linuxdebug/drivers/misc/habanalabs/common/context.c

436 lines
9.8 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2021 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "habanalabs.h"
#include <linux/slab.h>
void hl_encaps_handle_do_release(struct kref *ref)
{
struct hl_cs_encaps_sig_handle *handle =
container_of(ref, struct hl_cs_encaps_sig_handle, refcount);
struct hl_encaps_signals_mgr *mgr = &handle->ctx->sig_mgr;
spin_lock(&mgr->lock);
idr_remove(&mgr->handles, handle->id);
spin_unlock(&mgr->lock);
hl_ctx_put(handle->ctx);
kfree(handle);
}
static void hl_encaps_handle_do_release_sob(struct kref *ref)
{
struct hl_cs_encaps_sig_handle *handle =
container_of(ref, struct hl_cs_encaps_sig_handle, refcount);
struct hl_encaps_signals_mgr *mgr = &handle->ctx->sig_mgr;
/* if we're here, then there was a signals reservation but cs with
* encaps signals wasn't submitted, so need to put refcount
* to hw_sob taken at the reservation.
*/
hw_sob_put(handle->hw_sob);
spin_lock(&mgr->lock);
idr_remove(&mgr->handles, handle->id);
spin_unlock(&mgr->lock);
hl_ctx_put(handle->ctx);
kfree(handle);
}
static void hl_encaps_sig_mgr_init(struct hl_encaps_signals_mgr *mgr)
{
spin_lock_init(&mgr->lock);
idr_init(&mgr->handles);
}
static void hl_encaps_sig_mgr_fini(struct hl_device *hdev,
struct hl_encaps_signals_mgr *mgr)
{
struct hl_cs_encaps_sig_handle *handle;
struct idr *idp;
u32 id;
idp = &mgr->handles;
if (!idr_is_empty(idp)) {
dev_warn(hdev->dev, "device released while some encaps signals handles are still allocated\n");
idr_for_each_entry(idp, handle, id)
kref_put(&handle->refcount,
hl_encaps_handle_do_release_sob);
}
idr_destroy(&mgr->handles);
}
static void hl_ctx_fini(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
int i;
/* Release all allocated HW block mapped list entries and destroy
* the mutex.
*/
hl_hw_block_mem_fini(ctx);
/*
* If we arrived here, there are no jobs waiting for this context
* on its queues so we can safely remove it.
* This is because for each CS, we increment the ref count and for
* every CS that was finished we decrement it and we won't arrive
* to this function unless the ref count is 0
*/
for (i = 0 ; i < hdev->asic_prop.max_pending_cs ; i++)
hl_fence_put(ctx->cs_pending[i]);
kfree(ctx->cs_pending);
if (ctx->asid != HL_KERNEL_ASID_ID) {
dev_dbg(hdev->dev, "closing user context %d\n", ctx->asid);
/* The engines are stopped as there is no executing CS, but the
* Coresight might be still working by accessing addresses
* related to the stopped engines. Hence stop it explicitly.
*/
if (hdev->in_debug)
hl_device_set_debug_mode(hdev, ctx, false);
hdev->asic_funcs->ctx_fini(ctx);
hl_dec_ctx_fini(ctx);
hl_cb_va_pool_fini(ctx);
hl_vm_ctx_fini(ctx);
hl_asid_free(hdev, ctx->asid);
hl_encaps_sig_mgr_fini(hdev, &ctx->sig_mgr);
} else {
dev_dbg(hdev->dev, "closing kernel context\n");
hdev->asic_funcs->ctx_fini(ctx);
hl_vm_ctx_fini(ctx);
hl_mmu_ctx_fini(ctx);
}
}
void hl_ctx_do_release(struct kref *ref)
{
struct hl_ctx *ctx;
ctx = container_of(ref, struct hl_ctx, refcount);
hl_ctx_fini(ctx);
if (ctx->hpriv) {
struct hl_fpriv *hpriv = ctx->hpriv;
mutex_lock(&hpriv->ctx_lock);
hpriv->ctx = NULL;
mutex_unlock(&hpriv->ctx_lock);
hl_hpriv_put(hpriv);
}
kfree(ctx);
}
int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv)
{
struct hl_ctx_mgr *ctx_mgr = &hpriv->ctx_mgr;
struct hl_ctx *ctx;
int rc;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
rc = -ENOMEM;
goto out_err;
}
mutex_lock(&ctx_mgr->lock);
rc = idr_alloc(&ctx_mgr->handles, ctx, 1, 0, GFP_KERNEL);
mutex_unlock(&ctx_mgr->lock);
if (rc < 0) {
dev_err(hdev->dev, "Failed to allocate IDR for a new CTX\n");
goto free_ctx;
}
ctx->handle = rc;
rc = hl_ctx_init(hdev, ctx, false);
if (rc)
goto remove_from_idr;
hl_hpriv_get(hpriv);
ctx->hpriv = hpriv;
/* TODO: remove for multiple contexts per process */
hpriv->ctx = ctx;
/* TODO: remove the following line for multiple process support */
hdev->is_compute_ctx_active = true;
return 0;
remove_from_idr:
mutex_lock(&ctx_mgr->lock);
idr_remove(&ctx_mgr->handles, ctx->handle);
mutex_unlock(&ctx_mgr->lock);
free_ctx:
kfree(ctx);
out_err:
return rc;
}
int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx)
{
int rc = 0, i;
ctx->hdev = hdev;
kref_init(&ctx->refcount);
ctx->cs_sequence = 1;
spin_lock_init(&ctx->cs_lock);
atomic_set(&ctx->thread_ctx_switch_token, 1);
ctx->thread_ctx_switch_wait_token = 0;
ctx->cs_pending = kcalloc(hdev->asic_prop.max_pending_cs,
sizeof(struct hl_fence *),
GFP_KERNEL);
if (!ctx->cs_pending)
return -ENOMEM;
INIT_LIST_HEAD(&ctx->outcome_store.used_list);
INIT_LIST_HEAD(&ctx->outcome_store.free_list);
hash_init(ctx->outcome_store.outcome_map);
for (i = 0; i < ARRAY_SIZE(ctx->outcome_store.nodes_pool); ++i)
list_add(&ctx->outcome_store.nodes_pool[i].list_link,
&ctx->outcome_store.free_list);
hl_hw_block_mem_init(ctx);
if (is_kernel_ctx) {
ctx->asid = HL_KERNEL_ASID_ID; /* Kernel driver gets ASID 0 */
rc = hl_vm_ctx_init(ctx);
if (rc) {
dev_err(hdev->dev, "Failed to init mem ctx module\n");
rc = -ENOMEM;
goto err_hw_block_mem_fini;
}
rc = hdev->asic_funcs->ctx_init(ctx);
if (rc) {
dev_err(hdev->dev, "ctx_init failed\n");
goto err_vm_ctx_fini;
}
} else {
ctx->asid = hl_asid_alloc(hdev);
if (!ctx->asid) {
dev_err(hdev->dev, "No free ASID, failed to create context\n");
rc = -ENOMEM;
goto err_hw_block_mem_fini;
}
rc = hl_vm_ctx_init(ctx);
if (rc) {
dev_err(hdev->dev, "Failed to init mem ctx module\n");
rc = -ENOMEM;
goto err_asid_free;
}
rc = hl_cb_va_pool_init(ctx);
if (rc) {
dev_err(hdev->dev,
"Failed to init VA pool for mapped CB\n");
goto err_vm_ctx_fini;
}
rc = hdev->asic_funcs->ctx_init(ctx);
if (rc) {
dev_err(hdev->dev, "ctx_init failed\n");
goto err_cb_va_pool_fini;
}
hl_encaps_sig_mgr_init(&ctx->sig_mgr);
dev_dbg(hdev->dev, "create user context %d\n", ctx->asid);
}
return 0;
err_cb_va_pool_fini:
hl_cb_va_pool_fini(ctx);
err_vm_ctx_fini:
hl_vm_ctx_fini(ctx);
err_asid_free:
if (ctx->asid != HL_KERNEL_ASID_ID)
hl_asid_free(hdev, ctx->asid);
err_hw_block_mem_fini:
hl_hw_block_mem_fini(ctx);
kfree(ctx->cs_pending);
return rc;
}
static int hl_ctx_get_unless_zero(struct hl_ctx *ctx)
{
return kref_get_unless_zero(&ctx->refcount);
}
void hl_ctx_get(struct hl_ctx *ctx)
{
kref_get(&ctx->refcount);
}
int hl_ctx_put(struct hl_ctx *ctx)
{
return kref_put(&ctx->refcount, hl_ctx_do_release);
}
struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev)
{
struct hl_ctx *ctx = NULL;
struct hl_fpriv *hpriv;
mutex_lock(&hdev->fpriv_list_lock);
list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node) {
mutex_lock(&hpriv->ctx_lock);
ctx = hpriv->ctx;
if (ctx && !hl_ctx_get_unless_zero(ctx))
ctx = NULL;
mutex_unlock(&hpriv->ctx_lock);
/* There can only be a single user which has opened the compute device, so exit
* immediately once we find its context or if we see that it has been released
*/
break;
}
mutex_unlock(&hdev->fpriv_list_lock);
return ctx;
}
/*
* hl_ctx_get_fence_locked - get CS fence under CS lock
*
* @ctx: pointer to the context structure.
* @seq: CS sequences number
*
* @return valid fence pointer on success, NULL if fence is gone, otherwise
* error pointer.
*
* NOTE: this function shall be called with cs_lock locked
*/
static struct hl_fence *hl_ctx_get_fence_locked(struct hl_ctx *ctx, u64 seq)
{
struct asic_fixed_properties *asic_prop = &ctx->hdev->asic_prop;
struct hl_fence *fence;
if (seq >= ctx->cs_sequence)
return ERR_PTR(-EINVAL);
if (seq + asic_prop->max_pending_cs < ctx->cs_sequence)
return NULL;
fence = ctx->cs_pending[seq & (asic_prop->max_pending_cs - 1)];
hl_fence_get(fence);
return fence;
}
struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq)
{
struct hl_fence *fence;
spin_lock(&ctx->cs_lock);
fence = hl_ctx_get_fence_locked(ctx, seq);
spin_unlock(&ctx->cs_lock);
return fence;
}
/*
* hl_ctx_get_fences - get multiple CS fences under the same CS lock
*
* @ctx: pointer to the context structure.
* @seq_arr: array of CS sequences to wait for
* @fence: fence array to store the CS fences
* @arr_len: length of seq_arr and fence_arr
*
* @return 0 on success, otherwise non 0 error code
*/
int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
struct hl_fence **fence, u32 arr_len)
{
struct hl_fence **fence_arr_base = fence;
int i, rc = 0;
spin_lock(&ctx->cs_lock);
for (i = 0; i < arr_len; i++, fence++) {
u64 seq = seq_arr[i];
*fence = hl_ctx_get_fence_locked(ctx, seq);
if (IS_ERR(*fence)) {
dev_err(ctx->hdev->dev,
"Failed to get fence for CS with seq 0x%llx\n",
seq);
rc = PTR_ERR(*fence);
break;
}
}
spin_unlock(&ctx->cs_lock);
if (rc)
hl_fences_put(fence_arr_base, i);
return rc;
}
/*
* hl_ctx_mgr_init - initialize the context manager
*
* @ctx_mgr: pointer to context manager structure
*
* This manager is an object inside the hpriv object of the user process.
* The function is called when a user process opens the FD.
*/
void hl_ctx_mgr_init(struct hl_ctx_mgr *ctx_mgr)
{
mutex_init(&ctx_mgr->lock);
idr_init(&ctx_mgr->handles);
}
/*
* hl_ctx_mgr_fini - finalize the context manager
*
* @hdev: pointer to device structure
* @ctx_mgr: pointer to context manager structure
*
* This function goes over all the contexts in the manager and frees them.
* It is called when a process closes the FD.
*/
void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *ctx_mgr)
{
struct hl_ctx *ctx;
struct idr *idp;
u32 id;
idp = &ctx_mgr->handles;
idr_for_each_entry(idp, ctx, id)
kref_put(&ctx->refcount, hl_ctx_do_release);
idr_destroy(&ctx_mgr->handles);
mutex_destroy(&ctx_mgr->lock);
}