461 lines
11 KiB
C
461 lines
11 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* x86 APERF/MPERF KHz calculation for
|
||
|
* /sys/.../cpufreq/scaling_cur_freq
|
||
|
*
|
||
|
* Copyright (C) 2017 Intel Corp.
|
||
|
* Author: Len Brown <len.brown@intel.com>
|
||
|
*/
|
||
|
#include <linux/cpufreq.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/ktime.h>
|
||
|
#include <linux/math64.h>
|
||
|
#include <linux/percpu.h>
|
||
|
#include <linux/rcupdate.h>
|
||
|
#include <linux/sched/isolation.h>
|
||
|
#include <linux/sched/topology.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/syscore_ops.h>
|
||
|
|
||
|
#include <asm/cpu.h>
|
||
|
#include <asm/cpu_device_id.h>
|
||
|
#include <asm/intel-family.h>
|
||
|
|
||
|
#include "cpu.h"
|
||
|
|
||
|
struct aperfmperf {
|
||
|
seqcount_t seq;
|
||
|
unsigned long last_update;
|
||
|
u64 acnt;
|
||
|
u64 mcnt;
|
||
|
u64 aperf;
|
||
|
u64 mperf;
|
||
|
};
|
||
|
|
||
|
static DEFINE_PER_CPU_SHARED_ALIGNED(struct aperfmperf, cpu_samples) = {
|
||
|
.seq = SEQCNT_ZERO(cpu_samples.seq)
|
||
|
};
|
||
|
|
||
|
static void init_counter_refs(void)
|
||
|
{
|
||
|
u64 aperf, mperf;
|
||
|
|
||
|
rdmsrl(MSR_IA32_APERF, aperf);
|
||
|
rdmsrl(MSR_IA32_MPERF, mperf);
|
||
|
|
||
|
this_cpu_write(cpu_samples.aperf, aperf);
|
||
|
this_cpu_write(cpu_samples.mperf, mperf);
|
||
|
}
|
||
|
|
||
|
#if defined(CONFIG_X86_64) && defined(CONFIG_SMP)
|
||
|
/*
|
||
|
* APERF/MPERF frequency ratio computation.
|
||
|
*
|
||
|
* The scheduler wants to do frequency invariant accounting and needs a <1
|
||
|
* ratio to account for the 'current' frequency, corresponding to
|
||
|
* freq_curr / freq_max.
|
||
|
*
|
||
|
* Since the frequency freq_curr on x86 is controlled by micro-controller and
|
||
|
* our P-state setting is little more than a request/hint, we need to observe
|
||
|
* the effective frequency 'BusyMHz', i.e. the average frequency over a time
|
||
|
* interval after discarding idle time. This is given by:
|
||
|
*
|
||
|
* BusyMHz = delta_APERF / delta_MPERF * freq_base
|
||
|
*
|
||
|
* where freq_base is the max non-turbo P-state.
|
||
|
*
|
||
|
* The freq_max term has to be set to a somewhat arbitrary value, because we
|
||
|
* can't know which turbo states will be available at a given point in time:
|
||
|
* it all depends on the thermal headroom of the entire package. We set it to
|
||
|
* the turbo level with 4 cores active.
|
||
|
*
|
||
|
* Benchmarks show that's a good compromise between the 1C turbo ratio
|
||
|
* (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
|
||
|
* which would ignore the entire turbo range (a conspicuous part, making
|
||
|
* freq_curr/freq_max always maxed out).
|
||
|
*
|
||
|
* An exception to the heuristic above is the Atom uarch, where we choose the
|
||
|
* highest turbo level for freq_max since Atom's are generally oriented towards
|
||
|
* power efficiency.
|
||
|
*
|
||
|
* Setting freq_max to anything less than the 1C turbo ratio makes the ratio
|
||
|
* freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
|
||
|
*/
|
||
|
|
||
|
DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
|
||
|
|
||
|
static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
|
||
|
static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
|
||
|
|
||
|
void arch_set_max_freq_ratio(bool turbo_disabled)
|
||
|
{
|
||
|
arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
|
||
|
arch_turbo_freq_ratio;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
|
||
|
|
||
|
static bool __init turbo_disabled(void)
|
||
|
{
|
||
|
u64 misc_en;
|
||
|
int err;
|
||
|
|
||
|
err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
|
||
|
if (err)
|
||
|
return false;
|
||
|
|
||
|
return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
|
||
|
}
|
||
|
|
||
|
static bool __init slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
|
||
|
if (err)
|
||
|
return false;
|
||
|
|
||
|
err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
|
||
|
if (err)
|
||
|
return false;
|
||
|
|
||
|
*base_freq = (*base_freq >> 16) & 0x3F; /* max P state */
|
||
|
*turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#define X86_MATCH(model) \
|
||
|
X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \
|
||
|
INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
|
||
|
|
||
|
static const struct x86_cpu_id has_knl_turbo_ratio_limits[] __initconst = {
|
||
|
X86_MATCH(XEON_PHI_KNL),
|
||
|
X86_MATCH(XEON_PHI_KNM),
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
static const struct x86_cpu_id has_skx_turbo_ratio_limits[] __initconst = {
|
||
|
X86_MATCH(SKYLAKE_X),
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
static const struct x86_cpu_id has_glm_turbo_ratio_limits[] __initconst = {
|
||
|
X86_MATCH(ATOM_GOLDMONT),
|
||
|
X86_MATCH(ATOM_GOLDMONT_D),
|
||
|
X86_MATCH(ATOM_GOLDMONT_PLUS),
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
static bool __init knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
|
||
|
int num_delta_fratio)
|
||
|
{
|
||
|
int fratio, delta_fratio, found;
|
||
|
int err, i;
|
||
|
u64 msr;
|
||
|
|
||
|
err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
|
||
|
if (err)
|
||
|
return false;
|
||
|
|
||
|
*base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
|
||
|
|
||
|
err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
|
||
|
if (err)
|
||
|
return false;
|
||
|
|
||
|
fratio = (msr >> 8) & 0xFF;
|
||
|
i = 16;
|
||
|
found = 0;
|
||
|
do {
|
||
|
if (found >= num_delta_fratio) {
|
||
|
*turbo_freq = fratio;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
delta_fratio = (msr >> (i + 5)) & 0x7;
|
||
|
|
||
|
if (delta_fratio) {
|
||
|
found += 1;
|
||
|
fratio -= delta_fratio;
|
||
|
}
|
||
|
|
||
|
i += 8;
|
||
|
} while (i < 64);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool __init skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
|
||
|
{
|
||
|
u64 ratios, counts;
|
||
|
u32 group_size;
|
||
|
int err, i;
|
||
|
|
||
|
err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
|
||
|
if (err)
|
||
|
return false;
|
||
|
|
||
|
*base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
|
||
|
|
||
|
err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
|
||
|
if (err)
|
||
|
return false;
|
||
|
|
||
|
err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
|
||
|
if (err)
|
||
|
return false;
|
||
|
|
||
|
for (i = 0; i < 64; i += 8) {
|
||
|
group_size = (counts >> i) & 0xFF;
|
||
|
if (group_size >= size) {
|
||
|
*turbo_freq = (ratios >> i) & 0xFF;
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool __init core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
|
||
|
{
|
||
|
u64 msr;
|
||
|
int err;
|
||
|
|
||
|
err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
|
||
|
if (err)
|
||
|
return false;
|
||
|
|
||
|
err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
|
||
|
if (err)
|
||
|
return false;
|
||
|
|
||
|
*base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
|
||
|
*turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */
|
||
|
|
||
|
/* The CPU may have less than 4 cores */
|
||
|
if (!*turbo_freq)
|
||
|
*turbo_freq = msr & 0xFF; /* 1C turbo */
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool __init intel_set_max_freq_ratio(void)
|
||
|
{
|
||
|
u64 base_freq, turbo_freq;
|
||
|
u64 turbo_ratio;
|
||
|
|
||
|
if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
|
||
|
goto out;
|
||
|
|
||
|
if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
|
||
|
skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
|
||
|
goto out;
|
||
|
|
||
|
if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
|
||
|
knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
|
||
|
goto out;
|
||
|
|
||
|
if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
|
||
|
skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
|
||
|
goto out;
|
||
|
|
||
|
if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
|
||
|
goto out;
|
||
|
|
||
|
return false;
|
||
|
|
||
|
out:
|
||
|
/*
|
||
|
* Some hypervisors advertise X86_FEATURE_APERFMPERF
|
||
|
* but then fill all MSR's with zeroes.
|
||
|
* Some CPUs have turbo boost but don't declare any turbo ratio
|
||
|
* in MSR_TURBO_RATIO_LIMIT.
|
||
|
*/
|
||
|
if (!base_freq || !turbo_freq) {
|
||
|
pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
|
||
|
if (!turbo_ratio) {
|
||
|
pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
arch_turbo_freq_ratio = turbo_ratio;
|
||
|
arch_set_max_freq_ratio(turbo_disabled());
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PM_SLEEP
|
||
|
static struct syscore_ops freq_invariance_syscore_ops = {
|
||
|
.resume = init_counter_refs,
|
||
|
};
|
||
|
|
||
|
static void register_freq_invariance_syscore_ops(void)
|
||
|
{
|
||
|
register_syscore_ops(&freq_invariance_syscore_ops);
|
||
|
}
|
||
|
#else
|
||
|
static inline void register_freq_invariance_syscore_ops(void) {}
|
||
|
#endif
|
||
|
|
||
|
static void freq_invariance_enable(void)
|
||
|
{
|
||
|
if (static_branch_unlikely(&arch_scale_freq_key)) {
|
||
|
WARN_ON_ONCE(1);
|
||
|
return;
|
||
|
}
|
||
|
static_branch_enable(&arch_scale_freq_key);
|
||
|
register_freq_invariance_syscore_ops();
|
||
|
pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
|
||
|
}
|
||
|
|
||
|
void freq_invariance_set_perf_ratio(u64 ratio, bool turbo_disabled)
|
||
|
{
|
||
|
arch_turbo_freq_ratio = ratio;
|
||
|
arch_set_max_freq_ratio(turbo_disabled);
|
||
|
freq_invariance_enable();
|
||
|
}
|
||
|
|
||
|
static void __init bp_init_freq_invariance(void)
|
||
|
{
|
||
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
|
||
|
return;
|
||
|
|
||
|
if (intel_set_max_freq_ratio())
|
||
|
freq_invariance_enable();
|
||
|
}
|
||
|
|
||
|
static void disable_freq_invariance_workfn(struct work_struct *work)
|
||
|
{
|
||
|
int cpu;
|
||
|
|
||
|
static_branch_disable(&arch_scale_freq_key);
|
||
|
|
||
|
/*
|
||
|
* Set arch_freq_scale to a default value on all cpus
|
||
|
* This negates the effect of scaling
|
||
|
*/
|
||
|
for_each_possible_cpu(cpu)
|
||
|
per_cpu(arch_freq_scale, cpu) = SCHED_CAPACITY_SCALE;
|
||
|
}
|
||
|
|
||
|
static DECLARE_WORK(disable_freq_invariance_work,
|
||
|
disable_freq_invariance_workfn);
|
||
|
|
||
|
DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
|
||
|
|
||
|
static void scale_freq_tick(u64 acnt, u64 mcnt)
|
||
|
{
|
||
|
u64 freq_scale;
|
||
|
|
||
|
if (!arch_scale_freq_invariant())
|
||
|
return;
|
||
|
|
||
|
if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
|
||
|
goto error;
|
||
|
|
||
|
if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
|
||
|
goto error;
|
||
|
|
||
|
freq_scale = div64_u64(acnt, mcnt);
|
||
|
if (!freq_scale)
|
||
|
goto error;
|
||
|
|
||
|
if (freq_scale > SCHED_CAPACITY_SCALE)
|
||
|
freq_scale = SCHED_CAPACITY_SCALE;
|
||
|
|
||
|
this_cpu_write(arch_freq_scale, freq_scale);
|
||
|
return;
|
||
|
|
||
|
error:
|
||
|
pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
|
||
|
schedule_work(&disable_freq_invariance_work);
|
||
|
}
|
||
|
#else
|
||
|
static inline void bp_init_freq_invariance(void) { }
|
||
|
static inline void scale_freq_tick(u64 acnt, u64 mcnt) { }
|
||
|
#endif /* CONFIG_X86_64 && CONFIG_SMP */
|
||
|
|
||
|
void arch_scale_freq_tick(void)
|
||
|
{
|
||
|
struct aperfmperf *s = this_cpu_ptr(&cpu_samples);
|
||
|
u64 acnt, mcnt, aperf, mperf;
|
||
|
|
||
|
if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF))
|
||
|
return;
|
||
|
|
||
|
rdmsrl(MSR_IA32_APERF, aperf);
|
||
|
rdmsrl(MSR_IA32_MPERF, mperf);
|
||
|
acnt = aperf - s->aperf;
|
||
|
mcnt = mperf - s->mperf;
|
||
|
|
||
|
s->aperf = aperf;
|
||
|
s->mperf = mperf;
|
||
|
|
||
|
raw_write_seqcount_begin(&s->seq);
|
||
|
s->last_update = jiffies;
|
||
|
s->acnt = acnt;
|
||
|
s->mcnt = mcnt;
|
||
|
raw_write_seqcount_end(&s->seq);
|
||
|
|
||
|
scale_freq_tick(acnt, mcnt);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Discard samples older than the define maximum sample age of 20ms. There
|
||
|
* is no point in sending IPIs in such a case. If the scheduler tick was
|
||
|
* not running then the CPU is either idle or isolated.
|
||
|
*/
|
||
|
#define MAX_SAMPLE_AGE ((unsigned long)HZ / 50)
|
||
|
|
||
|
unsigned int arch_freq_get_on_cpu(int cpu)
|
||
|
{
|
||
|
struct aperfmperf *s = per_cpu_ptr(&cpu_samples, cpu);
|
||
|
unsigned int seq, freq;
|
||
|
unsigned long last;
|
||
|
u64 acnt, mcnt;
|
||
|
|
||
|
if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF))
|
||
|
goto fallback;
|
||
|
|
||
|
do {
|
||
|
seq = raw_read_seqcount_begin(&s->seq);
|
||
|
last = s->last_update;
|
||
|
acnt = s->acnt;
|
||
|
mcnt = s->mcnt;
|
||
|
} while (read_seqcount_retry(&s->seq, seq));
|
||
|
|
||
|
/*
|
||
|
* Bail on invalid count and when the last update was too long ago,
|
||
|
* which covers idle and NOHZ full CPUs.
|
||
|
*/
|
||
|
if (!mcnt || (jiffies - last) > MAX_SAMPLE_AGE)
|
||
|
goto fallback;
|
||
|
|
||
|
return div64_u64((cpu_khz * acnt), mcnt);
|
||
|
|
||
|
fallback:
|
||
|
freq = cpufreq_quick_get(cpu);
|
||
|
return freq ? freq : cpu_khz;
|
||
|
}
|
||
|
|
||
|
static int __init bp_init_aperfmperf(void)
|
||
|
{
|
||
|
if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF))
|
||
|
return 0;
|
||
|
|
||
|
init_counter_refs();
|
||
|
bp_init_freq_invariance();
|
||
|
return 0;
|
||
|
}
|
||
|
early_initcall(bp_init_aperfmperf);
|
||
|
|
||
|
void ap_init_aperfmperf(void)
|
||
|
{
|
||
|
if (cpu_feature_enabled(X86_FEATURE_APERFMPERF))
|
||
|
init_counter_refs();
|
||
|
}
|