linuxdebug/drivers/gpu/drm/exynos/exynos_drm_gsc.c

1432 lines
37 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2012 Samsung Electronics Co.Ltd
* Authors:
* Eunchul Kim <chulspro.kim@samsung.com>
* Jinyoung Jeon <jy0.jeon@samsung.com>
* Sangmin Lee <lsmin.lee@samsung.com>
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_print.h>
#include <drm/exynos_drm.h>
#include "exynos_drm_drv.h"
#include "exynos_drm_ipp.h"
#include "regs-gsc.h"
/*
* GSC stands for General SCaler and
* supports image scaler/rotator and input/output DMA operations.
* input DMA reads image data from the memory.
* output DMA writes image data to memory.
* GSC supports image rotation and image effect functions.
*/
#define GSC_MAX_CLOCKS 8
#define GSC_MAX_SRC 4
#define GSC_MAX_DST 16
#define GSC_RESET_TIMEOUT 50
#define GSC_BUF_STOP 1
#define GSC_BUF_START 2
#define GSC_REG_SZ 16
#define GSC_WIDTH_ITU_709 1280
#define GSC_SC_UP_MAX_RATIO 65536
#define GSC_SC_DOWN_RATIO_7_8 74898
#define GSC_SC_DOWN_RATIO_6_8 87381
#define GSC_SC_DOWN_RATIO_5_8 104857
#define GSC_SC_DOWN_RATIO_4_8 131072
#define GSC_SC_DOWN_RATIO_3_8 174762
#define GSC_SC_DOWN_RATIO_2_8 262144
#define GSC_CROP_MAX 8192
#define GSC_CROP_MIN 32
#define GSC_SCALE_MAX 4224
#define GSC_SCALE_MIN 32
#define GSC_COEF_RATIO 7
#define GSC_COEF_PHASE 9
#define GSC_COEF_ATTR 16
#define GSC_COEF_H_8T 8
#define GSC_COEF_V_4T 4
#define GSC_COEF_DEPTH 3
#define GSC_AUTOSUSPEND_DELAY 2000
#define get_gsc_context(dev) dev_get_drvdata(dev)
#define gsc_read(offset) readl(ctx->regs + (offset))
#define gsc_write(cfg, offset) writel(cfg, ctx->regs + (offset))
/*
* A structure of scaler.
*
* @range: narrow, wide.
* @pre_shfactor: pre sclaer shift factor.
* @pre_hratio: horizontal ratio of the prescaler.
* @pre_vratio: vertical ratio of the prescaler.
* @main_hratio: the main scaler's horizontal ratio.
* @main_vratio: the main scaler's vertical ratio.
*/
struct gsc_scaler {
bool range;
u32 pre_shfactor;
u32 pre_hratio;
u32 pre_vratio;
unsigned long main_hratio;
unsigned long main_vratio;
};
/*
* A structure of gsc context.
*
* @regs: memory mapped io registers.
* @gsc_clk: gsc gate clock.
* @sc: scaler infomations.
* @id: gsc id.
* @irq: irq number.
* @rotation: supports rotation of src.
*/
struct gsc_context {
struct exynos_drm_ipp ipp;
struct drm_device *drm_dev;
void *dma_priv;
struct device *dev;
struct exynos_drm_ipp_task *task;
struct exynos_drm_ipp_formats *formats;
unsigned int num_formats;
void __iomem *regs;
const char **clk_names;
struct clk *clocks[GSC_MAX_CLOCKS];
int num_clocks;
struct gsc_scaler sc;
int id;
int irq;
bool rotation;
};
/**
* struct gsc_driverdata - per device type driver data for init time.
*
* @limits: picture size limits array
* @num_limits: number of items in the aforementioned array
* @clk_names: names of clocks needed by this variant
* @num_clocks: the number of clocks needed by this variant
*/
struct gsc_driverdata {
const struct drm_exynos_ipp_limit *limits;
int num_limits;
const char *clk_names[GSC_MAX_CLOCKS];
int num_clocks;
};
/* 8-tap Filter Coefficient */
static const int h_coef_8t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_H_8T] = {
{ /* Ratio <= 65536 (~8:8) */
{ 0, 0, 0, 128, 0, 0, 0, 0 },
{ -1, 2, -6, 127, 7, -2, 1, 0 },
{ -1, 4, -12, 125, 16, -5, 1, 0 },
{ -1, 5, -15, 120, 25, -8, 2, 0 },
{ -1, 6, -18, 114, 35, -10, 3, -1 },
{ -1, 6, -20, 107, 46, -13, 4, -1 },
{ -2, 7, -21, 99, 57, -16, 5, -1 },
{ -1, 6, -20, 89, 68, -18, 5, -1 },
{ -1, 6, -20, 79, 79, -20, 6, -1 },
{ -1, 5, -18, 68, 89, -20, 6, -1 },
{ -1, 5, -16, 57, 99, -21, 7, -2 },
{ -1, 4, -13, 46, 107, -20, 6, -1 },
{ -1, 3, -10, 35, 114, -18, 6, -1 },
{ 0, 2, -8, 25, 120, -15, 5, -1 },
{ 0, 1, -5, 16, 125, -12, 4, -1 },
{ 0, 1, -2, 7, 127, -6, 2, -1 }
}, { /* 65536 < Ratio <= 74898 (~8:7) */
{ 3, -8, 14, 111, 13, -8, 3, 0 },
{ 2, -6, 7, 112, 21, -10, 3, -1 },
{ 2, -4, 1, 110, 28, -12, 4, -1 },
{ 1, -2, -3, 106, 36, -13, 4, -1 },
{ 1, -1, -7, 103, 44, -15, 4, -1 },
{ 1, 1, -11, 97, 53, -16, 4, -1 },
{ 0, 2, -13, 91, 61, -16, 4, -1 },
{ 0, 3, -15, 85, 69, -17, 4, -1 },
{ 0, 3, -16, 77, 77, -16, 3, 0 },
{ -1, 4, -17, 69, 85, -15, 3, 0 },
{ -1, 4, -16, 61, 91, -13, 2, 0 },
{ -1, 4, -16, 53, 97, -11, 1, 1 },
{ -1, 4, -15, 44, 103, -7, -1, 1 },
{ -1, 4, -13, 36, 106, -3, -2, 1 },
{ -1, 4, -12, 28, 110, 1, -4, 2 },
{ -1, 3, -10, 21, 112, 7, -6, 2 }
}, { /* 74898 < Ratio <= 87381 (~8:6) */
{ 2, -11, 25, 96, 25, -11, 2, 0 },
{ 2, -10, 19, 96, 31, -12, 2, 0 },
{ 2, -9, 14, 94, 37, -12, 2, 0 },
{ 2, -8, 10, 92, 43, -12, 1, 0 },
{ 2, -7, 5, 90, 49, -12, 1, 0 },
{ 2, -5, 1, 86, 55, -12, 0, 1 },
{ 2, -4, -2, 82, 61, -11, -1, 1 },
{ 1, -3, -5, 77, 67, -9, -1, 1 },
{ 1, -2, -7, 72, 72, -7, -2, 1 },
{ 1, -1, -9, 67, 77, -5, -3, 1 },
{ 1, -1, -11, 61, 82, -2, -4, 2 },
{ 1, 0, -12, 55, 86, 1, -5, 2 },
{ 0, 1, -12, 49, 90, 5, -7, 2 },
{ 0, 1, -12, 43, 92, 10, -8, 2 },
{ 0, 2, -12, 37, 94, 14, -9, 2 },
{ 0, 2, -12, 31, 96, 19, -10, 2 }
}, { /* 87381 < Ratio <= 104857 (~8:5) */
{ -1, -8, 33, 80, 33, -8, -1, 0 },
{ -1, -8, 28, 80, 37, -7, -2, 1 },
{ 0, -8, 24, 79, 41, -7, -2, 1 },
{ 0, -8, 20, 78, 46, -6, -3, 1 },
{ 0, -8, 16, 76, 50, -4, -3, 1 },
{ 0, -7, 13, 74, 54, -3, -4, 1 },
{ 1, -7, 10, 71, 58, -1, -5, 1 },
{ 1, -6, 6, 68, 62, 1, -5, 1 },
{ 1, -6, 4, 65, 65, 4, -6, 1 },
{ 1, -5, 1, 62, 68, 6, -6, 1 },
{ 1, -5, -1, 58, 71, 10, -7, 1 },
{ 1, -4, -3, 54, 74, 13, -7, 0 },
{ 1, -3, -4, 50, 76, 16, -8, 0 },
{ 1, -3, -6, 46, 78, 20, -8, 0 },
{ 1, -2, -7, 41, 79, 24, -8, 0 },
{ 1, -2, -7, 37, 80, 28, -8, -1 }
}, { /* 104857 < Ratio <= 131072 (~8:4) */
{ -3, 0, 35, 64, 35, 0, -3, 0 },
{ -3, -1, 32, 64, 38, 1, -3, 0 },
{ -2, -2, 29, 63, 41, 2, -3, 0 },
{ -2, -3, 27, 63, 43, 4, -4, 0 },
{ -2, -3, 24, 61, 46, 6, -4, 0 },
{ -2, -3, 21, 60, 49, 7, -4, 0 },
{ -1, -4, 19, 59, 51, 9, -4, -1 },
{ -1, -4, 16, 57, 53, 12, -4, -1 },
{ -1, -4, 14, 55, 55, 14, -4, -1 },
{ -1, -4, 12, 53, 57, 16, -4, -1 },
{ -1, -4, 9, 51, 59, 19, -4, -1 },
{ 0, -4, 7, 49, 60, 21, -3, -2 },
{ 0, -4, 6, 46, 61, 24, -3, -2 },
{ 0, -4, 4, 43, 63, 27, -3, -2 },
{ 0, -3, 2, 41, 63, 29, -2, -2 },
{ 0, -3, 1, 38, 64, 32, -1, -3 }
}, { /* 131072 < Ratio <= 174762 (~8:3) */
{ -1, 8, 33, 48, 33, 8, -1, 0 },
{ -1, 7, 31, 49, 35, 9, -1, -1 },
{ -1, 6, 30, 49, 36, 10, -1, -1 },
{ -1, 5, 28, 48, 38, 12, -1, -1 },
{ -1, 4, 26, 48, 39, 13, 0, -1 },
{ -1, 3, 24, 47, 41, 15, 0, -1 },
{ -1, 2, 23, 47, 42, 16, 0, -1 },
{ -1, 2, 21, 45, 43, 18, 1, -1 },
{ -1, 1, 19, 45, 45, 19, 1, -1 },
{ -1, 1, 18, 43, 45, 21, 2, -1 },
{ -1, 0, 16, 42, 47, 23, 2, -1 },
{ -1, 0, 15, 41, 47, 24, 3, -1 },
{ -1, 0, 13, 39, 48, 26, 4, -1 },
{ -1, -1, 12, 38, 48, 28, 5, -1 },
{ -1, -1, 10, 36, 49, 30, 6, -1 },
{ -1, -1, 9, 35, 49, 31, 7, -1 }
}, { /* 174762 < Ratio <= 262144 (~8:2) */
{ 2, 13, 30, 38, 30, 13, 2, 0 },
{ 2, 12, 29, 38, 30, 14, 3, 0 },
{ 2, 11, 28, 38, 31, 15, 3, 0 },
{ 2, 10, 26, 38, 32, 16, 4, 0 },
{ 1, 10, 26, 37, 33, 17, 4, 0 },
{ 1, 9, 24, 37, 34, 18, 5, 0 },
{ 1, 8, 24, 37, 34, 19, 5, 0 },
{ 1, 7, 22, 36, 35, 20, 6, 1 },
{ 1, 6, 21, 36, 36, 21, 6, 1 },
{ 1, 6, 20, 35, 36, 22, 7, 1 },
{ 0, 5, 19, 34, 37, 24, 8, 1 },
{ 0, 5, 18, 34, 37, 24, 9, 1 },
{ 0, 4, 17, 33, 37, 26, 10, 1 },
{ 0, 4, 16, 32, 38, 26, 10, 2 },
{ 0, 3, 15, 31, 38, 28, 11, 2 },
{ 0, 3, 14, 30, 38, 29, 12, 2 }
}
};
/* 4-tap Filter Coefficient */
static const int v_coef_4t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_V_4T] = {
{ /* Ratio <= 65536 (~8:8) */
{ 0, 128, 0, 0 },
{ -4, 127, 5, 0 },
{ -6, 124, 11, -1 },
{ -8, 118, 19, -1 },
{ -8, 111, 27, -2 },
{ -8, 102, 37, -3 },
{ -8, 92, 48, -4 },
{ -7, 81, 59, -5 },
{ -6, 70, 70, -6 },
{ -5, 59, 81, -7 },
{ -4, 48, 92, -8 },
{ -3, 37, 102, -8 },
{ -2, 27, 111, -8 },
{ -1, 19, 118, -8 },
{ -1, 11, 124, -6 },
{ 0, 5, 127, -4 }
}, { /* 65536 < Ratio <= 74898 (~8:7) */
{ 8, 112, 8, 0 },
{ 4, 111, 14, -1 },
{ 1, 109, 20, -2 },
{ -2, 105, 27, -2 },
{ -3, 100, 34, -3 },
{ -5, 93, 43, -3 },
{ -5, 86, 51, -4 },
{ -5, 77, 60, -4 },
{ -5, 69, 69, -5 },
{ -4, 60, 77, -5 },
{ -4, 51, 86, -5 },
{ -3, 43, 93, -5 },
{ -3, 34, 100, -3 },
{ -2, 27, 105, -2 },
{ -2, 20, 109, 1 },
{ -1, 14, 111, 4 }
}, { /* 74898 < Ratio <= 87381 (~8:6) */
{ 16, 96, 16, 0 },
{ 12, 97, 21, -2 },
{ 8, 96, 26, -2 },
{ 5, 93, 32, -2 },
{ 2, 89, 39, -2 },
{ 0, 84, 46, -2 },
{ -1, 79, 53, -3 },
{ -2, 73, 59, -2 },
{ -2, 66, 66, -2 },
{ -2, 59, 73, -2 },
{ -3, 53, 79, -1 },
{ -2, 46, 84, 0 },
{ -2, 39, 89, 2 },
{ -2, 32, 93, 5 },
{ -2, 26, 96, 8 },
{ -2, 21, 97, 12 }
}, { /* 87381 < Ratio <= 104857 (~8:5) */
{ 22, 84, 22, 0 },
{ 18, 85, 26, -1 },
{ 14, 84, 31, -1 },
{ 11, 82, 36, -1 },
{ 8, 79, 42, -1 },
{ 6, 76, 47, -1 },
{ 4, 72, 52, 0 },
{ 2, 68, 58, 0 },
{ 1, 63, 63, 1 },
{ 0, 58, 68, 2 },
{ 0, 52, 72, 4 },
{ -1, 47, 76, 6 },
{ -1, 42, 79, 8 },
{ -1, 36, 82, 11 },
{ -1, 31, 84, 14 },
{ -1, 26, 85, 18 }
}, { /* 104857 < Ratio <= 131072 (~8:4) */
{ 26, 76, 26, 0 },
{ 22, 76, 30, 0 },
{ 19, 75, 34, 0 },
{ 16, 73, 38, 1 },
{ 13, 71, 43, 1 },
{ 10, 69, 47, 2 },
{ 8, 66, 51, 3 },
{ 6, 63, 55, 4 },
{ 5, 59, 59, 5 },
{ 4, 55, 63, 6 },
{ 3, 51, 66, 8 },
{ 2, 47, 69, 10 },
{ 1, 43, 71, 13 },
{ 1, 38, 73, 16 },
{ 0, 34, 75, 19 },
{ 0, 30, 76, 22 }
}, { /* 131072 < Ratio <= 174762 (~8:3) */
{ 29, 70, 29, 0 },
{ 26, 68, 32, 2 },
{ 23, 67, 36, 2 },
{ 20, 66, 39, 3 },
{ 17, 65, 43, 3 },
{ 15, 63, 46, 4 },
{ 12, 61, 50, 5 },
{ 10, 58, 53, 7 },
{ 8, 56, 56, 8 },
{ 7, 53, 58, 10 },
{ 5, 50, 61, 12 },
{ 4, 46, 63, 15 },
{ 3, 43, 65, 17 },
{ 3, 39, 66, 20 },
{ 2, 36, 67, 23 },
{ 2, 32, 68, 26 }
}, { /* 174762 < Ratio <= 262144 (~8:2) */
{ 32, 64, 32, 0 },
{ 28, 63, 34, 3 },
{ 25, 62, 37, 4 },
{ 22, 62, 40, 4 },
{ 19, 61, 43, 5 },
{ 17, 59, 46, 6 },
{ 15, 58, 48, 7 },
{ 13, 55, 51, 9 },
{ 11, 53, 53, 11 },
{ 9, 51, 55, 13 },
{ 7, 48, 58, 15 },
{ 6, 46, 59, 17 },
{ 5, 43, 61, 19 },
{ 4, 40, 62, 22 },
{ 4, 37, 62, 25 },
{ 3, 34, 63, 28 }
}
};
static int gsc_sw_reset(struct gsc_context *ctx)
{
u32 cfg;
int count = GSC_RESET_TIMEOUT;
/* s/w reset */
cfg = (GSC_SW_RESET_SRESET);
gsc_write(cfg, GSC_SW_RESET);
/* wait s/w reset complete */
while (count--) {
cfg = gsc_read(GSC_SW_RESET);
if (!cfg)
break;
usleep_range(1000, 2000);
}
if (cfg) {
DRM_DEV_ERROR(ctx->dev, "failed to reset gsc h/w.\n");
return -EBUSY;
}
/* reset sequence */
cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
cfg |= (GSC_IN_BASE_ADDR_MASK |
GSC_IN_BASE_ADDR_PINGPONG(0));
gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK);
gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK);
gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK);
cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
cfg |= (GSC_OUT_BASE_ADDR_MASK |
GSC_OUT_BASE_ADDR_PINGPONG(0));
gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK);
gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK);
gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK);
return 0;
}
static void gsc_handle_irq(struct gsc_context *ctx, bool enable,
bool overflow, bool done)
{
u32 cfg;
DRM_DEV_DEBUG_KMS(ctx->dev, "enable[%d]overflow[%d]level[%d]\n",
enable, overflow, done);
cfg = gsc_read(GSC_IRQ);
cfg |= (GSC_IRQ_OR_MASK | GSC_IRQ_FRMDONE_MASK);
if (enable)
cfg |= GSC_IRQ_ENABLE;
else
cfg &= ~GSC_IRQ_ENABLE;
if (overflow)
cfg &= ~GSC_IRQ_OR_MASK;
else
cfg |= GSC_IRQ_OR_MASK;
if (done)
cfg &= ~GSC_IRQ_FRMDONE_MASK;
else
cfg |= GSC_IRQ_FRMDONE_MASK;
gsc_write(cfg, GSC_IRQ);
}
static void gsc_src_set_fmt(struct gsc_context *ctx, u32 fmt, bool tiled)
{
u32 cfg;
DRM_DEV_DEBUG_KMS(ctx->dev, "fmt[0x%x]\n", fmt);
cfg = gsc_read(GSC_IN_CON);
cfg &= ~(GSC_IN_RGB_TYPE_MASK | GSC_IN_YUV422_1P_ORDER_MASK |
GSC_IN_CHROMA_ORDER_MASK | GSC_IN_FORMAT_MASK |
GSC_IN_TILE_TYPE_MASK | GSC_IN_TILE_MODE |
GSC_IN_CHROM_STRIDE_SEL_MASK | GSC_IN_RB_SWAP_MASK);
switch (fmt) {
case DRM_FORMAT_RGB565:
cfg |= GSC_IN_RGB565;
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
cfg |= GSC_IN_XRGB8888;
break;
case DRM_FORMAT_BGRX8888:
cfg |= (GSC_IN_XRGB8888 | GSC_IN_RB_SWAP);
break;
case DRM_FORMAT_YUYV:
cfg |= (GSC_IN_YUV422_1P |
GSC_IN_YUV422_1P_ORDER_LSB_Y |
GSC_IN_CHROMA_ORDER_CBCR);
break;
case DRM_FORMAT_YVYU:
cfg |= (GSC_IN_YUV422_1P |
GSC_IN_YUV422_1P_ORDER_LSB_Y |
GSC_IN_CHROMA_ORDER_CRCB);
break;
case DRM_FORMAT_UYVY:
cfg |= (GSC_IN_YUV422_1P |
GSC_IN_YUV422_1P_OEDER_LSB_C |
GSC_IN_CHROMA_ORDER_CBCR);
break;
case DRM_FORMAT_VYUY:
cfg |= (GSC_IN_YUV422_1P |
GSC_IN_YUV422_1P_OEDER_LSB_C |
GSC_IN_CHROMA_ORDER_CRCB);
break;
case DRM_FORMAT_NV21:
cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_2P);
break;
case DRM_FORMAT_NV61:
cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV422_2P);
break;
case DRM_FORMAT_YUV422:
cfg |= GSC_IN_YUV422_3P;
break;
case DRM_FORMAT_YUV420:
cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_3P);
break;
case DRM_FORMAT_YVU420:
cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_3P);
break;
case DRM_FORMAT_NV12:
cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_2P);
break;
case DRM_FORMAT_NV16:
cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV422_2P);
break;
}
if (tiled)
cfg |= (GSC_IN_TILE_C_16x8 | GSC_IN_TILE_MODE);
gsc_write(cfg, GSC_IN_CON);
}
static void gsc_src_set_transf(struct gsc_context *ctx, unsigned int rotation)
{
unsigned int degree = rotation & DRM_MODE_ROTATE_MASK;
u32 cfg;
cfg = gsc_read(GSC_IN_CON);
cfg &= ~GSC_IN_ROT_MASK;
switch (degree) {
case DRM_MODE_ROTATE_0:
if (rotation & DRM_MODE_REFLECT_X)
cfg |= GSC_IN_ROT_XFLIP;
if (rotation & DRM_MODE_REFLECT_Y)
cfg |= GSC_IN_ROT_YFLIP;
break;
case DRM_MODE_ROTATE_90:
cfg |= GSC_IN_ROT_90;
if (rotation & DRM_MODE_REFLECT_X)
cfg |= GSC_IN_ROT_XFLIP;
if (rotation & DRM_MODE_REFLECT_Y)
cfg |= GSC_IN_ROT_YFLIP;
break;
case DRM_MODE_ROTATE_180:
cfg |= GSC_IN_ROT_180;
if (rotation & DRM_MODE_REFLECT_X)
cfg &= ~GSC_IN_ROT_XFLIP;
if (rotation & DRM_MODE_REFLECT_Y)
cfg &= ~GSC_IN_ROT_YFLIP;
break;
case DRM_MODE_ROTATE_270:
cfg |= GSC_IN_ROT_270;
if (rotation & DRM_MODE_REFLECT_X)
cfg &= ~GSC_IN_ROT_XFLIP;
if (rotation & DRM_MODE_REFLECT_Y)
cfg &= ~GSC_IN_ROT_YFLIP;
break;
}
gsc_write(cfg, GSC_IN_CON);
ctx->rotation = (cfg & GSC_IN_ROT_90) ? 1 : 0;
}
static void gsc_src_set_size(struct gsc_context *ctx,
struct exynos_drm_ipp_buffer *buf)
{
struct gsc_scaler *sc = &ctx->sc;
u32 cfg;
/* pixel offset */
cfg = (GSC_SRCIMG_OFFSET_X(buf->rect.x) |
GSC_SRCIMG_OFFSET_Y(buf->rect.y));
gsc_write(cfg, GSC_SRCIMG_OFFSET);
/* cropped size */
cfg = (GSC_CROPPED_WIDTH(buf->rect.w) |
GSC_CROPPED_HEIGHT(buf->rect.h));
gsc_write(cfg, GSC_CROPPED_SIZE);
/* original size */
cfg = gsc_read(GSC_SRCIMG_SIZE);
cfg &= ~(GSC_SRCIMG_HEIGHT_MASK |
GSC_SRCIMG_WIDTH_MASK);
cfg |= (GSC_SRCIMG_WIDTH(buf->buf.pitch[0] / buf->format->cpp[0]) |
GSC_SRCIMG_HEIGHT(buf->buf.height));
gsc_write(cfg, GSC_SRCIMG_SIZE);
cfg = gsc_read(GSC_IN_CON);
cfg &= ~GSC_IN_RGB_TYPE_MASK;
if (buf->rect.w >= GSC_WIDTH_ITU_709)
if (sc->range)
cfg |= GSC_IN_RGB_HD_WIDE;
else
cfg |= GSC_IN_RGB_HD_NARROW;
else
if (sc->range)
cfg |= GSC_IN_RGB_SD_WIDE;
else
cfg |= GSC_IN_RGB_SD_NARROW;
gsc_write(cfg, GSC_IN_CON);
}
static void gsc_src_set_buf_seq(struct gsc_context *ctx, u32 buf_id,
bool enqueue)
{
bool masked = !enqueue;
u32 cfg;
u32 mask = 0x00000001 << buf_id;
/* mask register set */
cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
/* sequence id */
cfg &= ~mask;
cfg |= masked << buf_id;
gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK);
gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK);
gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK);
}
static void gsc_src_set_addr(struct gsc_context *ctx, u32 buf_id,
struct exynos_drm_ipp_buffer *buf)
{
/* address register set */
gsc_write(buf->dma_addr[0], GSC_IN_BASE_ADDR_Y(buf_id));
gsc_write(buf->dma_addr[1], GSC_IN_BASE_ADDR_CB(buf_id));
gsc_write(buf->dma_addr[2], GSC_IN_BASE_ADDR_CR(buf_id));
gsc_src_set_buf_seq(ctx, buf_id, true);
}
static void gsc_dst_set_fmt(struct gsc_context *ctx, u32 fmt, bool tiled)
{
u32 cfg;
DRM_DEV_DEBUG_KMS(ctx->dev, "fmt[0x%x]\n", fmt);
cfg = gsc_read(GSC_OUT_CON);
cfg &= ~(GSC_OUT_RGB_TYPE_MASK | GSC_OUT_YUV422_1P_ORDER_MASK |
GSC_OUT_CHROMA_ORDER_MASK | GSC_OUT_FORMAT_MASK |
GSC_OUT_CHROM_STRIDE_SEL_MASK | GSC_OUT_RB_SWAP_MASK |
GSC_OUT_GLOBAL_ALPHA_MASK);
switch (fmt) {
case DRM_FORMAT_RGB565:
cfg |= GSC_OUT_RGB565;
break;
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XRGB8888:
cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_GLOBAL_ALPHA(0xff));
break;
case DRM_FORMAT_BGRX8888:
cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_RB_SWAP);
break;
case DRM_FORMAT_YUYV:
cfg |= (GSC_OUT_YUV422_1P |
GSC_OUT_YUV422_1P_ORDER_LSB_Y |
GSC_OUT_CHROMA_ORDER_CBCR);
break;
case DRM_FORMAT_YVYU:
cfg |= (GSC_OUT_YUV422_1P |
GSC_OUT_YUV422_1P_ORDER_LSB_Y |
GSC_OUT_CHROMA_ORDER_CRCB);
break;
case DRM_FORMAT_UYVY:
cfg |= (GSC_OUT_YUV422_1P |
GSC_OUT_YUV422_1P_OEDER_LSB_C |
GSC_OUT_CHROMA_ORDER_CBCR);
break;
case DRM_FORMAT_VYUY:
cfg |= (GSC_OUT_YUV422_1P |
GSC_OUT_YUV422_1P_OEDER_LSB_C |
GSC_OUT_CHROMA_ORDER_CRCB);
break;
case DRM_FORMAT_NV21:
cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_2P);
break;
case DRM_FORMAT_NV61:
cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV422_2P);
break;
case DRM_FORMAT_YUV422:
cfg |= GSC_OUT_YUV422_3P;
break;
case DRM_FORMAT_YUV420:
cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_3P);
break;
case DRM_FORMAT_YVU420:
cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_3P);
break;
case DRM_FORMAT_NV12:
cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_2P);
break;
case DRM_FORMAT_NV16:
cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV422_2P);
break;
}
if (tiled)
cfg |= (GSC_IN_TILE_C_16x8 | GSC_OUT_TILE_MODE);
gsc_write(cfg, GSC_OUT_CON);
}
static int gsc_get_ratio_shift(struct gsc_context *ctx, u32 src, u32 dst,
u32 *ratio)
{
DRM_DEV_DEBUG_KMS(ctx->dev, "src[%d]dst[%d]\n", src, dst);
if (src >= dst * 8) {
DRM_DEV_ERROR(ctx->dev, "failed to make ratio and shift.\n");
return -EINVAL;
} else if (src >= dst * 4)
*ratio = 4;
else if (src >= dst * 2)
*ratio = 2;
else
*ratio = 1;
return 0;
}
static void gsc_get_prescaler_shfactor(u32 hratio, u32 vratio, u32 *shfactor)
{
if (hratio == 4 && vratio == 4)
*shfactor = 4;
else if ((hratio == 4 && vratio == 2) ||
(hratio == 2 && vratio == 4))
*shfactor = 3;
else if ((hratio == 4 && vratio == 1) ||
(hratio == 1 && vratio == 4) ||
(hratio == 2 && vratio == 2))
*shfactor = 2;
else if (hratio == 1 && vratio == 1)
*shfactor = 0;
else
*shfactor = 1;
}
static int gsc_set_prescaler(struct gsc_context *ctx, struct gsc_scaler *sc,
struct drm_exynos_ipp_task_rect *src,
struct drm_exynos_ipp_task_rect *dst)
{
u32 cfg;
u32 src_w, src_h, dst_w, dst_h;
int ret = 0;
src_w = src->w;
src_h = src->h;
if (ctx->rotation) {
dst_w = dst->h;
dst_h = dst->w;
} else {
dst_w = dst->w;
dst_h = dst->h;
}
ret = gsc_get_ratio_shift(ctx, src_w, dst_w, &sc->pre_hratio);
if (ret) {
DRM_DEV_ERROR(ctx->dev, "failed to get ratio horizontal.\n");
return ret;
}
ret = gsc_get_ratio_shift(ctx, src_h, dst_h, &sc->pre_vratio);
if (ret) {
DRM_DEV_ERROR(ctx->dev, "failed to get ratio vertical.\n");
return ret;
}
DRM_DEV_DEBUG_KMS(ctx->dev, "pre_hratio[%d]pre_vratio[%d]\n",
sc->pre_hratio, sc->pre_vratio);
sc->main_hratio = (src_w << 16) / dst_w;
sc->main_vratio = (src_h << 16) / dst_h;
DRM_DEV_DEBUG_KMS(ctx->dev, "main_hratio[%ld]main_vratio[%ld]\n",
sc->main_hratio, sc->main_vratio);
gsc_get_prescaler_shfactor(sc->pre_hratio, sc->pre_vratio,
&sc->pre_shfactor);
DRM_DEV_DEBUG_KMS(ctx->dev, "pre_shfactor[%d]\n", sc->pre_shfactor);
cfg = (GSC_PRESC_SHFACTOR(sc->pre_shfactor) |
GSC_PRESC_H_RATIO(sc->pre_hratio) |
GSC_PRESC_V_RATIO(sc->pre_vratio));
gsc_write(cfg, GSC_PRE_SCALE_RATIO);
return ret;
}
static void gsc_set_h_coef(struct gsc_context *ctx, unsigned long main_hratio)
{
int i, j, k, sc_ratio;
if (main_hratio <= GSC_SC_UP_MAX_RATIO)
sc_ratio = 0;
else if (main_hratio <= GSC_SC_DOWN_RATIO_7_8)
sc_ratio = 1;
else if (main_hratio <= GSC_SC_DOWN_RATIO_6_8)
sc_ratio = 2;
else if (main_hratio <= GSC_SC_DOWN_RATIO_5_8)
sc_ratio = 3;
else if (main_hratio <= GSC_SC_DOWN_RATIO_4_8)
sc_ratio = 4;
else if (main_hratio <= GSC_SC_DOWN_RATIO_3_8)
sc_ratio = 5;
else
sc_ratio = 6;
for (i = 0; i < GSC_COEF_PHASE; i++)
for (j = 0; j < GSC_COEF_H_8T; j++)
for (k = 0; k < GSC_COEF_DEPTH; k++)
gsc_write(h_coef_8t[sc_ratio][i][j],
GSC_HCOEF(i, j, k));
}
static void gsc_set_v_coef(struct gsc_context *ctx, unsigned long main_vratio)
{
int i, j, k, sc_ratio;
if (main_vratio <= GSC_SC_UP_MAX_RATIO)
sc_ratio = 0;
else if (main_vratio <= GSC_SC_DOWN_RATIO_7_8)
sc_ratio = 1;
else if (main_vratio <= GSC_SC_DOWN_RATIO_6_8)
sc_ratio = 2;
else if (main_vratio <= GSC_SC_DOWN_RATIO_5_8)
sc_ratio = 3;
else if (main_vratio <= GSC_SC_DOWN_RATIO_4_8)
sc_ratio = 4;
else if (main_vratio <= GSC_SC_DOWN_RATIO_3_8)
sc_ratio = 5;
else
sc_ratio = 6;
for (i = 0; i < GSC_COEF_PHASE; i++)
for (j = 0; j < GSC_COEF_V_4T; j++)
for (k = 0; k < GSC_COEF_DEPTH; k++)
gsc_write(v_coef_4t[sc_ratio][i][j],
GSC_VCOEF(i, j, k));
}
static void gsc_set_scaler(struct gsc_context *ctx, struct gsc_scaler *sc)
{
u32 cfg;
DRM_DEV_DEBUG_KMS(ctx->dev, "main_hratio[%ld]main_vratio[%ld]\n",
sc->main_hratio, sc->main_vratio);
gsc_set_h_coef(ctx, sc->main_hratio);
cfg = GSC_MAIN_H_RATIO_VALUE(sc->main_hratio);
gsc_write(cfg, GSC_MAIN_H_RATIO);
gsc_set_v_coef(ctx, sc->main_vratio);
cfg = GSC_MAIN_V_RATIO_VALUE(sc->main_vratio);
gsc_write(cfg, GSC_MAIN_V_RATIO);
}
static void gsc_dst_set_size(struct gsc_context *ctx,
struct exynos_drm_ipp_buffer *buf)
{
struct gsc_scaler *sc = &ctx->sc;
u32 cfg;
/* pixel offset */
cfg = (GSC_DSTIMG_OFFSET_X(buf->rect.x) |
GSC_DSTIMG_OFFSET_Y(buf->rect.y));
gsc_write(cfg, GSC_DSTIMG_OFFSET);
/* scaled size */
if (ctx->rotation)
cfg = (GSC_SCALED_WIDTH(buf->rect.h) |
GSC_SCALED_HEIGHT(buf->rect.w));
else
cfg = (GSC_SCALED_WIDTH(buf->rect.w) |
GSC_SCALED_HEIGHT(buf->rect.h));
gsc_write(cfg, GSC_SCALED_SIZE);
/* original size */
cfg = gsc_read(GSC_DSTIMG_SIZE);
cfg &= ~(GSC_DSTIMG_HEIGHT_MASK | GSC_DSTIMG_WIDTH_MASK);
cfg |= GSC_DSTIMG_WIDTH(buf->buf.pitch[0] / buf->format->cpp[0]) |
GSC_DSTIMG_HEIGHT(buf->buf.height);
gsc_write(cfg, GSC_DSTIMG_SIZE);
cfg = gsc_read(GSC_OUT_CON);
cfg &= ~GSC_OUT_RGB_TYPE_MASK;
if (buf->rect.w >= GSC_WIDTH_ITU_709)
if (sc->range)
cfg |= GSC_OUT_RGB_HD_WIDE;
else
cfg |= GSC_OUT_RGB_HD_NARROW;
else
if (sc->range)
cfg |= GSC_OUT_RGB_SD_WIDE;
else
cfg |= GSC_OUT_RGB_SD_NARROW;
gsc_write(cfg, GSC_OUT_CON);
}
static int gsc_dst_get_buf_seq(struct gsc_context *ctx)
{
u32 cfg, i, buf_num = GSC_REG_SZ;
u32 mask = 0x00000001;
cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
for (i = 0; i < GSC_REG_SZ; i++)
if (cfg & (mask << i))
buf_num--;
DRM_DEV_DEBUG_KMS(ctx->dev, "buf_num[%d]\n", buf_num);
return buf_num;
}
static void gsc_dst_set_buf_seq(struct gsc_context *ctx, u32 buf_id,
bool enqueue)
{
bool masked = !enqueue;
u32 cfg;
u32 mask = 0x00000001 << buf_id;
/* mask register set */
cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
/* sequence id */
cfg &= ~mask;
cfg |= masked << buf_id;
gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK);
gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK);
gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK);
/* interrupt enable */
if (enqueue && gsc_dst_get_buf_seq(ctx) >= GSC_BUF_START)
gsc_handle_irq(ctx, true, false, true);
/* interrupt disable */
if (!enqueue && gsc_dst_get_buf_seq(ctx) <= GSC_BUF_STOP)
gsc_handle_irq(ctx, false, false, true);
}
static void gsc_dst_set_addr(struct gsc_context *ctx,
u32 buf_id, struct exynos_drm_ipp_buffer *buf)
{
/* address register set */
gsc_write(buf->dma_addr[0], GSC_OUT_BASE_ADDR_Y(buf_id));
gsc_write(buf->dma_addr[1], GSC_OUT_BASE_ADDR_CB(buf_id));
gsc_write(buf->dma_addr[2], GSC_OUT_BASE_ADDR_CR(buf_id));
gsc_dst_set_buf_seq(ctx, buf_id, true);
}
static int gsc_get_src_buf_index(struct gsc_context *ctx)
{
u32 cfg, curr_index, i;
u32 buf_id = GSC_MAX_SRC;
DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id);
cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
curr_index = GSC_IN_CURR_GET_INDEX(cfg);
for (i = curr_index; i < GSC_MAX_SRC; i++) {
if (!((cfg >> i) & 0x1)) {
buf_id = i;
break;
}
}
DRM_DEV_DEBUG_KMS(ctx->dev, "cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg,
curr_index, buf_id);
if (buf_id == GSC_MAX_SRC) {
DRM_DEV_ERROR(ctx->dev, "failed to get in buffer index.\n");
return -EINVAL;
}
gsc_src_set_buf_seq(ctx, buf_id, false);
return buf_id;
}
static int gsc_get_dst_buf_index(struct gsc_context *ctx)
{
u32 cfg, curr_index, i;
u32 buf_id = GSC_MAX_DST;
DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id);
cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
curr_index = GSC_OUT_CURR_GET_INDEX(cfg);
for (i = curr_index; i < GSC_MAX_DST; i++) {
if (!((cfg >> i) & 0x1)) {
buf_id = i;
break;
}
}
if (buf_id == GSC_MAX_DST) {
DRM_DEV_ERROR(ctx->dev, "failed to get out buffer index.\n");
return -EINVAL;
}
gsc_dst_set_buf_seq(ctx, buf_id, false);
DRM_DEV_DEBUG_KMS(ctx->dev, "cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg,
curr_index, buf_id);
return buf_id;
}
static irqreturn_t gsc_irq_handler(int irq, void *dev_id)
{
struct gsc_context *ctx = dev_id;
u32 status;
int err = 0;
DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id);
status = gsc_read(GSC_IRQ);
if (status & GSC_IRQ_STATUS_OR_IRQ) {
dev_err(ctx->dev, "occurred overflow at %d, status 0x%x.\n",
ctx->id, status);
err = -EINVAL;
}
if (status & GSC_IRQ_STATUS_OR_FRM_DONE) {
int src_buf_id, dst_buf_id;
dev_dbg(ctx->dev, "occurred frame done at %d, status 0x%x.\n",
ctx->id, status);
src_buf_id = gsc_get_src_buf_index(ctx);
dst_buf_id = gsc_get_dst_buf_index(ctx);
DRM_DEV_DEBUG_KMS(ctx->dev, "buf_id_src[%d]buf_id_dst[%d]\n",
src_buf_id, dst_buf_id);
if (src_buf_id < 0 || dst_buf_id < 0)
err = -EINVAL;
}
if (ctx->task) {
struct exynos_drm_ipp_task *task = ctx->task;
ctx->task = NULL;
pm_runtime_mark_last_busy(ctx->dev);
pm_runtime_put_autosuspend(ctx->dev);
exynos_drm_ipp_task_done(task, err);
}
return IRQ_HANDLED;
}
static int gsc_reset(struct gsc_context *ctx)
{
struct gsc_scaler *sc = &ctx->sc;
int ret;
/* reset h/w block */
ret = gsc_sw_reset(ctx);
if (ret < 0) {
dev_err(ctx->dev, "failed to reset hardware.\n");
return ret;
}
/* scaler setting */
memset(&ctx->sc, 0x0, sizeof(ctx->sc));
sc->range = true;
return 0;
}
static void gsc_start(struct gsc_context *ctx)
{
u32 cfg;
gsc_handle_irq(ctx, true, false, true);
/* enable one shot */
cfg = gsc_read(GSC_ENABLE);
cfg &= ~(GSC_ENABLE_ON_CLEAR_MASK |
GSC_ENABLE_CLK_GATE_MODE_MASK);
cfg |= GSC_ENABLE_ON_CLEAR_ONESHOT;
gsc_write(cfg, GSC_ENABLE);
/* src dma memory */
cfg = gsc_read(GSC_IN_CON);
cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK);
cfg |= GSC_IN_PATH_MEMORY;
gsc_write(cfg, GSC_IN_CON);
/* dst dma memory */
cfg = gsc_read(GSC_OUT_CON);
cfg |= GSC_OUT_PATH_MEMORY;
gsc_write(cfg, GSC_OUT_CON);
gsc_set_scaler(ctx, &ctx->sc);
cfg = gsc_read(GSC_ENABLE);
cfg |= GSC_ENABLE_ON;
gsc_write(cfg, GSC_ENABLE);
}
static int gsc_commit(struct exynos_drm_ipp *ipp,
struct exynos_drm_ipp_task *task)
{
struct gsc_context *ctx = container_of(ipp, struct gsc_context, ipp);
int ret;
ret = pm_runtime_resume_and_get(ctx->dev);
if (ret < 0) {
dev_err(ctx->dev, "failed to enable GScaler device.\n");
return ret;
}
ctx->task = task;
ret = gsc_reset(ctx);
if (ret) {
pm_runtime_put_autosuspend(ctx->dev);
ctx->task = NULL;
return ret;
}
gsc_src_set_fmt(ctx, task->src.buf.fourcc, task->src.buf.modifier);
gsc_src_set_transf(ctx, task->transform.rotation);
gsc_src_set_size(ctx, &task->src);
gsc_src_set_addr(ctx, 0, &task->src);
gsc_dst_set_fmt(ctx, task->dst.buf.fourcc, task->dst.buf.modifier);
gsc_dst_set_size(ctx, &task->dst);
gsc_dst_set_addr(ctx, 0, &task->dst);
gsc_set_prescaler(ctx, &ctx->sc, &task->src.rect, &task->dst.rect);
gsc_start(ctx);
return 0;
}
static void gsc_abort(struct exynos_drm_ipp *ipp,
struct exynos_drm_ipp_task *task)
{
struct gsc_context *ctx =
container_of(ipp, struct gsc_context, ipp);
gsc_reset(ctx);
if (ctx->task) {
struct exynos_drm_ipp_task *task = ctx->task;
ctx->task = NULL;
pm_runtime_mark_last_busy(ctx->dev);
pm_runtime_put_autosuspend(ctx->dev);
exynos_drm_ipp_task_done(task, -EIO);
}
}
static struct exynos_drm_ipp_funcs ipp_funcs = {
.commit = gsc_commit,
.abort = gsc_abort,
};
static int gsc_bind(struct device *dev, struct device *master, void *data)
{
struct gsc_context *ctx = dev_get_drvdata(dev);
struct drm_device *drm_dev = data;
struct exynos_drm_ipp *ipp = &ctx->ipp;
ctx->drm_dev = drm_dev;
ctx->drm_dev = drm_dev;
exynos_drm_register_dma(drm_dev, dev, &ctx->dma_priv);
exynos_drm_ipp_register(dev, ipp, &ipp_funcs,
DRM_EXYNOS_IPP_CAP_CROP | DRM_EXYNOS_IPP_CAP_ROTATE |
DRM_EXYNOS_IPP_CAP_SCALE | DRM_EXYNOS_IPP_CAP_CONVERT,
ctx->formats, ctx->num_formats, "gsc");
dev_info(dev, "The exynos gscaler has been probed successfully\n");
return 0;
}
static void gsc_unbind(struct device *dev, struct device *master,
void *data)
{
struct gsc_context *ctx = dev_get_drvdata(dev);
struct drm_device *drm_dev = data;
struct exynos_drm_ipp *ipp = &ctx->ipp;
exynos_drm_ipp_unregister(dev, ipp);
exynos_drm_unregister_dma(drm_dev, dev, &ctx->dma_priv);
}
static const struct component_ops gsc_component_ops = {
.bind = gsc_bind,
.unbind = gsc_unbind,
};
static const unsigned int gsc_formats[] = {
DRM_FORMAT_ARGB8888,
DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_BGRX8888,
DRM_FORMAT_NV12, DRM_FORMAT_NV16, DRM_FORMAT_NV21, DRM_FORMAT_NV61,
DRM_FORMAT_UYVY, DRM_FORMAT_VYUY, DRM_FORMAT_YUYV, DRM_FORMAT_YVYU,
DRM_FORMAT_YUV420, DRM_FORMAT_YVU420, DRM_FORMAT_YUV422,
};
static const unsigned int gsc_tiled_formats[] = {
DRM_FORMAT_NV12, DRM_FORMAT_NV21,
};
static int gsc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct gsc_driverdata *driver_data;
struct exynos_drm_ipp_formats *formats;
struct gsc_context *ctx;
int num_formats, ret, i, j;
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
driver_data = (struct gsc_driverdata *)of_device_get_match_data(dev);
ctx->dev = dev;
ctx->num_clocks = driver_data->num_clocks;
ctx->clk_names = driver_data->clk_names;
/* construct formats/limits array */
num_formats = ARRAY_SIZE(gsc_formats) + ARRAY_SIZE(gsc_tiled_formats);
formats = devm_kcalloc(dev, num_formats, sizeof(*formats), GFP_KERNEL);
if (!formats)
return -ENOMEM;
/* linear formats */
for (i = 0; i < ARRAY_SIZE(gsc_formats); i++) {
formats[i].fourcc = gsc_formats[i];
formats[i].type = DRM_EXYNOS_IPP_FORMAT_SOURCE |
DRM_EXYNOS_IPP_FORMAT_DESTINATION;
formats[i].limits = driver_data->limits;
formats[i].num_limits = driver_data->num_limits;
}
/* tiled formats */
for (j = i, i = 0; i < ARRAY_SIZE(gsc_tiled_formats); j++, i++) {
formats[j].fourcc = gsc_tiled_formats[i];
formats[j].modifier = DRM_FORMAT_MOD_SAMSUNG_16_16_TILE;
formats[j].type = DRM_EXYNOS_IPP_FORMAT_SOURCE |
DRM_EXYNOS_IPP_FORMAT_DESTINATION;
formats[j].limits = driver_data->limits;
formats[j].num_limits = driver_data->num_limits;
}
ctx->formats = formats;
ctx->num_formats = num_formats;
/* clock control */
for (i = 0; i < ctx->num_clocks; i++) {
ctx->clocks[i] = devm_clk_get(dev, ctx->clk_names[i]);
if (IS_ERR(ctx->clocks[i])) {
dev_err(dev, "failed to get clock: %s\n",
ctx->clk_names[i]);
return PTR_ERR(ctx->clocks[i]);
}
}
ctx->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ctx->regs))
return PTR_ERR(ctx->regs);
/* resource irq */
ctx->irq = platform_get_irq(pdev, 0);
if (ctx->irq < 0)
return ctx->irq;
ret = devm_request_irq(dev, ctx->irq, gsc_irq_handler, 0,
dev_name(dev), ctx);
if (ret < 0) {
dev_err(dev, "failed to request irq.\n");
return ret;
}
/* context initailization */
ctx->id = pdev->id;
platform_set_drvdata(pdev, ctx);
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, GSC_AUTOSUSPEND_DELAY);
pm_runtime_enable(dev);
ret = component_add(dev, &gsc_component_ops);
if (ret)
goto err_pm_dis;
dev_info(dev, "drm gsc registered successfully.\n");
return 0;
err_pm_dis:
pm_runtime_dont_use_autosuspend(dev);
pm_runtime_disable(dev);
return ret;
}
static int gsc_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
component_del(dev, &gsc_component_ops);
pm_runtime_dont_use_autosuspend(dev);
pm_runtime_disable(dev);
return 0;
}
static int __maybe_unused gsc_runtime_suspend(struct device *dev)
{
struct gsc_context *ctx = get_gsc_context(dev);
int i;
DRM_DEV_DEBUG_KMS(dev, "id[%d]\n", ctx->id);
for (i = ctx->num_clocks - 1; i >= 0; i--)
clk_disable_unprepare(ctx->clocks[i]);
return 0;
}
static int __maybe_unused gsc_runtime_resume(struct device *dev)
{
struct gsc_context *ctx = get_gsc_context(dev);
int i, ret;
DRM_DEV_DEBUG_KMS(dev, "id[%d]\n", ctx->id);
for (i = 0; i < ctx->num_clocks; i++) {
ret = clk_prepare_enable(ctx->clocks[i]);
if (ret) {
while (--i > 0)
clk_disable_unprepare(ctx->clocks[i]);
return ret;
}
}
return 0;
}
static const struct dev_pm_ops gsc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(gsc_runtime_suspend, gsc_runtime_resume, NULL)
};
static const struct drm_exynos_ipp_limit gsc_5250_limits[] = {
{ IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) },
{ IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) },
{ IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2048 }, .v = { 16, 2048 }) },
{ IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
.v = { (1 << 16) / 16, (1 << 16) * 8 }) },
};
static const struct drm_exynos_ipp_limit gsc_5420_limits[] = {
{ IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) },
{ IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) },
{ IPP_SIZE_LIMIT(ROTATED, .h = { 16, 2016 }, .v = { 8, 2016 }) },
{ IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
.v = { (1 << 16) / 16, (1 << 16) * 8 }) },
};
static const struct drm_exynos_ipp_limit gsc_5433_limits[] = {
{ IPP_SIZE_LIMIT(BUFFER, .h = { 32, 8191, 16 }, .v = { 16, 8191, 2 }) },
{ IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 1 }, .v = { 8, 3344, 1 }) },
{ IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2047 }, .v = { 8, 8191 }) },
{ IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
.v = { (1 << 16) / 16, (1 << 16) * 8 }) },
};
static struct gsc_driverdata gsc_exynos5250_drvdata = {
.clk_names = {"gscl"},
.num_clocks = 1,
.limits = gsc_5250_limits,
.num_limits = ARRAY_SIZE(gsc_5250_limits),
};
static struct gsc_driverdata gsc_exynos5420_drvdata = {
.clk_names = {"gscl"},
.num_clocks = 1,
.limits = gsc_5420_limits,
.num_limits = ARRAY_SIZE(gsc_5420_limits),
};
static struct gsc_driverdata gsc_exynos5433_drvdata = {
.clk_names = {"pclk", "aclk", "aclk_xiu", "aclk_gsclbend"},
.num_clocks = 4,
.limits = gsc_5433_limits,
.num_limits = ARRAY_SIZE(gsc_5433_limits),
};
static const struct of_device_id exynos_drm_gsc_of_match[] = {
{
.compatible = "samsung,exynos5-gsc",
.data = &gsc_exynos5250_drvdata,
}, {
.compatible = "samsung,exynos5250-gsc",
.data = &gsc_exynos5250_drvdata,
}, {
.compatible = "samsung,exynos5420-gsc",
.data = &gsc_exynos5420_drvdata,
}, {
.compatible = "samsung,exynos5433-gsc",
.data = &gsc_exynos5433_drvdata,
}, {
},
};
MODULE_DEVICE_TABLE(of, exynos_drm_gsc_of_match);
struct platform_driver gsc_driver = {
.probe = gsc_probe,
.remove = gsc_remove,
.driver = {
.name = "exynos-drm-gsc",
.owner = THIS_MODULE,
.pm = &gsc_pm_ops,
.of_match_table = of_match_ptr(exynos_drm_gsc_of_match),
},
};