void ath_tx_tasklet(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
int i;
rcu_read_lock();
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
ath_tx_processq(sc, &sc->tx.txq[i]);
}
rcu_read_unlock();
}
void ath_tx_edma_tasklet(struct ath_softc *sc)
{
struct ath_tx_status ts;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_hw *ah = sc->sc_ah;
struct ath_txq *txq;
struct ath_buf *bf, *lastbf;
struct list_head bf_head;
struct list_head *fifo_list;
int status;
rcu_read_lock();
for (;;) {
if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
break;
status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
if (status == -EINPROGRESS)
break;
if (status == -EIO) {
ath_dbg(common, XMIT, "Error processing tx status\n");
break;
}
/* Process beacon completions separately */
if (ts.qid == sc->beacon.beaconq) {
sc->beacon.tx_processed = true;
sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
if (ath9k_is_chanctx_enabled()) {
ath_chanctx_event(sc, NULL,
ATH_CHANCTX_EVENT_BEACON_SENT);
}
ath9k_csa_update(sc);
continue;
}
txq = &sc->tx.txq[ts.qid];
ath_txq_lock(sc, txq);
TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
fifo_list = &txq->txq_fifo[txq->txq_tailidx];
if (list_empty(fifo_list)) {
ath_txq_unlock(sc, txq);
break;
}
bf = list_first_entry(fifo_list, struct ath_buf, list);
if (bf->bf_state.stale) {
list_del(&bf->list);
ath_tx_return_buffer(sc, bf);
bf = list_first_entry(fifo_list, struct ath_buf, list);
}
lastbf = bf->bf_lastbf;
INIT_LIST_HEAD(&bf_head);
if (list_is_last(&lastbf->list, fifo_list)) {
list_splice_tail_init(fifo_list, &bf_head);
INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
if (!list_empty(&txq->axq_q)) {
struct list_head bf_q;
INIT_LIST_HEAD(&bf_q);
txq->axq_link = NULL;
list_splice_tail_init(&txq->axq_q, &bf_q);
ath_tx_txqaddbuf(sc, txq, &bf_q, true);
}
} else {
lastbf->bf_state.stale = true;
if (bf != lastbf)
list_cut_position(&bf_head, fifo_list,
lastbf->list.prev);
}
ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
ath_txq_unlock_complete(sc, txq);
}
rcu_read_unlock();
}
/*****************/
/* Init, Cleanup */
/*****************/
static int ath_txstatus_setup(struct ath_softc *sc, int size)
{
struct ath_descdma *dd = &sc->txsdma;
u8 txs_len = sc->sc_ah->caps.txs_len;
dd->dd_desc_len = size * txs_len;
dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
&dd->dd_desc_paddr, GFP_KERNEL);
if (!dd->dd_desc)
return -ENOMEM;
return 0;
}
static int ath_tx_edma_init(struct ath_softc *sc)
{
int err;
err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
if (!err)
ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
sc->txsdma.dd_desc_paddr,
ATH_TXSTATUS_RING_SIZE);
return err;
}
int ath_tx_init(struct ath_softc *sc, int nbufs)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
int error = 0;
spin_lock_init(&sc->tx.txbuflock);
error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
"tx", nbufs, 1, 1);
if (error != 0) {
ath_err(common,
"Failed to allocate tx descriptors: %d\n", error);
return error;
}
error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
"beacon", ATH_BCBUF, 1, 1);
if (error != 0) {
ath_err(common,
"Failed to allocate beacon descriptors: %d\n", error);
return error;
}
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
error = ath_tx_edma_init(sc);
return error;
}
void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
{
struct ath_atx_tid *tid;
int tidno, acno;
for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
tid = ath_node_to_tid(an, tidno);
tid->an = an;
tid->tidno = tidno;
tid->seq_start = tid->seq_next = 0;
tid->baw_size = WME_MAX_BA;
tid->baw_head = tid->baw_tail = 0;
tid->active = false;
tid->clear_ps_filter = true;
__skb_queue_head_init(&tid->retry_q);
INIT_LIST_HEAD(&tid->list);
acno = TID_TO_WME_AC(tidno);
tid->txq = sc->tx.txq_map[acno];
if (!an->sta)
break; /* just one multicast ath_atx_tid */
}
}
void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
{
struct ath_atx_tid *tid;
struct ath_txq *txq;
int tidno;
rcu_read_lock();
for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
tid = ath_node_to_tid(an, tidno);
txq = tid->txq;
ath_txq_lock(sc, txq);
if (!list_empty(&tid->list))
list_del_init(&tid->list);
ath_tid_drain(sc, txq, tid);
tid->active = false;
ath_txq_unlock(sc, txq);
if (!an->sta)
break; /* just one multicast ath_atx_tid */
}
rcu_read_unlock();
}
#ifdef CONFIG_ATH9K_TX99
int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
struct ath_tx_control *txctl)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ath_frame_info *fi = get_frame_info(skb);
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_buf *bf;
int padpos, padsize;
padpos = ieee80211_hdrlen(hdr->frame_control);
padsize = padpos & 3;
if (padsize && skb->len > padpos) {
if (skb_headroom(skb) < padsize) {
ath_dbg(common, XMIT,
"tx99 padding failed\n");
return -EINVAL;
}
skb_push(skb, padsize);
memmove(skb->data, skb->data + padsize, padpos);
}
fi->keyix = ATH9K_TXKEYIX_INVALID;
fi->framelen = skb->len + FCS_LEN;
fi->keytype = ATH9K_KEY_TYPE_CLEAR;
bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
if (!bf) {
ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
return -EINVAL;
}
ath_set_rates(sc->tx99_vif, NULL, bf);
ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
ath_tx_send_normal(sc, txctl->txq, NULL, skb);
return 0;
}
#endif /* CONFIG_ATH9K_TX99 */