1516 lines
39 KiB
C
1516 lines
39 KiB
C
|
/*
|
||
|
* Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
|
||
|
*
|
||
|
* This software is available to you under a choice of one of two
|
||
|
* licenses. You may choose to be licensed under the terms of the GNU
|
||
|
* General Public License (GPL) Version 2, available from the file
|
||
|
* COPYING in the main directory of this source tree, or the
|
||
|
* OpenIB.org BSD license below:
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or
|
||
|
* without modification, are permitted provided that the following
|
||
|
* conditions are met:
|
||
|
*
|
||
|
* - Redistributions of source code must retain the above
|
||
|
* copyright notice, this list of conditions and the following
|
||
|
* disclaimer.
|
||
|
*
|
||
|
* - Redistributions in binary form must reproduce the above
|
||
|
* copyright notice, this list of conditions and the following
|
||
|
* disclaimer in the documentation and/or other materials
|
||
|
* provided with the distribution.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
* SOFTWARE.
|
||
|
*
|
||
|
*/
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/moduleparam.h>
|
||
|
#include <linux/gfp.h>
|
||
|
#include <net/sock.h>
|
||
|
#include <linux/in.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/ratelimit.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/sizes.h>
|
||
|
|
||
|
#include "rds.h"
|
||
|
|
||
|
/* When transmitting messages in rds_send_xmit, we need to emerge from
|
||
|
* time to time and briefly release the CPU. Otherwise the softlock watchdog
|
||
|
* will kick our shin.
|
||
|
* Also, it seems fairer to not let one busy connection stall all the
|
||
|
* others.
|
||
|
*
|
||
|
* send_batch_count is the number of times we'll loop in send_xmit. Setting
|
||
|
* it to 0 will restore the old behavior (where we looped until we had
|
||
|
* drained the queue).
|
||
|
*/
|
||
|
static int send_batch_count = SZ_1K;
|
||
|
module_param(send_batch_count, int, 0444);
|
||
|
MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
|
||
|
|
||
|
static void rds_send_remove_from_sock(struct list_head *messages, int status);
|
||
|
|
||
|
/*
|
||
|
* Reset the send state. Callers must ensure that this doesn't race with
|
||
|
* rds_send_xmit().
|
||
|
*/
|
||
|
void rds_send_path_reset(struct rds_conn_path *cp)
|
||
|
{
|
||
|
struct rds_message *rm, *tmp;
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (cp->cp_xmit_rm) {
|
||
|
rm = cp->cp_xmit_rm;
|
||
|
cp->cp_xmit_rm = NULL;
|
||
|
/* Tell the user the RDMA op is no longer mapped by the
|
||
|
* transport. This isn't entirely true (it's flushed out
|
||
|
* independently) but as the connection is down, there's
|
||
|
* no ongoing RDMA to/from that memory */
|
||
|
rds_message_unmapped(rm);
|
||
|
rds_message_put(rm);
|
||
|
}
|
||
|
|
||
|
cp->cp_xmit_sg = 0;
|
||
|
cp->cp_xmit_hdr_off = 0;
|
||
|
cp->cp_xmit_data_off = 0;
|
||
|
cp->cp_xmit_atomic_sent = 0;
|
||
|
cp->cp_xmit_rdma_sent = 0;
|
||
|
cp->cp_xmit_data_sent = 0;
|
||
|
|
||
|
cp->cp_conn->c_map_queued = 0;
|
||
|
|
||
|
cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
|
||
|
cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
|
||
|
|
||
|
/* Mark messages as retransmissions, and move them to the send q */
|
||
|
spin_lock_irqsave(&cp->cp_lock, flags);
|
||
|
list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
|
||
|
set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
|
||
|
set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
|
||
|
}
|
||
|
list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
|
||
|
spin_unlock_irqrestore(&cp->cp_lock, flags);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rds_send_path_reset);
|
||
|
|
||
|
static int acquire_in_xmit(struct rds_conn_path *cp)
|
||
|
{
|
||
|
return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
|
||
|
}
|
||
|
|
||
|
static void release_in_xmit(struct rds_conn_path *cp)
|
||
|
{
|
||
|
clear_bit(RDS_IN_XMIT, &cp->cp_flags);
|
||
|
smp_mb__after_atomic();
|
||
|
/*
|
||
|
* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
|
||
|
* hot path and finding waiters is very rare. We don't want to walk
|
||
|
* the system-wide hashed waitqueue buckets in the fast path only to
|
||
|
* almost never find waiters.
|
||
|
*/
|
||
|
if (waitqueue_active(&cp->cp_waitq))
|
||
|
wake_up_all(&cp->cp_waitq);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We're making the conscious trade-off here to only send one message
|
||
|
* down the connection at a time.
|
||
|
* Pro:
|
||
|
* - tx queueing is a simple fifo list
|
||
|
* - reassembly is optional and easily done by transports per conn
|
||
|
* - no per flow rx lookup at all, straight to the socket
|
||
|
* - less per-frag memory and wire overhead
|
||
|
* Con:
|
||
|
* - queued acks can be delayed behind large messages
|
||
|
* Depends:
|
||
|
* - small message latency is higher behind queued large messages
|
||
|
* - large message latency isn't starved by intervening small sends
|
||
|
*/
|
||
|
int rds_send_xmit(struct rds_conn_path *cp)
|
||
|
{
|
||
|
struct rds_connection *conn = cp->cp_conn;
|
||
|
struct rds_message *rm;
|
||
|
unsigned long flags;
|
||
|
unsigned int tmp;
|
||
|
struct scatterlist *sg;
|
||
|
int ret = 0;
|
||
|
LIST_HEAD(to_be_dropped);
|
||
|
int batch_count;
|
||
|
unsigned long send_gen = 0;
|
||
|
int same_rm = 0;
|
||
|
|
||
|
restart:
|
||
|
batch_count = 0;
|
||
|
|
||
|
/*
|
||
|
* sendmsg calls here after having queued its message on the send
|
||
|
* queue. We only have one task feeding the connection at a time. If
|
||
|
* another thread is already feeding the queue then we back off. This
|
||
|
* avoids blocking the caller and trading per-connection data between
|
||
|
* caches per message.
|
||
|
*/
|
||
|
if (!acquire_in_xmit(cp)) {
|
||
|
rds_stats_inc(s_send_lock_contention);
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (rds_destroy_pending(cp->cp_conn)) {
|
||
|
release_in_xmit(cp);
|
||
|
ret = -ENETUNREACH; /* dont requeue send work */
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* we record the send generation after doing the xmit acquire.
|
||
|
* if someone else manages to jump in and do some work, we'll use
|
||
|
* this to avoid a goto restart farther down.
|
||
|
*
|
||
|
* The acquire_in_xmit() check above ensures that only one
|
||
|
* caller can increment c_send_gen at any time.
|
||
|
*/
|
||
|
send_gen = READ_ONCE(cp->cp_send_gen) + 1;
|
||
|
WRITE_ONCE(cp->cp_send_gen, send_gen);
|
||
|
|
||
|
/*
|
||
|
* rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
|
||
|
* we do the opposite to avoid races.
|
||
|
*/
|
||
|
if (!rds_conn_path_up(cp)) {
|
||
|
release_in_xmit(cp);
|
||
|
ret = 0;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (conn->c_trans->xmit_path_prepare)
|
||
|
conn->c_trans->xmit_path_prepare(cp);
|
||
|
|
||
|
/*
|
||
|
* spin trying to push headers and data down the connection until
|
||
|
* the connection doesn't make forward progress.
|
||
|
*/
|
||
|
while (1) {
|
||
|
|
||
|
rm = cp->cp_xmit_rm;
|
||
|
|
||
|
if (!rm) {
|
||
|
same_rm = 0;
|
||
|
} else {
|
||
|
same_rm++;
|
||
|
if (same_rm >= 4096) {
|
||
|
rds_stats_inc(s_send_stuck_rm);
|
||
|
ret = -EAGAIN;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If between sending messages, we can send a pending congestion
|
||
|
* map update.
|
||
|
*/
|
||
|
if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
|
||
|
rm = rds_cong_update_alloc(conn);
|
||
|
if (IS_ERR(rm)) {
|
||
|
ret = PTR_ERR(rm);
|
||
|
break;
|
||
|
}
|
||
|
rm->data.op_active = 1;
|
||
|
rm->m_inc.i_conn_path = cp;
|
||
|
rm->m_inc.i_conn = cp->cp_conn;
|
||
|
|
||
|
cp->cp_xmit_rm = rm;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If not already working on one, grab the next message.
|
||
|
*
|
||
|
* cp_xmit_rm holds a ref while we're sending this message down
|
||
|
* the connction. We can use this ref while holding the
|
||
|
* send_sem.. rds_send_reset() is serialized with it.
|
||
|
*/
|
||
|
if (!rm) {
|
||
|
unsigned int len;
|
||
|
|
||
|
batch_count++;
|
||
|
|
||
|
/* we want to process as big a batch as we can, but
|
||
|
* we also want to avoid softlockups. If we've been
|
||
|
* through a lot of messages, lets back off and see
|
||
|
* if anyone else jumps in
|
||
|
*/
|
||
|
if (batch_count >= send_batch_count)
|
||
|
goto over_batch;
|
||
|
|
||
|
spin_lock_irqsave(&cp->cp_lock, flags);
|
||
|
|
||
|
if (!list_empty(&cp->cp_send_queue)) {
|
||
|
rm = list_entry(cp->cp_send_queue.next,
|
||
|
struct rds_message,
|
||
|
m_conn_item);
|
||
|
rds_message_addref(rm);
|
||
|
|
||
|
/*
|
||
|
* Move the message from the send queue to the retransmit
|
||
|
* list right away.
|
||
|
*/
|
||
|
list_move_tail(&rm->m_conn_item,
|
||
|
&cp->cp_retrans);
|
||
|
}
|
||
|
|
||
|
spin_unlock_irqrestore(&cp->cp_lock, flags);
|
||
|
|
||
|
if (!rm)
|
||
|
break;
|
||
|
|
||
|
/* Unfortunately, the way Infiniband deals with
|
||
|
* RDMA to a bad MR key is by moving the entire
|
||
|
* queue pair to error state. We could possibly
|
||
|
* recover from that, but right now we drop the
|
||
|
* connection.
|
||
|
* Therefore, we never retransmit messages with RDMA ops.
|
||
|
*/
|
||
|
if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
|
||
|
(rm->rdma.op_active &&
|
||
|
test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
|
||
|
spin_lock_irqsave(&cp->cp_lock, flags);
|
||
|
if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
|
||
|
list_move(&rm->m_conn_item, &to_be_dropped);
|
||
|
spin_unlock_irqrestore(&cp->cp_lock, flags);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Require an ACK every once in a while */
|
||
|
len = ntohl(rm->m_inc.i_hdr.h_len);
|
||
|
if (cp->cp_unacked_packets == 0 ||
|
||
|
cp->cp_unacked_bytes < len) {
|
||
|
set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
|
||
|
|
||
|
cp->cp_unacked_packets =
|
||
|
rds_sysctl_max_unacked_packets;
|
||
|
cp->cp_unacked_bytes =
|
||
|
rds_sysctl_max_unacked_bytes;
|
||
|
rds_stats_inc(s_send_ack_required);
|
||
|
} else {
|
||
|
cp->cp_unacked_bytes -= len;
|
||
|
cp->cp_unacked_packets--;
|
||
|
}
|
||
|
|
||
|
cp->cp_xmit_rm = rm;
|
||
|
}
|
||
|
|
||
|
/* The transport either sends the whole rdma or none of it */
|
||
|
if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
|
||
|
rm->m_final_op = &rm->rdma;
|
||
|
/* The transport owns the mapped memory for now.
|
||
|
* You can't unmap it while it's on the send queue
|
||
|
*/
|
||
|
set_bit(RDS_MSG_MAPPED, &rm->m_flags);
|
||
|
ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
|
||
|
if (ret) {
|
||
|
clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
|
||
|
wake_up_interruptible(&rm->m_flush_wait);
|
||
|
break;
|
||
|
}
|
||
|
cp->cp_xmit_rdma_sent = 1;
|
||
|
|
||
|
}
|
||
|
|
||
|
if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
|
||
|
rm->m_final_op = &rm->atomic;
|
||
|
/* The transport owns the mapped memory for now.
|
||
|
* You can't unmap it while it's on the send queue
|
||
|
*/
|
||
|
set_bit(RDS_MSG_MAPPED, &rm->m_flags);
|
||
|
ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
|
||
|
if (ret) {
|
||
|
clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
|
||
|
wake_up_interruptible(&rm->m_flush_wait);
|
||
|
break;
|
||
|
}
|
||
|
cp->cp_xmit_atomic_sent = 1;
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* A number of cases require an RDS header to be sent
|
||
|
* even if there is no data.
|
||
|
* We permit 0-byte sends; rds-ping depends on this.
|
||
|
* However, if there are exclusively attached silent ops,
|
||
|
* we skip the hdr/data send, to enable silent operation.
|
||
|
*/
|
||
|
if (rm->data.op_nents == 0) {
|
||
|
int ops_present;
|
||
|
int all_ops_are_silent = 1;
|
||
|
|
||
|
ops_present = (rm->atomic.op_active || rm->rdma.op_active);
|
||
|
if (rm->atomic.op_active && !rm->atomic.op_silent)
|
||
|
all_ops_are_silent = 0;
|
||
|
if (rm->rdma.op_active && !rm->rdma.op_silent)
|
||
|
all_ops_are_silent = 0;
|
||
|
|
||
|
if (ops_present && all_ops_are_silent
|
||
|
&& !rm->m_rdma_cookie)
|
||
|
rm->data.op_active = 0;
|
||
|
}
|
||
|
|
||
|
if (rm->data.op_active && !cp->cp_xmit_data_sent) {
|
||
|
rm->m_final_op = &rm->data;
|
||
|
|
||
|
ret = conn->c_trans->xmit(conn, rm,
|
||
|
cp->cp_xmit_hdr_off,
|
||
|
cp->cp_xmit_sg,
|
||
|
cp->cp_xmit_data_off);
|
||
|
if (ret <= 0)
|
||
|
break;
|
||
|
|
||
|
if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
|
||
|
tmp = min_t(int, ret,
|
||
|
sizeof(struct rds_header) -
|
||
|
cp->cp_xmit_hdr_off);
|
||
|
cp->cp_xmit_hdr_off += tmp;
|
||
|
ret -= tmp;
|
||
|
}
|
||
|
|
||
|
sg = &rm->data.op_sg[cp->cp_xmit_sg];
|
||
|
while (ret) {
|
||
|
tmp = min_t(int, ret, sg->length -
|
||
|
cp->cp_xmit_data_off);
|
||
|
cp->cp_xmit_data_off += tmp;
|
||
|
ret -= tmp;
|
||
|
if (cp->cp_xmit_data_off == sg->length) {
|
||
|
cp->cp_xmit_data_off = 0;
|
||
|
sg++;
|
||
|
cp->cp_xmit_sg++;
|
||
|
BUG_ON(ret != 0 && cp->cp_xmit_sg ==
|
||
|
rm->data.op_nents);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
|
||
|
(cp->cp_xmit_sg == rm->data.op_nents))
|
||
|
cp->cp_xmit_data_sent = 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* A rm will only take multiple times through this loop
|
||
|
* if there is a data op. Thus, if the data is sent (or there was
|
||
|
* none), then we're done with the rm.
|
||
|
*/
|
||
|
if (!rm->data.op_active || cp->cp_xmit_data_sent) {
|
||
|
cp->cp_xmit_rm = NULL;
|
||
|
cp->cp_xmit_sg = 0;
|
||
|
cp->cp_xmit_hdr_off = 0;
|
||
|
cp->cp_xmit_data_off = 0;
|
||
|
cp->cp_xmit_rdma_sent = 0;
|
||
|
cp->cp_xmit_atomic_sent = 0;
|
||
|
cp->cp_xmit_data_sent = 0;
|
||
|
|
||
|
rds_message_put(rm);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
over_batch:
|
||
|
if (conn->c_trans->xmit_path_complete)
|
||
|
conn->c_trans->xmit_path_complete(cp);
|
||
|
release_in_xmit(cp);
|
||
|
|
||
|
/* Nuke any messages we decided not to retransmit. */
|
||
|
if (!list_empty(&to_be_dropped)) {
|
||
|
/* irqs on here, so we can put(), unlike above */
|
||
|
list_for_each_entry(rm, &to_be_dropped, m_conn_item)
|
||
|
rds_message_put(rm);
|
||
|
rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Other senders can queue a message after we last test the send queue
|
||
|
* but before we clear RDS_IN_XMIT. In that case they'd back off and
|
||
|
* not try and send their newly queued message. We need to check the
|
||
|
* send queue after having cleared RDS_IN_XMIT so that their message
|
||
|
* doesn't get stuck on the send queue.
|
||
|
*
|
||
|
* If the transport cannot continue (i.e ret != 0), then it must
|
||
|
* call us when more room is available, such as from the tx
|
||
|
* completion handler.
|
||
|
*
|
||
|
* We have an extra generation check here so that if someone manages
|
||
|
* to jump in after our release_in_xmit, we'll see that they have done
|
||
|
* some work and we will skip our goto
|
||
|
*/
|
||
|
if (ret == 0) {
|
||
|
bool raced;
|
||
|
|
||
|
smp_mb();
|
||
|
raced = send_gen != READ_ONCE(cp->cp_send_gen);
|
||
|
|
||
|
if ((test_bit(0, &conn->c_map_queued) ||
|
||
|
!list_empty(&cp->cp_send_queue)) && !raced) {
|
||
|
if (batch_count < send_batch_count)
|
||
|
goto restart;
|
||
|
rcu_read_lock();
|
||
|
if (rds_destroy_pending(cp->cp_conn))
|
||
|
ret = -ENETUNREACH;
|
||
|
else
|
||
|
queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
|
||
|
rcu_read_unlock();
|
||
|
} else if (raced) {
|
||
|
rds_stats_inc(s_send_lock_queue_raced);
|
||
|
}
|
||
|
}
|
||
|
out:
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rds_send_xmit);
|
||
|
|
||
|
static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
|
||
|
{
|
||
|
u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
|
||
|
|
||
|
assert_spin_locked(&rs->rs_lock);
|
||
|
|
||
|
BUG_ON(rs->rs_snd_bytes < len);
|
||
|
rs->rs_snd_bytes -= len;
|
||
|
|
||
|
if (rs->rs_snd_bytes == 0)
|
||
|
rds_stats_inc(s_send_queue_empty);
|
||
|
}
|
||
|
|
||
|
static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
|
||
|
is_acked_func is_acked)
|
||
|
{
|
||
|
if (is_acked)
|
||
|
return is_acked(rm, ack);
|
||
|
return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is pretty similar to what happens below in the ACK
|
||
|
* handling code - except that we call here as soon as we get
|
||
|
* the IB send completion on the RDMA op and the accompanying
|
||
|
* message.
|
||
|
*/
|
||
|
void rds_rdma_send_complete(struct rds_message *rm, int status)
|
||
|
{
|
||
|
struct rds_sock *rs = NULL;
|
||
|
struct rm_rdma_op *ro;
|
||
|
struct rds_notifier *notifier;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&rm->m_rs_lock, flags);
|
||
|
|
||
|
ro = &rm->rdma;
|
||
|
if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
|
||
|
ro->op_active && ro->op_notify && ro->op_notifier) {
|
||
|
notifier = ro->op_notifier;
|
||
|
rs = rm->m_rs;
|
||
|
sock_hold(rds_rs_to_sk(rs));
|
||
|
|
||
|
notifier->n_status = status;
|
||
|
spin_lock(&rs->rs_lock);
|
||
|
list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
|
||
|
spin_unlock(&rs->rs_lock);
|
||
|
|
||
|
ro->op_notifier = NULL;
|
||
|
}
|
||
|
|
||
|
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
|
||
|
|
||
|
if (rs) {
|
||
|
rds_wake_sk_sleep(rs);
|
||
|
sock_put(rds_rs_to_sk(rs));
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
|
||
|
|
||
|
/*
|
||
|
* Just like above, except looks at atomic op
|
||
|
*/
|
||
|
void rds_atomic_send_complete(struct rds_message *rm, int status)
|
||
|
{
|
||
|
struct rds_sock *rs = NULL;
|
||
|
struct rm_atomic_op *ao;
|
||
|
struct rds_notifier *notifier;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&rm->m_rs_lock, flags);
|
||
|
|
||
|
ao = &rm->atomic;
|
||
|
if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
|
||
|
&& ao->op_active && ao->op_notify && ao->op_notifier) {
|
||
|
notifier = ao->op_notifier;
|
||
|
rs = rm->m_rs;
|
||
|
sock_hold(rds_rs_to_sk(rs));
|
||
|
|
||
|
notifier->n_status = status;
|
||
|
spin_lock(&rs->rs_lock);
|
||
|
list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
|
||
|
spin_unlock(&rs->rs_lock);
|
||
|
|
||
|
ao->op_notifier = NULL;
|
||
|
}
|
||
|
|
||
|
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
|
||
|
|
||
|
if (rs) {
|
||
|
rds_wake_sk_sleep(rs);
|
||
|
sock_put(rds_rs_to_sk(rs));
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
|
||
|
|
||
|
/*
|
||
|
* This is the same as rds_rdma_send_complete except we
|
||
|
* don't do any locking - we have all the ingredients (message,
|
||
|
* socket, socket lock) and can just move the notifier.
|
||
|
*/
|
||
|
static inline void
|
||
|
__rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
|
||
|
{
|
||
|
struct rm_rdma_op *ro;
|
||
|
struct rm_atomic_op *ao;
|
||
|
|
||
|
ro = &rm->rdma;
|
||
|
if (ro->op_active && ro->op_notify && ro->op_notifier) {
|
||
|
ro->op_notifier->n_status = status;
|
||
|
list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
|
||
|
ro->op_notifier = NULL;
|
||
|
}
|
||
|
|
||
|
ao = &rm->atomic;
|
||
|
if (ao->op_active && ao->op_notify && ao->op_notifier) {
|
||
|
ao->op_notifier->n_status = status;
|
||
|
list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
|
||
|
ao->op_notifier = NULL;
|
||
|
}
|
||
|
|
||
|
/* No need to wake the app - caller does this */
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This removes messages from the socket's list if they're on it. The list
|
||
|
* argument must be private to the caller, we must be able to modify it
|
||
|
* without locks. The messages must have a reference held for their
|
||
|
* position on the list. This function will drop that reference after
|
||
|
* removing the messages from the 'messages' list regardless of if it found
|
||
|
* the messages on the socket list or not.
|
||
|
*/
|
||
|
static void rds_send_remove_from_sock(struct list_head *messages, int status)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct rds_sock *rs = NULL;
|
||
|
struct rds_message *rm;
|
||
|
|
||
|
while (!list_empty(messages)) {
|
||
|
int was_on_sock = 0;
|
||
|
|
||
|
rm = list_entry(messages->next, struct rds_message,
|
||
|
m_conn_item);
|
||
|
list_del_init(&rm->m_conn_item);
|
||
|
|
||
|
/*
|
||
|
* If we see this flag cleared then we're *sure* that someone
|
||
|
* else beat us to removing it from the sock. If we race
|
||
|
* with their flag update we'll get the lock and then really
|
||
|
* see that the flag has been cleared.
|
||
|
*
|
||
|
* The message spinlock makes sure nobody clears rm->m_rs
|
||
|
* while we're messing with it. It does not prevent the
|
||
|
* message from being removed from the socket, though.
|
||
|
*/
|
||
|
spin_lock_irqsave(&rm->m_rs_lock, flags);
|
||
|
if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
|
||
|
goto unlock_and_drop;
|
||
|
|
||
|
if (rs != rm->m_rs) {
|
||
|
if (rs) {
|
||
|
rds_wake_sk_sleep(rs);
|
||
|
sock_put(rds_rs_to_sk(rs));
|
||
|
}
|
||
|
rs = rm->m_rs;
|
||
|
if (rs)
|
||
|
sock_hold(rds_rs_to_sk(rs));
|
||
|
}
|
||
|
if (!rs)
|
||
|
goto unlock_and_drop;
|
||
|
spin_lock(&rs->rs_lock);
|
||
|
|
||
|
if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
|
||
|
struct rm_rdma_op *ro = &rm->rdma;
|
||
|
struct rds_notifier *notifier;
|
||
|
|
||
|
list_del_init(&rm->m_sock_item);
|
||
|
rds_send_sndbuf_remove(rs, rm);
|
||
|
|
||
|
if (ro->op_active && ro->op_notifier &&
|
||
|
(ro->op_notify || (ro->op_recverr && status))) {
|
||
|
notifier = ro->op_notifier;
|
||
|
list_add_tail(¬ifier->n_list,
|
||
|
&rs->rs_notify_queue);
|
||
|
if (!notifier->n_status)
|
||
|
notifier->n_status = status;
|
||
|
rm->rdma.op_notifier = NULL;
|
||
|
}
|
||
|
was_on_sock = 1;
|
||
|
}
|
||
|
spin_unlock(&rs->rs_lock);
|
||
|
|
||
|
unlock_and_drop:
|
||
|
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
|
||
|
rds_message_put(rm);
|
||
|
if (was_on_sock)
|
||
|
rds_message_put(rm);
|
||
|
}
|
||
|
|
||
|
if (rs) {
|
||
|
rds_wake_sk_sleep(rs);
|
||
|
sock_put(rds_rs_to_sk(rs));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Transports call here when they've determined that the receiver queued
|
||
|
* messages up to, and including, the given sequence number. Messages are
|
||
|
* moved to the retrans queue when rds_send_xmit picks them off the send
|
||
|
* queue. This means that in the TCP case, the message may not have been
|
||
|
* assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
|
||
|
* checks the RDS_MSG_HAS_ACK_SEQ bit.
|
||
|
*/
|
||
|
void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
|
||
|
is_acked_func is_acked)
|
||
|
{
|
||
|
struct rds_message *rm, *tmp;
|
||
|
unsigned long flags;
|
||
|
LIST_HEAD(list);
|
||
|
|
||
|
spin_lock_irqsave(&cp->cp_lock, flags);
|
||
|
|
||
|
list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
|
||
|
if (!rds_send_is_acked(rm, ack, is_acked))
|
||
|
break;
|
||
|
|
||
|
list_move(&rm->m_conn_item, &list);
|
||
|
clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
|
||
|
}
|
||
|
|
||
|
/* order flag updates with spin locks */
|
||
|
if (!list_empty(&list))
|
||
|
smp_mb__after_atomic();
|
||
|
|
||
|
spin_unlock_irqrestore(&cp->cp_lock, flags);
|
||
|
|
||
|
/* now remove the messages from the sock list as needed */
|
||
|
rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
|
||
|
|
||
|
void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
|
||
|
is_acked_func is_acked)
|
||
|
{
|
||
|
WARN_ON(conn->c_trans->t_mp_capable);
|
||
|
rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rds_send_drop_acked);
|
||
|
|
||
|
void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest)
|
||
|
{
|
||
|
struct rds_message *rm, *tmp;
|
||
|
struct rds_connection *conn;
|
||
|
struct rds_conn_path *cp;
|
||
|
unsigned long flags;
|
||
|
LIST_HEAD(list);
|
||
|
|
||
|
/* get all the messages we're dropping under the rs lock */
|
||
|
spin_lock_irqsave(&rs->rs_lock, flags);
|
||
|
|
||
|
list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
|
||
|
if (dest &&
|
||
|
(!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) ||
|
||
|
dest->sin6_port != rm->m_inc.i_hdr.h_dport))
|
||
|
continue;
|
||
|
|
||
|
list_move(&rm->m_sock_item, &list);
|
||
|
rds_send_sndbuf_remove(rs, rm);
|
||
|
clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
|
||
|
}
|
||
|
|
||
|
/* order flag updates with the rs lock */
|
||
|
smp_mb__after_atomic();
|
||
|
|
||
|
spin_unlock_irqrestore(&rs->rs_lock, flags);
|
||
|
|
||
|
if (list_empty(&list))
|
||
|
return;
|
||
|
|
||
|
/* Remove the messages from the conn */
|
||
|
list_for_each_entry(rm, &list, m_sock_item) {
|
||
|
|
||
|
conn = rm->m_inc.i_conn;
|
||
|
if (conn->c_trans->t_mp_capable)
|
||
|
cp = rm->m_inc.i_conn_path;
|
||
|
else
|
||
|
cp = &conn->c_path[0];
|
||
|
|
||
|
spin_lock_irqsave(&cp->cp_lock, flags);
|
||
|
/*
|
||
|
* Maybe someone else beat us to removing rm from the conn.
|
||
|
* If we race with their flag update we'll get the lock and
|
||
|
* then really see that the flag has been cleared.
|
||
|
*/
|
||
|
if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
|
||
|
spin_unlock_irqrestore(&cp->cp_lock, flags);
|
||
|
continue;
|
||
|
}
|
||
|
list_del_init(&rm->m_conn_item);
|
||
|
spin_unlock_irqrestore(&cp->cp_lock, flags);
|
||
|
|
||
|
/*
|
||
|
* Couldn't grab m_rs_lock in top loop (lock ordering),
|
||
|
* but we can now.
|
||
|
*/
|
||
|
spin_lock_irqsave(&rm->m_rs_lock, flags);
|
||
|
|
||
|
spin_lock(&rs->rs_lock);
|
||
|
__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
|
||
|
spin_unlock(&rs->rs_lock);
|
||
|
|
||
|
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
|
||
|
|
||
|
rds_message_put(rm);
|
||
|
}
|
||
|
|
||
|
rds_wake_sk_sleep(rs);
|
||
|
|
||
|
while (!list_empty(&list)) {
|
||
|
rm = list_entry(list.next, struct rds_message, m_sock_item);
|
||
|
list_del_init(&rm->m_sock_item);
|
||
|
rds_message_wait(rm);
|
||
|
|
||
|
/* just in case the code above skipped this message
|
||
|
* because RDS_MSG_ON_CONN wasn't set, run it again here
|
||
|
* taking m_rs_lock is the only thing that keeps us
|
||
|
* from racing with ack processing.
|
||
|
*/
|
||
|
spin_lock_irqsave(&rm->m_rs_lock, flags);
|
||
|
|
||
|
spin_lock(&rs->rs_lock);
|
||
|
__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
|
||
|
spin_unlock(&rs->rs_lock);
|
||
|
|
||
|
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
|
||
|
|
||
|
rds_message_put(rm);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* we only want this to fire once so we use the callers 'queued'. It's
|
||
|
* possible that another thread can race with us and remove the
|
||
|
* message from the flow with RDS_CANCEL_SENT_TO.
|
||
|
*/
|
||
|
static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
|
||
|
struct rds_conn_path *cp,
|
||
|
struct rds_message *rm, __be16 sport,
|
||
|
__be16 dport, int *queued)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
u32 len;
|
||
|
|
||
|
if (*queued)
|
||
|
goto out;
|
||
|
|
||
|
len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
|
||
|
|
||
|
/* this is the only place which holds both the socket's rs_lock
|
||
|
* and the connection's c_lock */
|
||
|
spin_lock_irqsave(&rs->rs_lock, flags);
|
||
|
|
||
|
/*
|
||
|
* If there is a little space in sndbuf, we don't queue anything,
|
||
|
* and userspace gets -EAGAIN. But poll() indicates there's send
|
||
|
* room. This can lead to bad behavior (spinning) if snd_bytes isn't
|
||
|
* freed up by incoming acks. So we check the *old* value of
|
||
|
* rs_snd_bytes here to allow the last msg to exceed the buffer,
|
||
|
* and poll() now knows no more data can be sent.
|
||
|
*/
|
||
|
if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
|
||
|
rs->rs_snd_bytes += len;
|
||
|
|
||
|
/* let recv side know we are close to send space exhaustion.
|
||
|
* This is probably not the optimal way to do it, as this
|
||
|
* means we set the flag on *all* messages as soon as our
|
||
|
* throughput hits a certain threshold.
|
||
|
*/
|
||
|
if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
|
||
|
set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
|
||
|
|
||
|
list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
|
||
|
set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
|
||
|
rds_message_addref(rm);
|
||
|
sock_hold(rds_rs_to_sk(rs));
|
||
|
rm->m_rs = rs;
|
||
|
|
||
|
/* The code ordering is a little weird, but we're
|
||
|
trying to minimize the time we hold c_lock */
|
||
|
rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
|
||
|
rm->m_inc.i_conn = conn;
|
||
|
rm->m_inc.i_conn_path = cp;
|
||
|
rds_message_addref(rm);
|
||
|
|
||
|
spin_lock(&cp->cp_lock);
|
||
|
rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
|
||
|
list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
|
||
|
set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
|
||
|
spin_unlock(&cp->cp_lock);
|
||
|
|
||
|
rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
|
||
|
rm, len, rs, rs->rs_snd_bytes,
|
||
|
(unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
|
||
|
|
||
|
*queued = 1;
|
||
|
}
|
||
|
|
||
|
spin_unlock_irqrestore(&rs->rs_lock, flags);
|
||
|
out:
|
||
|
return *queued;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* rds_message is getting to be quite complicated, and we'd like to allocate
|
||
|
* it all in one go. This figures out how big it needs to be up front.
|
||
|
*/
|
||
|
static int rds_rm_size(struct msghdr *msg, int num_sgs,
|
||
|
struct rds_iov_vector_arr *vct)
|
||
|
{
|
||
|
struct cmsghdr *cmsg;
|
||
|
int size = 0;
|
||
|
int cmsg_groups = 0;
|
||
|
int retval;
|
||
|
bool zcopy_cookie = false;
|
||
|
struct rds_iov_vector *iov, *tmp_iov;
|
||
|
|
||
|
if (num_sgs < 0)
|
||
|
return -EINVAL;
|
||
|
|
||
|
for_each_cmsghdr(cmsg, msg) {
|
||
|
if (!CMSG_OK(msg, cmsg))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (cmsg->cmsg_level != SOL_RDS)
|
||
|
continue;
|
||
|
|
||
|
switch (cmsg->cmsg_type) {
|
||
|
case RDS_CMSG_RDMA_ARGS:
|
||
|
if (vct->indx >= vct->len) {
|
||
|
vct->len += vct->incr;
|
||
|
tmp_iov =
|
||
|
krealloc(vct->vec,
|
||
|
vct->len *
|
||
|
sizeof(struct rds_iov_vector),
|
||
|
GFP_KERNEL);
|
||
|
if (!tmp_iov) {
|
||
|
vct->len -= vct->incr;
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
vct->vec = tmp_iov;
|
||
|
}
|
||
|
iov = &vct->vec[vct->indx];
|
||
|
memset(iov, 0, sizeof(struct rds_iov_vector));
|
||
|
vct->indx++;
|
||
|
cmsg_groups |= 1;
|
||
|
retval = rds_rdma_extra_size(CMSG_DATA(cmsg), iov);
|
||
|
if (retval < 0)
|
||
|
return retval;
|
||
|
size += retval;
|
||
|
|
||
|
break;
|
||
|
|
||
|
case RDS_CMSG_ZCOPY_COOKIE:
|
||
|
zcopy_cookie = true;
|
||
|
fallthrough;
|
||
|
|
||
|
case RDS_CMSG_RDMA_DEST:
|
||
|
case RDS_CMSG_RDMA_MAP:
|
||
|
cmsg_groups |= 2;
|
||
|
/* these are valid but do no add any size */
|
||
|
break;
|
||
|
|
||
|
case RDS_CMSG_ATOMIC_CSWP:
|
||
|
case RDS_CMSG_ATOMIC_FADD:
|
||
|
case RDS_CMSG_MASKED_ATOMIC_CSWP:
|
||
|
case RDS_CMSG_MASKED_ATOMIC_FADD:
|
||
|
cmsg_groups |= 1;
|
||
|
size += sizeof(struct scatterlist);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie)
|
||
|
return -EINVAL;
|
||
|
|
||
|
size += num_sgs * sizeof(struct scatterlist);
|
||
|
|
||
|
/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
|
||
|
if (cmsg_groups == 3)
|
||
|
return -EINVAL;
|
||
|
|
||
|
return size;
|
||
|
}
|
||
|
|
||
|
static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm,
|
||
|
struct cmsghdr *cmsg)
|
||
|
{
|
||
|
u32 *cookie;
|
||
|
|
||
|
if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) ||
|
||
|
!rm->data.op_mmp_znotifier)
|
||
|
return -EINVAL;
|
||
|
cookie = CMSG_DATA(cmsg);
|
||
|
rm->data.op_mmp_znotifier->z_cookie = *cookie;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
|
||
|
struct msghdr *msg, int *allocated_mr,
|
||
|
struct rds_iov_vector_arr *vct)
|
||
|
{
|
||
|
struct cmsghdr *cmsg;
|
||
|
int ret = 0, ind = 0;
|
||
|
|
||
|
for_each_cmsghdr(cmsg, msg) {
|
||
|
if (!CMSG_OK(msg, cmsg))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (cmsg->cmsg_level != SOL_RDS)
|
||
|
continue;
|
||
|
|
||
|
/* As a side effect, RDMA_DEST and RDMA_MAP will set
|
||
|
* rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
|
||
|
*/
|
||
|
switch (cmsg->cmsg_type) {
|
||
|
case RDS_CMSG_RDMA_ARGS:
|
||
|
if (ind >= vct->indx)
|
||
|
return -ENOMEM;
|
||
|
ret = rds_cmsg_rdma_args(rs, rm, cmsg, &vct->vec[ind]);
|
||
|
ind++;
|
||
|
break;
|
||
|
|
||
|
case RDS_CMSG_RDMA_DEST:
|
||
|
ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
|
||
|
break;
|
||
|
|
||
|
case RDS_CMSG_RDMA_MAP:
|
||
|
ret = rds_cmsg_rdma_map(rs, rm, cmsg);
|
||
|
if (!ret)
|
||
|
*allocated_mr = 1;
|
||
|
else if (ret == -ENODEV)
|
||
|
/* Accommodate the get_mr() case which can fail
|
||
|
* if connection isn't established yet.
|
||
|
*/
|
||
|
ret = -EAGAIN;
|
||
|
break;
|
||
|
case RDS_CMSG_ATOMIC_CSWP:
|
||
|
case RDS_CMSG_ATOMIC_FADD:
|
||
|
case RDS_CMSG_MASKED_ATOMIC_CSWP:
|
||
|
case RDS_CMSG_MASKED_ATOMIC_FADD:
|
||
|
ret = rds_cmsg_atomic(rs, rm, cmsg);
|
||
|
break;
|
||
|
|
||
|
case RDS_CMSG_ZCOPY_COOKIE:
|
||
|
ret = rds_cmsg_zcopy(rs, rm, cmsg);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (ret)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int rds_send_mprds_hash(struct rds_sock *rs,
|
||
|
struct rds_connection *conn, int nonblock)
|
||
|
{
|
||
|
int hash;
|
||
|
|
||
|
if (conn->c_npaths == 0)
|
||
|
hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
|
||
|
else
|
||
|
hash = RDS_MPATH_HASH(rs, conn->c_npaths);
|
||
|
if (conn->c_npaths == 0 && hash != 0) {
|
||
|
rds_send_ping(conn, 0);
|
||
|
|
||
|
/* The underlying connection is not up yet. Need to wait
|
||
|
* until it is up to be sure that the non-zero c_path can be
|
||
|
* used. But if we are interrupted, we have to use the zero
|
||
|
* c_path in case the connection ends up being non-MP capable.
|
||
|
*/
|
||
|
if (conn->c_npaths == 0) {
|
||
|
/* Cannot wait for the connection be made, so just use
|
||
|
* the base c_path.
|
||
|
*/
|
||
|
if (nonblock)
|
||
|
return 0;
|
||
|
if (wait_event_interruptible(conn->c_hs_waitq,
|
||
|
conn->c_npaths != 0))
|
||
|
hash = 0;
|
||
|
}
|
||
|
if (conn->c_npaths == 1)
|
||
|
hash = 0;
|
||
|
}
|
||
|
return hash;
|
||
|
}
|
||
|
|
||
|
static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
|
||
|
{
|
||
|
struct rds_rdma_args *args;
|
||
|
struct cmsghdr *cmsg;
|
||
|
|
||
|
for_each_cmsghdr(cmsg, msg) {
|
||
|
if (!CMSG_OK(msg, cmsg))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (cmsg->cmsg_level != SOL_RDS)
|
||
|
continue;
|
||
|
|
||
|
if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
|
||
|
if (cmsg->cmsg_len <
|
||
|
CMSG_LEN(sizeof(struct rds_rdma_args)))
|
||
|
return -EINVAL;
|
||
|
args = CMSG_DATA(cmsg);
|
||
|
*rdma_bytes += args->remote_vec.bytes;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
|
||
|
{
|
||
|
struct sock *sk = sock->sk;
|
||
|
struct rds_sock *rs = rds_sk_to_rs(sk);
|
||
|
DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
|
||
|
DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
|
||
|
__be16 dport;
|
||
|
struct rds_message *rm = NULL;
|
||
|
struct rds_connection *conn;
|
||
|
int ret = 0;
|
||
|
int queued = 0, allocated_mr = 0;
|
||
|
int nonblock = msg->msg_flags & MSG_DONTWAIT;
|
||
|
long timeo = sock_sndtimeo(sk, nonblock);
|
||
|
struct rds_conn_path *cpath;
|
||
|
struct in6_addr daddr;
|
||
|
__u32 scope_id = 0;
|
||
|
size_t total_payload_len = payload_len, rdma_payload_len = 0;
|
||
|
bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) &&
|
||
|
sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY));
|
||
|
int num_sgs = DIV_ROUND_UP(payload_len, PAGE_SIZE);
|
||
|
int namelen;
|
||
|
struct rds_iov_vector_arr vct;
|
||
|
int ind;
|
||
|
|
||
|
memset(&vct, 0, sizeof(vct));
|
||
|
|
||
|
/* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */
|
||
|
vct.incr = 1;
|
||
|
|
||
|
/* Mirror Linux UDP mirror of BSD error message compatibility */
|
||
|
/* XXX: Perhaps MSG_MORE someday */
|
||
|
if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) {
|
||
|
ret = -EOPNOTSUPP;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
namelen = msg->msg_namelen;
|
||
|
if (namelen != 0) {
|
||
|
if (namelen < sizeof(*usin)) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
switch (usin->sin_family) {
|
||
|
case AF_INET:
|
||
|
if (usin->sin_addr.s_addr == htonl(INADDR_ANY) ||
|
||
|
usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) ||
|
||
|
ipv4_is_multicast(usin->sin_addr.s_addr)) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr);
|
||
|
dport = usin->sin_port;
|
||
|
break;
|
||
|
|
||
|
#if IS_ENABLED(CONFIG_IPV6)
|
||
|
case AF_INET6: {
|
||
|
int addr_type;
|
||
|
|
||
|
if (namelen < sizeof(*sin6)) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
addr_type = ipv6_addr_type(&sin6->sin6_addr);
|
||
|
if (!(addr_type & IPV6_ADDR_UNICAST)) {
|
||
|
__be32 addr4;
|
||
|
|
||
|
if (!(addr_type & IPV6_ADDR_MAPPED)) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* It is a mapped address. Need to do some
|
||
|
* sanity checks.
|
||
|
*/
|
||
|
addr4 = sin6->sin6_addr.s6_addr32[3];
|
||
|
if (addr4 == htonl(INADDR_ANY) ||
|
||
|
addr4 == htonl(INADDR_BROADCAST) ||
|
||
|
ipv4_is_multicast(addr4)) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
if (addr_type & IPV6_ADDR_LINKLOCAL) {
|
||
|
if (sin6->sin6_scope_id == 0) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
scope_id = sin6->sin6_scope_id;
|
||
|
}
|
||
|
|
||
|
daddr = sin6->sin6_addr;
|
||
|
dport = sin6->sin6_port;
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
default:
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
} else {
|
||
|
/* We only care about consistency with ->connect() */
|
||
|
lock_sock(sk);
|
||
|
daddr = rs->rs_conn_addr;
|
||
|
dport = rs->rs_conn_port;
|
||
|
scope_id = rs->rs_bound_scope_id;
|
||
|
release_sock(sk);
|
||
|
}
|
||
|
|
||
|
lock_sock(sk);
|
||
|
if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) {
|
||
|
release_sock(sk);
|
||
|
ret = -ENOTCONN;
|
||
|
goto out;
|
||
|
} else if (namelen != 0) {
|
||
|
/* Cannot send to an IPv4 address using an IPv6 source
|
||
|
* address and cannot send to an IPv6 address using an
|
||
|
* IPv4 source address.
|
||
|
*/
|
||
|
if (ipv6_addr_v4mapped(&daddr) ^
|
||
|
ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
|
||
|
release_sock(sk);
|
||
|
ret = -EOPNOTSUPP;
|
||
|
goto out;
|
||
|
}
|
||
|
/* If the socket is already bound to a link local address,
|
||
|
* it can only send to peers on the same link. But allow
|
||
|
* communicating between link local and non-link local address.
|
||
|
*/
|
||
|
if (scope_id != rs->rs_bound_scope_id) {
|
||
|
if (!scope_id) {
|
||
|
scope_id = rs->rs_bound_scope_id;
|
||
|
} else if (rs->rs_bound_scope_id) {
|
||
|
release_sock(sk);
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
release_sock(sk);
|
||
|
|
||
|
ret = rds_rdma_bytes(msg, &rdma_payload_len);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
|
||
|
total_payload_len += rdma_payload_len;
|
||
|
if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
|
||
|
ret = -EMSGSIZE;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (payload_len > rds_sk_sndbuf(rs)) {
|
||
|
ret = -EMSGSIZE;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (zcopy) {
|
||
|
if (rs->rs_transport->t_type != RDS_TRANS_TCP) {
|
||
|
ret = -EOPNOTSUPP;
|
||
|
goto out;
|
||
|
}
|
||
|
num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX);
|
||
|
}
|
||
|
/* size of rm including all sgs */
|
||
|
ret = rds_rm_size(msg, num_sgs, &vct);
|
||
|
if (ret < 0)
|
||
|
goto out;
|
||
|
|
||
|
rm = rds_message_alloc(ret, GFP_KERNEL);
|
||
|
if (!rm) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Attach data to the rm */
|
||
|
if (payload_len) {
|
||
|
rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs);
|
||
|
if (IS_ERR(rm->data.op_sg)) {
|
||
|
ret = PTR_ERR(rm->data.op_sg);
|
||
|
goto out;
|
||
|
}
|
||
|
ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
}
|
||
|
rm->data.op_active = 1;
|
||
|
|
||
|
rm->m_daddr = daddr;
|
||
|
|
||
|
/* rds_conn_create has a spinlock that runs with IRQ off.
|
||
|
* Caching the conn in the socket helps a lot. */
|
||
|
if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr) &&
|
||
|
rs->rs_tos == rs->rs_conn->c_tos) {
|
||
|
conn = rs->rs_conn;
|
||
|
} else {
|
||
|
conn = rds_conn_create_outgoing(sock_net(sock->sk),
|
||
|
&rs->rs_bound_addr, &daddr,
|
||
|
rs->rs_transport, rs->rs_tos,
|
||
|
sock->sk->sk_allocation,
|
||
|
scope_id);
|
||
|
if (IS_ERR(conn)) {
|
||
|
ret = PTR_ERR(conn);
|
||
|
goto out;
|
||
|
}
|
||
|
rs->rs_conn = conn;
|
||
|
}
|
||
|
|
||
|
if (conn->c_trans->t_mp_capable)
|
||
|
cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)];
|
||
|
else
|
||
|
cpath = &conn->c_path[0];
|
||
|
|
||
|
rm->m_conn_path = cpath;
|
||
|
|
||
|
/* Parse any control messages the user may have included. */
|
||
|
ret = rds_cmsg_send(rs, rm, msg, &allocated_mr, &vct);
|
||
|
if (ret) {
|
||
|
/* Trigger connection so that its ready for the next retry */
|
||
|
if (ret == -EAGAIN)
|
||
|
rds_conn_connect_if_down(conn);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
|
||
|
printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
|
||
|
&rm->rdma, conn->c_trans->xmit_rdma);
|
||
|
ret = -EOPNOTSUPP;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
|
||
|
printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
|
||
|
&rm->atomic, conn->c_trans->xmit_atomic);
|
||
|
ret = -EOPNOTSUPP;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (rds_destroy_pending(conn)) {
|
||
|
ret = -EAGAIN;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (rds_conn_path_down(cpath))
|
||
|
rds_check_all_paths(conn);
|
||
|
|
||
|
ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
|
||
|
if (ret) {
|
||
|
rs->rs_seen_congestion = 1;
|
||
|
goto out;
|
||
|
}
|
||
|
while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
|
||
|
dport, &queued)) {
|
||
|
rds_stats_inc(s_send_queue_full);
|
||
|
|
||
|
if (nonblock) {
|
||
|
ret = -EAGAIN;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
|
||
|
rds_send_queue_rm(rs, conn, cpath, rm,
|
||
|
rs->rs_bound_port,
|
||
|
dport,
|
||
|
&queued),
|
||
|
timeo);
|
||
|
rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
|
||
|
if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
|
||
|
continue;
|
||
|
|
||
|
ret = timeo;
|
||
|
if (ret == 0)
|
||
|
ret = -ETIMEDOUT;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* By now we've committed to the send. We reuse rds_send_worker()
|
||
|
* to retry sends in the rds thread if the transport asks us to.
|
||
|
*/
|
||
|
rds_stats_inc(s_send_queued);
|
||
|
|
||
|
ret = rds_send_xmit(cpath);
|
||
|
if (ret == -ENOMEM || ret == -EAGAIN) {
|
||
|
ret = 0;
|
||
|
rcu_read_lock();
|
||
|
if (rds_destroy_pending(cpath->cp_conn))
|
||
|
ret = -ENETUNREACH;
|
||
|
else
|
||
|
queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
|
||
|
rcu_read_unlock();
|
||
|
}
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
rds_message_put(rm);
|
||
|
|
||
|
for (ind = 0; ind < vct.indx; ind++)
|
||
|
kfree(vct.vec[ind].iov);
|
||
|
kfree(vct.vec);
|
||
|
|
||
|
return payload_len;
|
||
|
|
||
|
out:
|
||
|
for (ind = 0; ind < vct.indx; ind++)
|
||
|
kfree(vct.vec[ind].iov);
|
||
|
kfree(vct.vec);
|
||
|
|
||
|
/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
|
||
|
* If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
|
||
|
* or in any other way, we need to destroy the MR again */
|
||
|
if (allocated_mr)
|
||
|
rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
|
||
|
|
||
|
if (rm)
|
||
|
rds_message_put(rm);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* send out a probe. Can be shared by rds_send_ping,
|
||
|
* rds_send_pong, rds_send_hb.
|
||
|
* rds_send_hb should use h_flags
|
||
|
* RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
|
||
|
* or
|
||
|
* RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
|
||
|
*/
|
||
|
static int
|
||
|
rds_send_probe(struct rds_conn_path *cp, __be16 sport,
|
||
|
__be16 dport, u8 h_flags)
|
||
|
{
|
||
|
struct rds_message *rm;
|
||
|
unsigned long flags;
|
||
|
int ret = 0;
|
||
|
|
||
|
rm = rds_message_alloc(0, GFP_ATOMIC);
|
||
|
if (!rm) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
rm->m_daddr = cp->cp_conn->c_faddr;
|
||
|
rm->data.op_active = 1;
|
||
|
|
||
|
rds_conn_path_connect_if_down(cp);
|
||
|
|
||
|
ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
|
||
|
spin_lock_irqsave(&cp->cp_lock, flags);
|
||
|
list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
|
||
|
set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
|
||
|
rds_message_addref(rm);
|
||
|
rm->m_inc.i_conn = cp->cp_conn;
|
||
|
rm->m_inc.i_conn_path = cp;
|
||
|
|
||
|
rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
|
||
|
cp->cp_next_tx_seq);
|
||
|
rm->m_inc.i_hdr.h_flags |= h_flags;
|
||
|
cp->cp_next_tx_seq++;
|
||
|
|
||
|
if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
|
||
|
cp->cp_conn->c_trans->t_mp_capable) {
|
||
|
u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
|
||
|
u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
|
||
|
|
||
|
rds_message_add_extension(&rm->m_inc.i_hdr,
|
||
|
RDS_EXTHDR_NPATHS, &npaths,
|
||
|
sizeof(npaths));
|
||
|
rds_message_add_extension(&rm->m_inc.i_hdr,
|
||
|
RDS_EXTHDR_GEN_NUM,
|
||
|
&my_gen_num,
|
||
|
sizeof(u32));
|
||
|
}
|
||
|
spin_unlock_irqrestore(&cp->cp_lock, flags);
|
||
|
|
||
|
rds_stats_inc(s_send_queued);
|
||
|
rds_stats_inc(s_send_pong);
|
||
|
|
||
|
/* schedule the send work on rds_wq */
|
||
|
rcu_read_lock();
|
||
|
if (!rds_destroy_pending(cp->cp_conn))
|
||
|
queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
rds_message_put(rm);
|
||
|
return 0;
|
||
|
|
||
|
out:
|
||
|
if (rm)
|
||
|
rds_message_put(rm);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
rds_send_pong(struct rds_conn_path *cp, __be16 dport)
|
||
|
{
|
||
|
return rds_send_probe(cp, 0, dport, 0);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
rds_send_ping(struct rds_connection *conn, int cp_index)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct rds_conn_path *cp = &conn->c_path[cp_index];
|
||
|
|
||
|
spin_lock_irqsave(&cp->cp_lock, flags);
|
||
|
if (conn->c_ping_triggered) {
|
||
|
spin_unlock_irqrestore(&cp->cp_lock, flags);
|
||
|
return;
|
||
|
}
|
||
|
conn->c_ping_triggered = 1;
|
||
|
spin_unlock_irqrestore(&cp->cp_lock, flags);
|
||
|
rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rds_send_ping);
|