linuxdebug/arch/sparc/mm/srmmu.c

1829 lines
49 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* srmmu.c: SRMMU specific routines for memory management.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
* Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
*/
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <linux/memblock.h>
#include <linux/pagemap.h>
#include <linux/vmalloc.h>
#include <linux/kdebug.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/gfp.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/io-unit.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/bitext.h>
#include <asm/vaddrs.h>
#include <asm/cache.h>
#include <asm/traps.h>
#include <asm/oplib.h>
#include <asm/mbus.h>
#include <asm/page.h>
#include <asm/asi.h>
#include <asm/smp.h>
#include <asm/io.h>
/* Now the cpu specific definitions. */
#include <asm/turbosparc.h>
#include <asm/tsunami.h>
#include <asm/viking.h>
#include <asm/swift.h>
#include <asm/leon.h>
#include <asm/mxcc.h>
#include <asm/ross.h>
#include "mm_32.h"
enum mbus_module srmmu_modtype;
static unsigned int hwbug_bitmask;
int vac_cache_size;
EXPORT_SYMBOL(vac_cache_size);
int vac_line_size;
extern struct resource sparc_iomap;
extern unsigned long last_valid_pfn;
static pgd_t *srmmu_swapper_pg_dir;
const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
EXPORT_SYMBOL(sparc32_cachetlb_ops);
#ifdef CONFIG_SMP
const struct sparc32_cachetlb_ops *local_ops;
#define FLUSH_BEGIN(mm)
#define FLUSH_END
#else
#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
#define FLUSH_END }
#endif
int flush_page_for_dma_global = 1;
char *srmmu_name;
ctxd_t *srmmu_ctx_table_phys;
static ctxd_t *srmmu_context_table;
int viking_mxcc_present;
static DEFINE_SPINLOCK(srmmu_context_spinlock);
static int is_hypersparc;
static int srmmu_cache_pagetables;
/* these will be initialized in srmmu_nocache_calcsize() */
static unsigned long srmmu_nocache_size;
static unsigned long srmmu_nocache_end;
/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
/* The context table is a nocache user with the biggest alignment needs. */
#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
void *srmmu_nocache_pool;
static struct bit_map srmmu_nocache_map;
static inline int srmmu_pmd_none(pmd_t pmd)
{ return !(pmd_val(pmd) & 0xFFFFFFF); }
/* XXX should we hyper_flush_whole_icache here - Anton */
static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
{
pte_t pte;
pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
set_pte((pte_t *)ctxp, pte);
}
/*
* Locations of MSI Registers.
*/
#define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
/*
* Useful bits in the MSI Registers.
*/
#define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
static void msi_set_sync(void)
{
__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
"andn %%g3, %2, %%g3\n\t"
"sta %%g3, [%0] %1\n\t" : :
"r" (MSI_MBUS_ARBEN),
"i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
}
void pmd_set(pmd_t *pmdp, pte_t *ptep)
{
unsigned long ptp = __nocache_pa(ptep) >> 4;
set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
}
/*
* size: bytes to allocate in the nocache area.
* align: bytes, number to align at.
* Returns the virtual address of the allocated area.
*/
static void *__srmmu_get_nocache(int size, int align)
{
int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
unsigned long addr;
if (size < minsz) {
printk(KERN_ERR "Size 0x%x too small for nocache request\n",
size);
size = minsz;
}
if (size & (minsz - 1)) {
printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
size);
size += minsz - 1;
}
BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
offset = bit_map_string_get(&srmmu_nocache_map,
size >> SRMMU_NOCACHE_BITMAP_SHIFT,
align >> SRMMU_NOCACHE_BITMAP_SHIFT);
if (offset == -1) {
printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
size, (int) srmmu_nocache_size,
srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
return NULL;
}
addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
return (void *)addr;
}
void *srmmu_get_nocache(int size, int align)
{
void *tmp;
tmp = __srmmu_get_nocache(size, align);
if (tmp)
memset(tmp, 0, size);
return tmp;
}
void srmmu_free_nocache(void *addr, int size)
{
unsigned long vaddr;
int offset;
vaddr = (unsigned long)addr;
if (vaddr < SRMMU_NOCACHE_VADDR) {
printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
BUG();
}
if (vaddr + size > srmmu_nocache_end) {
printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
vaddr, srmmu_nocache_end);
BUG();
}
if (!is_power_of_2(size)) {
printk("Size 0x%x is not a power of 2\n", size);
BUG();
}
if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
printk("Size 0x%x is too small\n", size);
BUG();
}
if (vaddr & (size - 1)) {
printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
BUG();
}
offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
bit_map_clear(&srmmu_nocache_map, offset, size);
}
static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
unsigned long end);
/* Return how much physical memory we have. */
static unsigned long __init probe_memory(void)
{
unsigned long total = 0;
int i;
for (i = 0; sp_banks[i].num_bytes; i++)
total += sp_banks[i].num_bytes;
return total;
}
/*
* Reserve nocache dynamically proportionally to the amount of
* system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
*/
static void __init srmmu_nocache_calcsize(void)
{
unsigned long sysmemavail = probe_memory() / 1024;
int srmmu_nocache_npages;
srmmu_nocache_npages =
sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
/* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
/* anything above 1280 blows up */
if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
}
static void __init srmmu_nocache_init(void)
{
void *srmmu_nocache_bitmap;
unsigned int bitmap_bits;
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
unsigned long paddr, vaddr;
unsigned long pteval;
bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
SRMMU_NOCACHE_ALIGN_MAX);
if (!srmmu_nocache_pool)
panic("%s: Failed to allocate %lu bytes align=0x%x\n",
__func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
srmmu_nocache_bitmap =
memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
SMP_CACHE_BYTES);
if (!srmmu_nocache_bitmap)
panic("%s: Failed to allocate %zu bytes\n", __func__,
BITS_TO_LONGS(bitmap_bits) * sizeof(long));
bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
init_mm.pgd = srmmu_swapper_pg_dir;
srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
paddr = __pa((unsigned long)srmmu_nocache_pool);
vaddr = SRMMU_NOCACHE_VADDR;
while (vaddr < srmmu_nocache_end) {
pgd = pgd_offset_k(vaddr);
p4d = p4d_offset(pgd, vaddr);
pud = pud_offset(p4d, vaddr);
pmd = pmd_offset(__nocache_fix(pud), vaddr);
pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
if (srmmu_cache_pagetables)
pteval |= SRMMU_CACHE;
set_pte(__nocache_fix(pte), __pte(pteval));
vaddr += PAGE_SIZE;
paddr += PAGE_SIZE;
}
flush_cache_all();
flush_tlb_all();
}
pgd_t *get_pgd_fast(void)
{
pgd_t *pgd = NULL;
pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
if (pgd) {
pgd_t *init = pgd_offset_k(0);
memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
}
return pgd;
}
/*
* Hardware needs alignment to 256 only, but we align to whole page size
* to reduce fragmentation problems due to the buddy principle.
* XXX Provide actual fragmentation statistics in /proc.
*
* Alignments up to the page size are the same for physical and virtual
* addresses of the nocache area.
*/
pgtable_t pte_alloc_one(struct mm_struct *mm)
{
pte_t *ptep;
struct page *page;
if (!(ptep = pte_alloc_one_kernel(mm)))
return NULL;
page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
spin_lock(&mm->page_table_lock);
if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) {
page_ref_dec(page);
ptep = NULL;
}
spin_unlock(&mm->page_table_lock);
return ptep;
}
void pte_free(struct mm_struct *mm, pgtable_t ptep)
{
struct page *page;
page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
spin_lock(&mm->page_table_lock);
if (page_ref_dec_return(page) == 1)
pgtable_pte_page_dtor(page);
spin_unlock(&mm->page_table_lock);
srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
}
/* context handling - a dynamically sized pool is used */
#define NO_CONTEXT -1
struct ctx_list {
struct ctx_list *next;
struct ctx_list *prev;
unsigned int ctx_number;
struct mm_struct *ctx_mm;
};
static struct ctx_list *ctx_list_pool;
static struct ctx_list ctx_free;
static struct ctx_list ctx_used;
/* At boot time we determine the number of contexts */
static int num_contexts;
static inline void remove_from_ctx_list(struct ctx_list *entry)
{
entry->next->prev = entry->prev;
entry->prev->next = entry->next;
}
static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
{
entry->next = head;
(entry->prev = head->prev)->next = entry;
head->prev = entry;
}
#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
{
struct ctx_list *ctxp;
ctxp = ctx_free.next;
if (ctxp != &ctx_free) {
remove_from_ctx_list(ctxp);
add_to_used_ctxlist(ctxp);
mm->context = ctxp->ctx_number;
ctxp->ctx_mm = mm;
return;
}
ctxp = ctx_used.next;
if (ctxp->ctx_mm == old_mm)
ctxp = ctxp->next;
if (ctxp == &ctx_used)
panic("out of mmu contexts");
flush_cache_mm(ctxp->ctx_mm);
flush_tlb_mm(ctxp->ctx_mm);
remove_from_ctx_list(ctxp);
add_to_used_ctxlist(ctxp);
ctxp->ctx_mm->context = NO_CONTEXT;
ctxp->ctx_mm = mm;
mm->context = ctxp->ctx_number;
}
static inline void free_context(int context)
{
struct ctx_list *ctx_old;
ctx_old = ctx_list_pool + context;
remove_from_ctx_list(ctx_old);
add_to_free_ctxlist(ctx_old);
}
static void __init sparc_context_init(int numctx)
{
int ctx;
unsigned long size;
size = numctx * sizeof(struct ctx_list);
ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
if (!ctx_list_pool)
panic("%s: Failed to allocate %lu bytes\n", __func__, size);
for (ctx = 0; ctx < numctx; ctx++) {
struct ctx_list *clist;
clist = (ctx_list_pool + ctx);
clist->ctx_number = ctx;
clist->ctx_mm = NULL;
}
ctx_free.next = ctx_free.prev = &ctx_free;
ctx_used.next = ctx_used.prev = &ctx_used;
for (ctx = 0; ctx < numctx; ctx++)
add_to_free_ctxlist(ctx_list_pool + ctx);
}
void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
struct task_struct *tsk)
{
unsigned long flags;
if (mm->context == NO_CONTEXT) {
spin_lock_irqsave(&srmmu_context_spinlock, flags);
alloc_context(old_mm, mm);
spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
}
if (sparc_cpu_model == sparc_leon)
leon_switch_mm();
if (is_hypersparc)
hyper_flush_whole_icache();
srmmu_set_context(mm->context);
}
/* Low level IO area allocation on the SRMMU. */
static inline void srmmu_mapioaddr(unsigned long physaddr,
unsigned long virt_addr, int bus_type)
{
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
unsigned long tmp;
physaddr &= PAGE_MASK;
pgdp = pgd_offset_k(virt_addr);
p4dp = p4d_offset(pgdp, virt_addr);
pudp = pud_offset(p4dp, virt_addr);
pmdp = pmd_offset(pudp, virt_addr);
ptep = pte_offset_kernel(pmdp, virt_addr);
tmp = (physaddr >> 4) | SRMMU_ET_PTE;
/* I need to test whether this is consistent over all
* sun4m's. The bus_type represents the upper 4 bits of
* 36-bit physical address on the I/O space lines...
*/
tmp |= (bus_type << 28);
tmp |= SRMMU_PRIV;
__flush_page_to_ram(virt_addr);
set_pte(ptep, __pte(tmp));
}
void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
unsigned long xva, unsigned int len)
{
while (len != 0) {
len -= PAGE_SIZE;
srmmu_mapioaddr(xpa, xva, bus);
xva += PAGE_SIZE;
xpa += PAGE_SIZE;
}
flush_tlb_all();
}
static inline void srmmu_unmapioaddr(unsigned long virt_addr)
{
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
pgdp = pgd_offset_k(virt_addr);
p4dp = p4d_offset(pgdp, virt_addr);
pudp = pud_offset(p4dp, virt_addr);
pmdp = pmd_offset(pudp, virt_addr);
ptep = pte_offset_kernel(pmdp, virt_addr);
/* No need to flush uncacheable page. */
__pte_clear(ptep);
}
void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
{
while (len != 0) {
len -= PAGE_SIZE;
srmmu_unmapioaddr(virt_addr);
virt_addr += PAGE_SIZE;
}
flush_tlb_all();
}
/* tsunami.S */
extern void tsunami_flush_cache_all(void);
extern void tsunami_flush_cache_mm(struct mm_struct *mm);
extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void tsunami_flush_page_to_ram(unsigned long page);
extern void tsunami_flush_page_for_dma(unsigned long page);
extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
extern void tsunami_flush_tlb_all(void);
extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
extern void tsunami_setup_blockops(void);
/* swift.S */
extern void swift_flush_cache_all(void);
extern void swift_flush_cache_mm(struct mm_struct *mm);
extern void swift_flush_cache_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void swift_flush_page_to_ram(unsigned long page);
extern void swift_flush_page_for_dma(unsigned long page);
extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
extern void swift_flush_tlb_all(void);
extern void swift_flush_tlb_mm(struct mm_struct *mm);
extern void swift_flush_tlb_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
#if 0 /* P3: deadwood to debug precise flushes on Swift. */
void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
int cctx, ctx1;
page &= PAGE_MASK;
if ((ctx1 = vma->vm_mm->context) != -1) {
cctx = srmmu_get_context();
/* Is context # ever different from current context? P3 */
if (cctx != ctx1) {
printk("flush ctx %02x curr %02x\n", ctx1, cctx);
srmmu_set_context(ctx1);
swift_flush_page(page);
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (page), "i" (ASI_M_FLUSH_PROBE));
srmmu_set_context(cctx);
} else {
/* Rm. prot. bits from virt. c. */
/* swift_flush_cache_all(); */
/* swift_flush_cache_page(vma, page); */
swift_flush_page(page);
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (page), "i" (ASI_M_FLUSH_PROBE));
/* same as above: srmmu_flush_tlb_page() */
}
}
}
#endif
/*
* The following are all MBUS based SRMMU modules, and therefore could
* be found in a multiprocessor configuration. On the whole, these
* chips seems to be much more touchy about DVMA and page tables
* with respect to cache coherency.
*/
/* viking.S */
extern void viking_flush_cache_all(void);
extern void viking_flush_cache_mm(struct mm_struct *mm);
extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end);
extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void viking_flush_page_to_ram(unsigned long page);
extern void viking_flush_page_for_dma(unsigned long page);
extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
extern void viking_flush_page(unsigned long page);
extern void viking_mxcc_flush_page(unsigned long page);
extern void viking_flush_tlb_all(void);
extern void viking_flush_tlb_mm(struct mm_struct *mm);
extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end);
extern void viking_flush_tlb_page(struct vm_area_struct *vma,
unsigned long page);
extern void sun4dsmp_flush_tlb_all(void);
extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end);
extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
unsigned long page);
/* hypersparc.S */
extern void hypersparc_flush_cache_all(void);
extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void hypersparc_flush_page_to_ram(unsigned long page);
extern void hypersparc_flush_page_for_dma(unsigned long page);
extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
extern void hypersparc_flush_tlb_all(void);
extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
extern void hypersparc_setup_blockops(void);
/*
* NOTE: All of this startup code assumes the low 16mb (approx.) of
* kernel mappings are done with one single contiguous chunk of
* ram. On small ram machines (classics mainly) we only get
* around 8mb mapped for us.
*/
static void __init early_pgtable_allocfail(char *type)
{
prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
prom_halt();
}
static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
unsigned long end)
{
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
while (start < end) {
pgdp = pgd_offset_k(start);
p4dp = p4d_offset(pgdp, start);
pudp = pud_offset(p4dp, start);
if (pud_none(*__nocache_fix(pudp))) {
pmdp = __srmmu_get_nocache(
SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
if (pmdp == NULL)
early_pgtable_allocfail("pmd");
memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
pud_set(__nocache_fix(pudp), pmdp);
}
pmdp = pmd_offset(__nocache_fix(pudp), start);
if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
if (ptep == NULL)
early_pgtable_allocfail("pte");
memset(__nocache_fix(ptep), 0, PTE_SIZE);
pmd_set(__nocache_fix(pmdp), ptep);
}
if (start > (0xffffffffUL - PMD_SIZE))
break;
start = (start + PMD_SIZE) & PMD_MASK;
}
}
static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
unsigned long end)
{
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
while (start < end) {
pgdp = pgd_offset_k(start);
p4dp = p4d_offset(pgdp, start);
pudp = pud_offset(p4dp, start);
if (pud_none(*pudp)) {
pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
if (pmdp == NULL)
early_pgtable_allocfail("pmd");
memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
pud_set((pud_t *)pgdp, pmdp);
}
pmdp = pmd_offset(pudp, start);
if (srmmu_pmd_none(*pmdp)) {
ptep = __srmmu_get_nocache(PTE_SIZE,
PTE_SIZE);
if (ptep == NULL)
early_pgtable_allocfail("pte");
memset(ptep, 0, PTE_SIZE);
pmd_set(pmdp, ptep);
}
if (start > (0xffffffffUL - PMD_SIZE))
break;
start = (start + PMD_SIZE) & PMD_MASK;
}
}
/* These flush types are not available on all chips... */
static inline unsigned long srmmu_probe(unsigned long vaddr)
{
unsigned long retval;
if (sparc_cpu_model != sparc_leon) {
vaddr &= PAGE_MASK;
__asm__ __volatile__("lda [%1] %2, %0\n\t" :
"=r" (retval) :
"r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
} else {
retval = leon_swprobe(vaddr, NULL);
}
return retval;
}
/*
* This is much cleaner than poking around physical address space
* looking at the prom's page table directly which is what most
* other OS's do. Yuck... this is much better.
*/
static void __init srmmu_inherit_prom_mappings(unsigned long start,
unsigned long end)
{
unsigned long probed;
unsigned long addr;
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
while (start <= end) {
if (start == 0)
break; /* probably wrap around */
if (start == 0xfef00000)
start = KADB_DEBUGGER_BEGVM;
probed = srmmu_probe(start);
if (!probed) {
/* continue probing until we find an entry */
start += PAGE_SIZE;
continue;
}
/* A red snapper, see what it really is. */
what = 0;
addr = start - PAGE_SIZE;
if (!(start & ~(PMD_MASK))) {
if (srmmu_probe(addr + PMD_SIZE) == probed)
what = 1;
}
if (!(start & ~(PGDIR_MASK))) {
if (srmmu_probe(addr + PGDIR_SIZE) == probed)
what = 2;
}
pgdp = pgd_offset_k(start);
p4dp = p4d_offset(pgdp, start);
pudp = pud_offset(p4dp, start);
if (what == 2) {
*__nocache_fix(pgdp) = __pgd(probed);
start += PGDIR_SIZE;
continue;
}
if (pud_none(*__nocache_fix(pudp))) {
pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
SRMMU_PMD_TABLE_SIZE);
if (pmdp == NULL)
early_pgtable_allocfail("pmd");
memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
pud_set(__nocache_fix(pudp), pmdp);
}
pmdp = pmd_offset(__nocache_fix(pudp), start);
if (what == 1) {
*(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
start += PMD_SIZE;
continue;
}
if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
if (ptep == NULL)
early_pgtable_allocfail("pte");
memset(__nocache_fix(ptep), 0, PTE_SIZE);
pmd_set(__nocache_fix(pmdp), ptep);
}
ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
*__nocache_fix(ptep) = __pte(probed);
start += PAGE_SIZE;
}
}
#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
/* Create a third-level SRMMU 16MB page mapping. */
static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
{
pgd_t *pgdp = pgd_offset_k(vaddr);
unsigned long big_pte;
big_pte = KERNEL_PTE(phys_base >> 4);
*__nocache_fix(pgdp) = __pgd(big_pte);
}
/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
{
unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
unsigned long vstart = (vbase & PGDIR_MASK);
unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
/* Map "low" memory only */
const unsigned long min_vaddr = PAGE_OFFSET;
const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
if (vstart < min_vaddr || vstart >= max_vaddr)
return vstart;
if (vend > max_vaddr || vend < min_vaddr)
vend = max_vaddr;
while (vstart < vend) {
do_large_mapping(vstart, pstart);
vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
}
return vstart;
}
static void __init map_kernel(void)
{
int i;
if (phys_base > 0) {
do_large_mapping(PAGE_OFFSET, phys_base);
}
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
}
}
void (*poke_srmmu)(void) = NULL;
void __init srmmu_paging_init(void)
{
int i;
phandle cpunode;
char node_str[128];
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
unsigned long pages_avail;
init_mm.context = (unsigned long) NO_CONTEXT;
sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
if (sparc_cpu_model == sun4d)
num_contexts = 65536; /* We know it is Viking */
else {
/* Find the number of contexts on the srmmu. */
cpunode = prom_getchild(prom_root_node);
num_contexts = 0;
while (cpunode != 0) {
prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
if (!strcmp(node_str, "cpu")) {
num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
break;
}
cpunode = prom_getsibling(cpunode);
}
}
if (!num_contexts) {
prom_printf("Something wrong, can't find cpu node in paging_init.\n");
prom_halt();
}
pages_avail = 0;
last_valid_pfn = bootmem_init(&pages_avail);
srmmu_nocache_calcsize();
srmmu_nocache_init();
srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
map_kernel();
/* ctx table has to be physically aligned to its size */
srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
for (i = 0; i < num_contexts; i++)
srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
flush_cache_all();
srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
#ifdef CONFIG_SMP
/* Stop from hanging here... */
local_ops->tlb_all();
#else
flush_tlb_all();
#endif
poke_srmmu();
srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
srmmu_allocate_ptable_skeleton(
__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
pgd = pgd_offset_k(PKMAP_BASE);
p4d = p4d_offset(pgd, PKMAP_BASE);
pud = pud_offset(p4d, PKMAP_BASE);
pmd = pmd_offset(pud, PKMAP_BASE);
pte = pte_offset_kernel(pmd, PKMAP_BASE);
pkmap_page_table = pte;
flush_cache_all();
flush_tlb_all();
sparc_context_init(num_contexts);
{
unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
max_zone_pfn[ZONE_DMA] = max_low_pfn;
max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
free_area_init(max_zone_pfn);
}
}
void mmu_info(struct seq_file *m)
{
seq_printf(m,
"MMU type\t: %s\n"
"contexts\t: %d\n"
"nocache total\t: %ld\n"
"nocache used\t: %d\n",
srmmu_name,
num_contexts,
srmmu_nocache_size,
srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
}
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
{
mm->context = NO_CONTEXT;
return 0;
}
void destroy_context(struct mm_struct *mm)
{
unsigned long flags;
if (mm->context != NO_CONTEXT) {
flush_cache_mm(mm);
srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
flush_tlb_mm(mm);
spin_lock_irqsave(&srmmu_context_spinlock, flags);
free_context(mm->context);
spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
mm->context = NO_CONTEXT;
}
}
/* Init various srmmu chip types. */
static void __init srmmu_is_bad(void)
{
prom_printf("Could not determine SRMMU chip type.\n");
prom_halt();
}
static void __init init_vac_layout(void)
{
phandle nd;
int cache_lines;
char node_str[128];
#ifdef CONFIG_SMP
int cpu = 0;
unsigned long max_size = 0;
unsigned long min_line_size = 0x10000000;
#endif
nd = prom_getchild(prom_root_node);
while ((nd = prom_getsibling(nd)) != 0) {
prom_getstring(nd, "device_type", node_str, sizeof(node_str));
if (!strcmp(node_str, "cpu")) {
vac_line_size = prom_getint(nd, "cache-line-size");
if (vac_line_size == -1) {
prom_printf("can't determine cache-line-size, halting.\n");
prom_halt();
}
cache_lines = prom_getint(nd, "cache-nlines");
if (cache_lines == -1) {
prom_printf("can't determine cache-nlines, halting.\n");
prom_halt();
}
vac_cache_size = cache_lines * vac_line_size;
#ifdef CONFIG_SMP
if (vac_cache_size > max_size)
max_size = vac_cache_size;
if (vac_line_size < min_line_size)
min_line_size = vac_line_size;
//FIXME: cpus not contiguous!!
cpu++;
if (cpu >= nr_cpu_ids || !cpu_online(cpu))
break;
#else
break;
#endif
}
}
if (nd == 0) {
prom_printf("No CPU nodes found, halting.\n");
prom_halt();
}
#ifdef CONFIG_SMP
vac_cache_size = max_size;
vac_line_size = min_line_size;
#endif
printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
(int)vac_cache_size, (int)vac_line_size);
}
static void poke_hypersparc(void)
{
volatile unsigned long clear;
unsigned long mreg = srmmu_get_mmureg();
hyper_flush_unconditional_combined();
mreg &= ~(HYPERSPARC_CWENABLE);
mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
mreg |= (HYPERSPARC_CMODE);
srmmu_set_mmureg(mreg);
#if 0 /* XXX I think this is bad news... -DaveM */
hyper_clear_all_tags();
#endif
put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
hyper_flush_whole_icache();
clear = srmmu_get_faddr();
clear = srmmu_get_fstatus();
}
static const struct sparc32_cachetlb_ops hypersparc_ops = {
.cache_all = hypersparc_flush_cache_all,
.cache_mm = hypersparc_flush_cache_mm,
.cache_page = hypersparc_flush_cache_page,
.cache_range = hypersparc_flush_cache_range,
.tlb_all = hypersparc_flush_tlb_all,
.tlb_mm = hypersparc_flush_tlb_mm,
.tlb_page = hypersparc_flush_tlb_page,
.tlb_range = hypersparc_flush_tlb_range,
.page_to_ram = hypersparc_flush_page_to_ram,
.sig_insns = hypersparc_flush_sig_insns,
.page_for_dma = hypersparc_flush_page_for_dma,
};
static void __init init_hypersparc(void)
{
srmmu_name = "ROSS HyperSparc";
srmmu_modtype = HyperSparc;
init_vac_layout();
is_hypersparc = 1;
sparc32_cachetlb_ops = &hypersparc_ops;
poke_srmmu = poke_hypersparc;
hypersparc_setup_blockops();
}
static void poke_swift(void)
{
unsigned long mreg;
/* Clear any crap from the cache or else... */
swift_flush_cache_all();
/* Enable I & D caches */
mreg = srmmu_get_mmureg();
mreg |= (SWIFT_IE | SWIFT_DE);
/*
* The Swift branch folding logic is completely broken. At
* trap time, if things are just right, if can mistakenly
* think that a trap is coming from kernel mode when in fact
* it is coming from user mode (it mis-executes the branch in
* the trap code). So you see things like crashme completely
* hosing your machine which is completely unacceptable. Turn
* this shit off... nice job Fujitsu.
*/
mreg &= ~(SWIFT_BF);
srmmu_set_mmureg(mreg);
}
static const struct sparc32_cachetlb_ops swift_ops = {
.cache_all = swift_flush_cache_all,
.cache_mm = swift_flush_cache_mm,
.cache_page = swift_flush_cache_page,
.cache_range = swift_flush_cache_range,
.tlb_all = swift_flush_tlb_all,
.tlb_mm = swift_flush_tlb_mm,
.tlb_page = swift_flush_tlb_page,
.tlb_range = swift_flush_tlb_range,
.page_to_ram = swift_flush_page_to_ram,
.sig_insns = swift_flush_sig_insns,
.page_for_dma = swift_flush_page_for_dma,
};
#define SWIFT_MASKID_ADDR 0x10003018
static void __init init_swift(void)
{
unsigned long swift_rev;
__asm__ __volatile__("lda [%1] %2, %0\n\t"
"srl %0, 0x18, %0\n\t" :
"=r" (swift_rev) :
"r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
srmmu_name = "Fujitsu Swift";
switch (swift_rev) {
case 0x11:
case 0x20:
case 0x23:
case 0x30:
srmmu_modtype = Swift_lots_o_bugs;
hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
/*
* Gee george, I wonder why Sun is so hush hush about
* this hardware bug... really braindamage stuff going
* on here. However I think we can find a way to avoid
* all of the workaround overhead under Linux. Basically,
* any page fault can cause kernel pages to become user
* accessible (the mmu gets confused and clears some of
* the ACC bits in kernel ptes). Aha, sounds pretty
* horrible eh? But wait, after extensive testing it appears
* that if you use pgd_t level large kernel pte's (like the
* 4MB pages on the Pentium) the bug does not get tripped
* at all. This avoids almost all of the major overhead.
* Welcome to a world where your vendor tells you to,
* "apply this kernel patch" instead of "sorry for the
* broken hardware, send it back and we'll give you
* properly functioning parts"
*/
break;
case 0x25:
case 0x31:
srmmu_modtype = Swift_bad_c;
hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
/*
* You see Sun allude to this hardware bug but never
* admit things directly, they'll say things like,
* "the Swift chip cache problems" or similar.
*/
break;
default:
srmmu_modtype = Swift_ok;
break;
}
sparc32_cachetlb_ops = &swift_ops;
flush_page_for_dma_global = 0;
/*
* Are you now convinced that the Swift is one of the
* biggest VLSI abortions of all time? Bravo Fujitsu!
* Fujitsu, the !#?!%$'d up processor people. I bet if
* you examined the microcode of the Swift you'd find
* XXX's all over the place.
*/
poke_srmmu = poke_swift;
}
static void turbosparc_flush_cache_all(void)
{
flush_user_windows();
turbosparc_idflash_clear();
}
static void turbosparc_flush_cache_mm(struct mm_struct *mm)
{
FLUSH_BEGIN(mm)
flush_user_windows();
turbosparc_idflash_clear();
FLUSH_END
}
static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
FLUSH_BEGIN(vma->vm_mm)
flush_user_windows();
turbosparc_idflash_clear();
FLUSH_END
}
static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
{
FLUSH_BEGIN(vma->vm_mm)
flush_user_windows();
if (vma->vm_flags & VM_EXEC)
turbosparc_flush_icache();
turbosparc_flush_dcache();
FLUSH_END
}
/* TurboSparc is copy-back, if we turn it on, but this does not work. */
static void turbosparc_flush_page_to_ram(unsigned long page)
{
#ifdef TURBOSPARC_WRITEBACK
volatile unsigned long clear;
if (srmmu_probe(page))
turbosparc_flush_page_cache(page);
clear = srmmu_get_fstatus();
#endif
}
static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
{
}
static void turbosparc_flush_page_for_dma(unsigned long page)
{
turbosparc_flush_dcache();
}
static void turbosparc_flush_tlb_all(void)
{
srmmu_flush_whole_tlb();
}
static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
{
FLUSH_BEGIN(mm)
srmmu_flush_whole_tlb();
FLUSH_END
}
static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
FLUSH_BEGIN(vma->vm_mm)
srmmu_flush_whole_tlb();
FLUSH_END
}
static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
FLUSH_BEGIN(vma->vm_mm)
srmmu_flush_whole_tlb();
FLUSH_END
}
static void poke_turbosparc(void)
{
unsigned long mreg = srmmu_get_mmureg();
unsigned long ccreg;
/* Clear any crap from the cache or else... */
turbosparc_flush_cache_all();
/* Temporarily disable I & D caches */
mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
srmmu_set_mmureg(mreg);
ccreg = turbosparc_get_ccreg();
#ifdef TURBOSPARC_WRITEBACK
ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
/* Write-back D-cache, emulate VLSI
* abortion number three, not number one */
#else
/* For now let's play safe, optimize later */
ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
/* Do DVMA snooping in Dcache, Write-thru D-cache */
ccreg &= ~(TURBOSPARC_uS2);
/* Emulate VLSI abortion number three, not number one */
#endif
switch (ccreg & 7) {
case 0: /* No SE cache */
case 7: /* Test mode */
break;
default:
ccreg |= (TURBOSPARC_SCENABLE);
}
turbosparc_set_ccreg(ccreg);
mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
srmmu_set_mmureg(mreg);
}
static const struct sparc32_cachetlb_ops turbosparc_ops = {
.cache_all = turbosparc_flush_cache_all,
.cache_mm = turbosparc_flush_cache_mm,
.cache_page = turbosparc_flush_cache_page,
.cache_range = turbosparc_flush_cache_range,
.tlb_all = turbosparc_flush_tlb_all,
.tlb_mm = turbosparc_flush_tlb_mm,
.tlb_page = turbosparc_flush_tlb_page,
.tlb_range = turbosparc_flush_tlb_range,
.page_to_ram = turbosparc_flush_page_to_ram,
.sig_insns = turbosparc_flush_sig_insns,
.page_for_dma = turbosparc_flush_page_for_dma,
};
static void __init init_turbosparc(void)
{
srmmu_name = "Fujitsu TurboSparc";
srmmu_modtype = TurboSparc;
sparc32_cachetlb_ops = &turbosparc_ops;
poke_srmmu = poke_turbosparc;
}
static void poke_tsunami(void)
{
unsigned long mreg = srmmu_get_mmureg();
tsunami_flush_icache();
tsunami_flush_dcache();
mreg &= ~TSUNAMI_ITD;
mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
srmmu_set_mmureg(mreg);
}
static const struct sparc32_cachetlb_ops tsunami_ops = {
.cache_all = tsunami_flush_cache_all,
.cache_mm = tsunami_flush_cache_mm,
.cache_page = tsunami_flush_cache_page,
.cache_range = tsunami_flush_cache_range,
.tlb_all = tsunami_flush_tlb_all,
.tlb_mm = tsunami_flush_tlb_mm,
.tlb_page = tsunami_flush_tlb_page,
.tlb_range = tsunami_flush_tlb_range,
.page_to_ram = tsunami_flush_page_to_ram,
.sig_insns = tsunami_flush_sig_insns,
.page_for_dma = tsunami_flush_page_for_dma,
};
static void __init init_tsunami(void)
{
/*
* Tsunami's pretty sane, Sun and TI actually got it
* somewhat right this time. Fujitsu should have
* taken some lessons from them.
*/
srmmu_name = "TI Tsunami";
srmmu_modtype = Tsunami;
sparc32_cachetlb_ops = &tsunami_ops;
poke_srmmu = poke_tsunami;
tsunami_setup_blockops();
}
static void poke_viking(void)
{
unsigned long mreg = srmmu_get_mmureg();
static int smp_catch;
if (viking_mxcc_present) {
unsigned long mxcc_control = mxcc_get_creg();
mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
mxcc_control &= ~(MXCC_CTL_RRC);
mxcc_set_creg(mxcc_control);
/*
* We don't need memory parity checks.
* XXX This is a mess, have to dig out later. ecd.
viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
*/
/* We do cache ptables on MXCC. */
mreg |= VIKING_TCENABLE;
} else {
unsigned long bpreg;
mreg &= ~(VIKING_TCENABLE);
if (smp_catch++) {
/* Must disable mixed-cmd mode here for other cpu's. */
bpreg = viking_get_bpreg();
bpreg &= ~(VIKING_ACTION_MIX);
viking_set_bpreg(bpreg);
/* Just in case PROM does something funny. */
msi_set_sync();
}
}
mreg |= VIKING_SPENABLE;
mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
mreg |= VIKING_SBENABLE;
mreg &= ~(VIKING_ACENABLE);
srmmu_set_mmureg(mreg);
}
static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
.cache_all = viking_flush_cache_all,
.cache_mm = viking_flush_cache_mm,
.cache_page = viking_flush_cache_page,
.cache_range = viking_flush_cache_range,
.tlb_all = viking_flush_tlb_all,
.tlb_mm = viking_flush_tlb_mm,
.tlb_page = viking_flush_tlb_page,
.tlb_range = viking_flush_tlb_range,
.page_to_ram = viking_flush_page_to_ram,
.sig_insns = viking_flush_sig_insns,
.page_for_dma = viking_flush_page_for_dma,
};
#ifdef CONFIG_SMP
/* On sun4d the cpu broadcasts local TLB flushes, so we can just
* perform the local TLB flush and all the other cpus will see it.
* But, unfortunately, there is a bug in the sun4d XBUS backplane
* that requires that we add some synchronization to these flushes.
*
* The bug is that the fifo which keeps track of all the pending TLB
* broadcasts in the system is an entry or two too small, so if we
* have too many going at once we'll overflow that fifo and lose a TLB
* flush resulting in corruption.
*
* Our workaround is to take a global spinlock around the TLB flushes,
* which guarentees we won't ever have too many pending. It's a big
* hammer, but a semaphore like system to make sure we only have N TLB
* flushes going at once will require SMP locking anyways so there's
* no real value in trying any harder than this.
*/
static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
.cache_all = viking_flush_cache_all,
.cache_mm = viking_flush_cache_mm,
.cache_page = viking_flush_cache_page,
.cache_range = viking_flush_cache_range,
.tlb_all = sun4dsmp_flush_tlb_all,
.tlb_mm = sun4dsmp_flush_tlb_mm,
.tlb_page = sun4dsmp_flush_tlb_page,
.tlb_range = sun4dsmp_flush_tlb_range,
.page_to_ram = viking_flush_page_to_ram,
.sig_insns = viking_flush_sig_insns,
.page_for_dma = viking_flush_page_for_dma,
};
#endif
static void __init init_viking(void)
{
unsigned long mreg = srmmu_get_mmureg();
/* Ahhh, the viking. SRMMU VLSI abortion number two... */
if (mreg & VIKING_MMODE) {
srmmu_name = "TI Viking";
viking_mxcc_present = 0;
msi_set_sync();
/*
* We need this to make sure old viking takes no hits
* on it's cache for dma snoops to workaround the
* "load from non-cacheable memory" interrupt bug.
* This is only necessary because of the new way in
* which we use the IOMMU.
*/
viking_ops.page_for_dma = viking_flush_page;
#ifdef CONFIG_SMP
viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
#endif
flush_page_for_dma_global = 0;
} else {
srmmu_name = "TI Viking/MXCC";
viking_mxcc_present = 1;
srmmu_cache_pagetables = 1;
}
sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
&viking_ops;
#ifdef CONFIG_SMP
if (sparc_cpu_model == sun4d)
sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
&viking_sun4d_smp_ops;
#endif
poke_srmmu = poke_viking;
}
/* Probe for the srmmu chip version. */
static void __init get_srmmu_type(void)
{
unsigned long mreg, psr;
unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
srmmu_modtype = SRMMU_INVAL_MOD;
hwbug_bitmask = 0;
mreg = srmmu_get_mmureg(); psr = get_psr();
mod_typ = (mreg & 0xf0000000) >> 28;
mod_rev = (mreg & 0x0f000000) >> 24;
psr_typ = (psr >> 28) & 0xf;
psr_vers = (psr >> 24) & 0xf;
/* First, check for sparc-leon. */
if (sparc_cpu_model == sparc_leon) {
init_leon();
return;
}
/* Second, check for HyperSparc or Cypress. */
if (mod_typ == 1) {
switch (mod_rev) {
case 7:
/* UP or MP Hypersparc */
init_hypersparc();
break;
case 0:
case 2:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
default:
prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
prom_halt();
break;
}
return;
}
/* Now Fujitsu TurboSparc. It might happen that it is
* in Swift emulation mode, so we will check later...
*/
if (psr_typ == 0 && psr_vers == 5) {
init_turbosparc();
return;
}
/* Next check for Fujitsu Swift. */
if (psr_typ == 0 && psr_vers == 4) {
phandle cpunode;
char node_str[128];
/* Look if it is not a TurboSparc emulating Swift... */
cpunode = prom_getchild(prom_root_node);
while ((cpunode = prom_getsibling(cpunode)) != 0) {
prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
if (!strcmp(node_str, "cpu")) {
if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
prom_getintdefault(cpunode, "psr-version", 1) == 5) {
init_turbosparc();
return;
}
break;
}
}
init_swift();
return;
}
/* Now the Viking family of srmmu. */
if (psr_typ == 4 &&
((psr_vers == 0) ||
((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
init_viking();
return;
}
/* Finally the Tsunami. */
if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
init_tsunami();
return;
}
/* Oh well */
srmmu_is_bad();
}
#ifdef CONFIG_SMP
/* Local cross-calls. */
static void smp_flush_page_for_dma(unsigned long page)
{
xc1(local_ops->page_for_dma, page);
local_ops->page_for_dma(page);
}
static void smp_flush_cache_all(void)
{
xc0(local_ops->cache_all);
local_ops->cache_all();
}
static void smp_flush_tlb_all(void)
{
xc0(local_ops->tlb_all);
local_ops->tlb_all();
}
static void smp_flush_cache_mm(struct mm_struct *mm)
{
if (mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc1(local_ops->cache_mm, (unsigned long)mm);
local_ops->cache_mm(mm);
}
}
static void smp_flush_tlb_mm(struct mm_struct *mm)
{
if (mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask)) {
xc1(local_ops->tlb_mm, (unsigned long)mm);
if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
cpumask_copy(mm_cpumask(mm),
cpumask_of(smp_processor_id()));
}
local_ops->tlb_mm(mm);
}
}
static void smp_flush_cache_range(struct vm_area_struct *vma,
unsigned long start,
unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
if (mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc3(local_ops->cache_range, (unsigned long)vma, start,
end);
local_ops->cache_range(vma, start, end);
}
}
static void smp_flush_tlb_range(struct vm_area_struct *vma,
unsigned long start,
unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
if (mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc3(local_ops->tlb_range, (unsigned long)vma, start,
end);
local_ops->tlb_range(vma, start, end);
}
}
static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
{
struct mm_struct *mm = vma->vm_mm;
if (mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc2(local_ops->cache_page, (unsigned long)vma, page);
local_ops->cache_page(vma, page);
}
}
static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
struct mm_struct *mm = vma->vm_mm;
if (mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc2(local_ops->tlb_page, (unsigned long)vma, page);
local_ops->tlb_page(vma, page);
}
}
static void smp_flush_page_to_ram(unsigned long page)
{
/* Current theory is that those who call this are the one's
* who have just dirtied their cache with the pages contents
* in kernel space, therefore we only run this on local cpu.
*
* XXX This experiment failed, research further... -DaveM
*/
#if 1
xc1(local_ops->page_to_ram, page);
#endif
local_ops->page_to_ram(page);
}
static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
{
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr);
local_ops->sig_insns(mm, insn_addr);
}
static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
.cache_all = smp_flush_cache_all,
.cache_mm = smp_flush_cache_mm,
.cache_page = smp_flush_cache_page,
.cache_range = smp_flush_cache_range,
.tlb_all = smp_flush_tlb_all,
.tlb_mm = smp_flush_tlb_mm,
.tlb_page = smp_flush_tlb_page,
.tlb_range = smp_flush_tlb_range,
.page_to_ram = smp_flush_page_to_ram,
.sig_insns = smp_flush_sig_insns,
.page_for_dma = smp_flush_page_for_dma,
};
#endif
/* Load up routines and constants for sun4m and sun4d mmu */
void __init load_mmu(void)
{
/* Functions */
get_srmmu_type();
#ifdef CONFIG_SMP
/* El switcheroo... */
local_ops = sparc32_cachetlb_ops;
if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
}
if (poke_srmmu == poke_viking) {
/* Avoid unnecessary cross calls. */
smp_cachetlb_ops.cache_all = local_ops->cache_all;
smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
smp_cachetlb_ops.cache_range = local_ops->cache_range;
smp_cachetlb_ops.cache_page = local_ops->cache_page;
smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
}
/* It really is const after this point. */
sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
&smp_cachetlb_ops;
#endif
if (sparc_cpu_model != sun4d)
ld_mmu_iommu();
#ifdef CONFIG_SMP
if (sparc_cpu_model == sun4d)
sun4d_init_smp();
else if (sparc_cpu_model == sparc_leon)
leon_init_smp();
else
sun4m_init_smp();
#endif
}