322 lines
9.1 KiB
ArmAsm
322 lines
9.1 KiB
ArmAsm
|
/* SPDX-License-Identifier: GPL-2.0 */
|
||
|
/*
|
||
|
* Copyright 2021 Google LLC
|
||
|
*/
|
||
|
/*
|
||
|
* This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI
|
||
|
* instructions. It works on 8 blocks at a time, by precomputing the first 8
|
||
|
* keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation
|
||
|
* allows us to split finite field multiplication into two steps.
|
||
|
*
|
||
|
* In the first step, we consider h^i, m_i as normal polynomials of degree less
|
||
|
* than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
|
||
|
* is simply polynomial multiplication.
|
||
|
*
|
||
|
* In the second step, we compute the reduction of p(x) modulo the finite field
|
||
|
* modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
|
||
|
*
|
||
|
* This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
|
||
|
* multiplication is finite field multiplication. The advantage is that the
|
||
|
* two-step process only requires 1 finite field reduction for every 8
|
||
|
* polynomial multiplications. Further parallelism is gained by interleaving the
|
||
|
* multiplications and polynomial reductions.
|
||
|
*/
|
||
|
|
||
|
#include <linux/linkage.h>
|
||
|
#include <asm/frame.h>
|
||
|
|
||
|
#define STRIDE_BLOCKS 8
|
||
|
|
||
|
#define GSTAR %xmm7
|
||
|
#define PL %xmm8
|
||
|
#define PH %xmm9
|
||
|
#define TMP_XMM %xmm11
|
||
|
#define LO %xmm12
|
||
|
#define HI %xmm13
|
||
|
#define MI %xmm14
|
||
|
#define SUM %xmm15
|
||
|
|
||
|
#define KEY_POWERS %rdi
|
||
|
#define MSG %rsi
|
||
|
#define BLOCKS_LEFT %rdx
|
||
|
#define ACCUMULATOR %rcx
|
||
|
#define TMP %rax
|
||
|
|
||
|
.section .rodata.cst16.gstar, "aM", @progbits, 16
|
||
|
.align 16
|
||
|
|
||
|
.Lgstar:
|
||
|
.quad 0xc200000000000000, 0xc200000000000000
|
||
|
|
||
|
.text
|
||
|
|
||
|
/*
|
||
|
* Performs schoolbook1_iteration on two lists of 128-bit polynomials of length
|
||
|
* count pointed to by MSG and KEY_POWERS.
|
||
|
*/
|
||
|
.macro schoolbook1 count
|
||
|
.set i, 0
|
||
|
.rept (\count)
|
||
|
schoolbook1_iteration i 0
|
||
|
.set i, (i +1)
|
||
|
.endr
|
||
|
.endm
|
||
|
|
||
|
/*
|
||
|
* Computes the product of two 128-bit polynomials at the memory locations
|
||
|
* specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of
|
||
|
* the 256-bit product into LO, MI, HI.
|
||
|
*
|
||
|
* Given:
|
||
|
* X = [X_1 : X_0]
|
||
|
* Y = [Y_1 : Y_0]
|
||
|
*
|
||
|
* We compute:
|
||
|
* LO += X_0 * Y_0
|
||
|
* MI += X_0 * Y_1 + X_1 * Y_0
|
||
|
* HI += X_1 * Y_1
|
||
|
*
|
||
|
* Later, the 256-bit result can be extracted as:
|
||
|
* [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
|
||
|
* This step is done when computing the polynomial reduction for efficiency
|
||
|
* reasons.
|
||
|
*
|
||
|
* If xor_sum == 1, then also XOR the value of SUM into m_0. This avoids an
|
||
|
* extra multiplication of SUM and h^8.
|
||
|
*/
|
||
|
.macro schoolbook1_iteration i xor_sum
|
||
|
movups (16*\i)(MSG), %xmm0
|
||
|
.if (\i == 0 && \xor_sum == 1)
|
||
|
pxor SUM, %xmm0
|
||
|
.endif
|
||
|
vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2
|
||
|
vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1
|
||
|
vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3
|
||
|
vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4
|
||
|
vpxor %xmm2, MI, MI
|
||
|
vpxor %xmm1, LO, LO
|
||
|
vpxor %xmm4, HI, HI
|
||
|
vpxor %xmm3, MI, MI
|
||
|
.endm
|
||
|
|
||
|
/*
|
||
|
* Performs the same computation as schoolbook1_iteration, except we expect the
|
||
|
* arguments to already be loaded into xmm0 and xmm1 and we set the result
|
||
|
* registers LO, MI, and HI directly rather than XOR'ing into them.
|
||
|
*/
|
||
|
.macro schoolbook1_noload
|
||
|
vpclmulqdq $0x01, %xmm0, %xmm1, MI
|
||
|
vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2
|
||
|
vpclmulqdq $0x00, %xmm0, %xmm1, LO
|
||
|
vpclmulqdq $0x11, %xmm0, %xmm1, HI
|
||
|
vpxor %xmm2, MI, MI
|
||
|
.endm
|
||
|
|
||
|
/*
|
||
|
* Computes the 256-bit polynomial represented by LO, HI, MI. Stores
|
||
|
* the result in PL, PH.
|
||
|
* [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
|
||
|
*/
|
||
|
.macro schoolbook2
|
||
|
vpslldq $8, MI, PL
|
||
|
vpsrldq $8, MI, PH
|
||
|
pxor LO, PL
|
||
|
pxor HI, PH
|
||
|
.endm
|
||
|
|
||
|
/*
|
||
|
* Computes the 128-bit reduction of PH : PL. Stores the result in dest.
|
||
|
*
|
||
|
* This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
|
||
|
* x^128 + x^127 + x^126 + x^121 + 1.
|
||
|
*
|
||
|
* We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the
|
||
|
* product of two 128-bit polynomials in Montgomery form. We need to reduce it
|
||
|
* mod g(x). Also, since polynomials in Montgomery form have an "extra" factor
|
||
|
* of x^128, this product has two extra factors of x^128. To get it back into
|
||
|
* Montgomery form, we need to remove one of these factors by dividing by x^128.
|
||
|
*
|
||
|
* To accomplish both of these goals, we add multiples of g(x) that cancel out
|
||
|
* the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
|
||
|
* bits are zero, the polynomial division by x^128 can be done by right shifting.
|
||
|
*
|
||
|
* Since the only nonzero term in the low 64 bits of g(x) is the constant term,
|
||
|
* the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can
|
||
|
* only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
|
||
|
* x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to
|
||
|
* the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
|
||
|
* = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191.
|
||
|
*
|
||
|
* Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
|
||
|
* 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
|
||
|
* + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
|
||
|
* x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
|
||
|
* P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
|
||
|
*
|
||
|
* So our final computation is:
|
||
|
* T = T_1 : T_0 = g*(x) * P_0
|
||
|
* V = V_1 : V_0 = g*(x) * (P_1 + T_0)
|
||
|
* p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0
|
||
|
*
|
||
|
* The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0
|
||
|
* + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 :
|
||
|
* T_1 into dest. This allows us to reuse P_1 + T_0 when computing V.
|
||
|
*/
|
||
|
.macro montgomery_reduction dest
|
||
|
vpclmulqdq $0x00, PL, GSTAR, TMP_XMM # TMP_XMM = T_1 : T_0 = P_0 * g*(x)
|
||
|
pshufd $0b01001110, TMP_XMM, TMP_XMM # TMP_XMM = T_0 : T_1
|
||
|
pxor PL, TMP_XMM # TMP_XMM = P_1 + T_0 : P_0 + T_1
|
||
|
pxor TMP_XMM, PH # PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1
|
||
|
pclmulqdq $0x11, GSTAR, TMP_XMM # TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)]
|
||
|
vpxor TMP_XMM, PH, \dest
|
||
|
.endm
|
||
|
|
||
|
/*
|
||
|
* Compute schoolbook multiplication for 8 blocks
|
||
|
* m_0h^8 + ... + m_7h^1
|
||
|
*
|
||
|
* If reduce is set, also computes the montgomery reduction of the
|
||
|
* previous full_stride call and XORs with the first message block.
|
||
|
* (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
|
||
|
* I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
|
||
|
*/
|
||
|
.macro full_stride reduce
|
||
|
pxor LO, LO
|
||
|
pxor HI, HI
|
||
|
pxor MI, MI
|
||
|
|
||
|
schoolbook1_iteration 7 0
|
||
|
.if \reduce
|
||
|
vpclmulqdq $0x00, PL, GSTAR, TMP_XMM
|
||
|
.endif
|
||
|
|
||
|
schoolbook1_iteration 6 0
|
||
|
.if \reduce
|
||
|
pshufd $0b01001110, TMP_XMM, TMP_XMM
|
||
|
.endif
|
||
|
|
||
|
schoolbook1_iteration 5 0
|
||
|
.if \reduce
|
||
|
pxor PL, TMP_XMM
|
||
|
.endif
|
||
|
|
||
|
schoolbook1_iteration 4 0
|
||
|
.if \reduce
|
||
|
pxor TMP_XMM, PH
|
||
|
.endif
|
||
|
|
||
|
schoolbook1_iteration 3 0
|
||
|
.if \reduce
|
||
|
pclmulqdq $0x11, GSTAR, TMP_XMM
|
||
|
.endif
|
||
|
|
||
|
schoolbook1_iteration 2 0
|
||
|
.if \reduce
|
||
|
vpxor TMP_XMM, PH, SUM
|
||
|
.endif
|
||
|
|
||
|
schoolbook1_iteration 1 0
|
||
|
|
||
|
schoolbook1_iteration 0 1
|
||
|
|
||
|
addq $(8*16), MSG
|
||
|
schoolbook2
|
||
|
.endm
|
||
|
|
||
|
/*
|
||
|
* Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS
|
||
|
*/
|
||
|
.macro partial_stride
|
||
|
mov BLOCKS_LEFT, TMP
|
||
|
shlq $4, TMP
|
||
|
addq $(16*STRIDE_BLOCKS), KEY_POWERS
|
||
|
subq TMP, KEY_POWERS
|
||
|
|
||
|
movups (MSG), %xmm0
|
||
|
pxor SUM, %xmm0
|
||
|
movaps (KEY_POWERS), %xmm1
|
||
|
schoolbook1_noload
|
||
|
dec BLOCKS_LEFT
|
||
|
addq $16, MSG
|
||
|
addq $16, KEY_POWERS
|
||
|
|
||
|
test $4, BLOCKS_LEFT
|
||
|
jz .Lpartial4BlocksDone
|
||
|
schoolbook1 4
|
||
|
addq $(4*16), MSG
|
||
|
addq $(4*16), KEY_POWERS
|
||
|
.Lpartial4BlocksDone:
|
||
|
test $2, BLOCKS_LEFT
|
||
|
jz .Lpartial2BlocksDone
|
||
|
schoolbook1 2
|
||
|
addq $(2*16), MSG
|
||
|
addq $(2*16), KEY_POWERS
|
||
|
.Lpartial2BlocksDone:
|
||
|
test $1, BLOCKS_LEFT
|
||
|
jz .LpartialDone
|
||
|
schoolbook1 1
|
||
|
.LpartialDone:
|
||
|
schoolbook2
|
||
|
montgomery_reduction SUM
|
||
|
.endm
|
||
|
|
||
|
/*
|
||
|
* Perform montgomery multiplication in GF(2^128) and store result in op1.
|
||
|
*
|
||
|
* Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
|
||
|
* If op1, op2 are in montgomery form, this computes the montgomery
|
||
|
* form of op1*op2.
|
||
|
*
|
||
|
* void clmul_polyval_mul(u8 *op1, const u8 *op2);
|
||
|
*/
|
||
|
SYM_FUNC_START(clmul_polyval_mul)
|
||
|
FRAME_BEGIN
|
||
|
vmovdqa .Lgstar(%rip), GSTAR
|
||
|
movups (%rdi), %xmm0
|
||
|
movups (%rsi), %xmm1
|
||
|
schoolbook1_noload
|
||
|
schoolbook2
|
||
|
montgomery_reduction SUM
|
||
|
movups SUM, (%rdi)
|
||
|
FRAME_END
|
||
|
RET
|
||
|
SYM_FUNC_END(clmul_polyval_mul)
|
||
|
|
||
|
/*
|
||
|
* Perform polynomial evaluation as specified by POLYVAL. This computes:
|
||
|
* h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
|
||
|
* where n=nblocks, h is the hash key, and m_i are the message blocks.
|
||
|
*
|
||
|
* rdi - pointer to precomputed key powers h^8 ... h^1
|
||
|
* rsi - pointer to message blocks
|
||
|
* rdx - number of blocks to hash
|
||
|
* rcx - pointer to the accumulator
|
||
|
*
|
||
|
* void clmul_polyval_update(const struct polyval_tfm_ctx *keys,
|
||
|
* const u8 *in, size_t nblocks, u8 *accumulator);
|
||
|
*/
|
||
|
SYM_FUNC_START(clmul_polyval_update)
|
||
|
FRAME_BEGIN
|
||
|
vmovdqa .Lgstar(%rip), GSTAR
|
||
|
movups (ACCUMULATOR), SUM
|
||
|
subq $STRIDE_BLOCKS, BLOCKS_LEFT
|
||
|
js .LstrideLoopExit
|
||
|
full_stride 0
|
||
|
subq $STRIDE_BLOCKS, BLOCKS_LEFT
|
||
|
js .LstrideLoopExitReduce
|
||
|
.LstrideLoop:
|
||
|
full_stride 1
|
||
|
subq $STRIDE_BLOCKS, BLOCKS_LEFT
|
||
|
jns .LstrideLoop
|
||
|
.LstrideLoopExitReduce:
|
||
|
montgomery_reduction SUM
|
||
|
.LstrideLoopExit:
|
||
|
add $STRIDE_BLOCKS, BLOCKS_LEFT
|
||
|
jz .LskipPartial
|
||
|
partial_stride
|
||
|
.LskipPartial:
|
||
|
movups SUM, (ACCUMULATOR)
|
||
|
FRAME_END
|
||
|
RET
|
||
|
SYM_FUNC_END(clmul_polyval_update)
|