929 lines
24 KiB
C
929 lines
24 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0
|
||
|
*
|
||
|
* page_pool.c
|
||
|
* Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
|
||
|
* Copyright (C) 2016 Red Hat, Inc.
|
||
|
*/
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/device.h>
|
||
|
|
||
|
#include <net/page_pool.h>
|
||
|
#include <net/xdp.h>
|
||
|
|
||
|
#include <linux/dma-direction.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <linux/page-flags.h>
|
||
|
#include <linux/mm.h> /* for put_page() */
|
||
|
#include <linux/poison.h>
|
||
|
#include <linux/ethtool.h>
|
||
|
|
||
|
#include <trace/events/page_pool.h>
|
||
|
|
||
|
#define DEFER_TIME (msecs_to_jiffies(1000))
|
||
|
#define DEFER_WARN_INTERVAL (60 * HZ)
|
||
|
|
||
|
#define BIAS_MAX LONG_MAX
|
||
|
|
||
|
#ifdef CONFIG_PAGE_POOL_STATS
|
||
|
/* alloc_stat_inc is intended to be used in softirq context */
|
||
|
#define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++)
|
||
|
/* recycle_stat_inc is safe to use when preemption is possible. */
|
||
|
#define recycle_stat_inc(pool, __stat) \
|
||
|
do { \
|
||
|
struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
|
||
|
this_cpu_inc(s->__stat); \
|
||
|
} while (0)
|
||
|
|
||
|
#define recycle_stat_add(pool, __stat, val) \
|
||
|
do { \
|
||
|
struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
|
||
|
this_cpu_add(s->__stat, val); \
|
||
|
} while (0)
|
||
|
|
||
|
static const char pp_stats[][ETH_GSTRING_LEN] = {
|
||
|
"rx_pp_alloc_fast",
|
||
|
"rx_pp_alloc_slow",
|
||
|
"rx_pp_alloc_slow_ho",
|
||
|
"rx_pp_alloc_empty",
|
||
|
"rx_pp_alloc_refill",
|
||
|
"rx_pp_alloc_waive",
|
||
|
"rx_pp_recycle_cached",
|
||
|
"rx_pp_recycle_cache_full",
|
||
|
"rx_pp_recycle_ring",
|
||
|
"rx_pp_recycle_ring_full",
|
||
|
"rx_pp_recycle_released_ref",
|
||
|
};
|
||
|
|
||
|
bool page_pool_get_stats(struct page_pool *pool,
|
||
|
struct page_pool_stats *stats)
|
||
|
{
|
||
|
int cpu = 0;
|
||
|
|
||
|
if (!stats)
|
||
|
return false;
|
||
|
|
||
|
/* The caller is responsible to initialize stats. */
|
||
|
stats->alloc_stats.fast += pool->alloc_stats.fast;
|
||
|
stats->alloc_stats.slow += pool->alloc_stats.slow;
|
||
|
stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
|
||
|
stats->alloc_stats.empty += pool->alloc_stats.empty;
|
||
|
stats->alloc_stats.refill += pool->alloc_stats.refill;
|
||
|
stats->alloc_stats.waive += pool->alloc_stats.waive;
|
||
|
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
const struct page_pool_recycle_stats *pcpu =
|
||
|
per_cpu_ptr(pool->recycle_stats, cpu);
|
||
|
|
||
|
stats->recycle_stats.cached += pcpu->cached;
|
||
|
stats->recycle_stats.cache_full += pcpu->cache_full;
|
||
|
stats->recycle_stats.ring += pcpu->ring;
|
||
|
stats->recycle_stats.ring_full += pcpu->ring_full;
|
||
|
stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
EXPORT_SYMBOL(page_pool_get_stats);
|
||
|
|
||
|
u8 *page_pool_ethtool_stats_get_strings(u8 *data)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
|
||
|
memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
|
||
|
data += ETH_GSTRING_LEN;
|
||
|
}
|
||
|
|
||
|
return data;
|
||
|
}
|
||
|
EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
|
||
|
|
||
|
int page_pool_ethtool_stats_get_count(void)
|
||
|
{
|
||
|
return ARRAY_SIZE(pp_stats);
|
||
|
}
|
||
|
EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
|
||
|
|
||
|
u64 *page_pool_ethtool_stats_get(u64 *data, void *stats)
|
||
|
{
|
||
|
struct page_pool_stats *pool_stats = stats;
|
||
|
|
||
|
*data++ = pool_stats->alloc_stats.fast;
|
||
|
*data++ = pool_stats->alloc_stats.slow;
|
||
|
*data++ = pool_stats->alloc_stats.slow_high_order;
|
||
|
*data++ = pool_stats->alloc_stats.empty;
|
||
|
*data++ = pool_stats->alloc_stats.refill;
|
||
|
*data++ = pool_stats->alloc_stats.waive;
|
||
|
*data++ = pool_stats->recycle_stats.cached;
|
||
|
*data++ = pool_stats->recycle_stats.cache_full;
|
||
|
*data++ = pool_stats->recycle_stats.ring;
|
||
|
*data++ = pool_stats->recycle_stats.ring_full;
|
||
|
*data++ = pool_stats->recycle_stats.released_refcnt;
|
||
|
|
||
|
return data;
|
||
|
}
|
||
|
EXPORT_SYMBOL(page_pool_ethtool_stats_get);
|
||
|
|
||
|
#else
|
||
|
#define alloc_stat_inc(pool, __stat)
|
||
|
#define recycle_stat_inc(pool, __stat)
|
||
|
#define recycle_stat_add(pool, __stat, val)
|
||
|
#endif
|
||
|
|
||
|
static bool page_pool_producer_lock(struct page_pool *pool)
|
||
|
__acquires(&pool->ring.producer_lock)
|
||
|
{
|
||
|
bool in_softirq = in_softirq();
|
||
|
|
||
|
if (in_softirq)
|
||
|
spin_lock(&pool->ring.producer_lock);
|
||
|
else
|
||
|
spin_lock_bh(&pool->ring.producer_lock);
|
||
|
|
||
|
return in_softirq;
|
||
|
}
|
||
|
|
||
|
static void page_pool_producer_unlock(struct page_pool *pool,
|
||
|
bool in_softirq)
|
||
|
__releases(&pool->ring.producer_lock)
|
||
|
{
|
||
|
if (in_softirq)
|
||
|
spin_unlock(&pool->ring.producer_lock);
|
||
|
else
|
||
|
spin_unlock_bh(&pool->ring.producer_lock);
|
||
|
}
|
||
|
|
||
|
static int page_pool_init(struct page_pool *pool,
|
||
|
const struct page_pool_params *params)
|
||
|
{
|
||
|
unsigned int ring_qsize = 1024; /* Default */
|
||
|
|
||
|
memcpy(&pool->p, params, sizeof(pool->p));
|
||
|
|
||
|
/* Validate only known flags were used */
|
||
|
if (pool->p.flags & ~(PP_FLAG_ALL))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (pool->p.pool_size)
|
||
|
ring_qsize = pool->p.pool_size;
|
||
|
|
||
|
/* Sanity limit mem that can be pinned down */
|
||
|
if (ring_qsize > 32768)
|
||
|
return -E2BIG;
|
||
|
|
||
|
/* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
|
||
|
* DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
|
||
|
* which is the XDP_TX use-case.
|
||
|
*/
|
||
|
if (pool->p.flags & PP_FLAG_DMA_MAP) {
|
||
|
if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
|
||
|
(pool->p.dma_dir != DMA_BIDIRECTIONAL))
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) {
|
||
|
/* In order to request DMA-sync-for-device the page
|
||
|
* needs to be mapped
|
||
|
*/
|
||
|
if (!(pool->p.flags & PP_FLAG_DMA_MAP))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (!pool->p.max_len)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* pool->p.offset has to be set according to the address
|
||
|
* offset used by the DMA engine to start copying rx data
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
if (PAGE_POOL_DMA_USE_PP_FRAG_COUNT &&
|
||
|
pool->p.flags & PP_FLAG_PAGE_FRAG)
|
||
|
return -EINVAL;
|
||
|
|
||
|
#ifdef CONFIG_PAGE_POOL_STATS
|
||
|
pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
|
||
|
if (!pool->recycle_stats)
|
||
|
return -ENOMEM;
|
||
|
#endif
|
||
|
|
||
|
if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
atomic_set(&pool->pages_state_release_cnt, 0);
|
||
|
|
||
|
/* Driver calling page_pool_create() also call page_pool_destroy() */
|
||
|
refcount_set(&pool->user_cnt, 1);
|
||
|
|
||
|
if (pool->p.flags & PP_FLAG_DMA_MAP)
|
||
|
get_device(pool->p.dev);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
struct page_pool *page_pool_create(const struct page_pool_params *params)
|
||
|
{
|
||
|
struct page_pool *pool;
|
||
|
int err;
|
||
|
|
||
|
pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
|
||
|
if (!pool)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
err = page_pool_init(pool, params);
|
||
|
if (err < 0) {
|
||
|
pr_warn("%s() gave up with errno %d\n", __func__, err);
|
||
|
kfree(pool);
|
||
|
return ERR_PTR(err);
|
||
|
}
|
||
|
|
||
|
return pool;
|
||
|
}
|
||
|
EXPORT_SYMBOL(page_pool_create);
|
||
|
|
||
|
static void page_pool_return_page(struct page_pool *pool, struct page *page);
|
||
|
|
||
|
noinline
|
||
|
static struct page *page_pool_refill_alloc_cache(struct page_pool *pool)
|
||
|
{
|
||
|
struct ptr_ring *r = &pool->ring;
|
||
|
struct page *page;
|
||
|
int pref_nid; /* preferred NUMA node */
|
||
|
|
||
|
/* Quicker fallback, avoid locks when ring is empty */
|
||
|
if (__ptr_ring_empty(r)) {
|
||
|
alloc_stat_inc(pool, empty);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Softirq guarantee CPU and thus NUMA node is stable. This,
|
||
|
* assumes CPU refilling driver RX-ring will also run RX-NAPI.
|
||
|
*/
|
||
|
#ifdef CONFIG_NUMA
|
||
|
pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
|
||
|
#else
|
||
|
/* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
|
||
|
pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
|
||
|
#endif
|
||
|
|
||
|
/* Refill alloc array, but only if NUMA match */
|
||
|
do {
|
||
|
page = __ptr_ring_consume(r);
|
||
|
if (unlikely(!page))
|
||
|
break;
|
||
|
|
||
|
if (likely(page_to_nid(page) == pref_nid)) {
|
||
|
pool->alloc.cache[pool->alloc.count++] = page;
|
||
|
} else {
|
||
|
/* NUMA mismatch;
|
||
|
* (1) release 1 page to page-allocator and
|
||
|
* (2) break out to fallthrough to alloc_pages_node.
|
||
|
* This limit stress on page buddy alloactor.
|
||
|
*/
|
||
|
page_pool_return_page(pool, page);
|
||
|
alloc_stat_inc(pool, waive);
|
||
|
page = NULL;
|
||
|
break;
|
||
|
}
|
||
|
} while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
|
||
|
|
||
|
/* Return last page */
|
||
|
if (likely(pool->alloc.count > 0)) {
|
||
|
page = pool->alloc.cache[--pool->alloc.count];
|
||
|
alloc_stat_inc(pool, refill);
|
||
|
}
|
||
|
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
/* fast path */
|
||
|
static struct page *__page_pool_get_cached(struct page_pool *pool)
|
||
|
{
|
||
|
struct page *page;
|
||
|
|
||
|
/* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
|
||
|
if (likely(pool->alloc.count)) {
|
||
|
/* Fast-path */
|
||
|
page = pool->alloc.cache[--pool->alloc.count];
|
||
|
alloc_stat_inc(pool, fast);
|
||
|
} else {
|
||
|
page = page_pool_refill_alloc_cache(pool);
|
||
|
}
|
||
|
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
static void page_pool_dma_sync_for_device(struct page_pool *pool,
|
||
|
struct page *page,
|
||
|
unsigned int dma_sync_size)
|
||
|
{
|
||
|
dma_addr_t dma_addr = page_pool_get_dma_addr(page);
|
||
|
|
||
|
dma_sync_size = min(dma_sync_size, pool->p.max_len);
|
||
|
dma_sync_single_range_for_device(pool->p.dev, dma_addr,
|
||
|
pool->p.offset, dma_sync_size,
|
||
|
pool->p.dma_dir);
|
||
|
}
|
||
|
|
||
|
static bool page_pool_dma_map(struct page_pool *pool, struct page *page)
|
||
|
{
|
||
|
dma_addr_t dma;
|
||
|
|
||
|
/* Setup DMA mapping: use 'struct page' area for storing DMA-addr
|
||
|
* since dma_addr_t can be either 32 or 64 bits and does not always fit
|
||
|
* into page private data (i.e 32bit cpu with 64bit DMA caps)
|
||
|
* This mapping is kept for lifetime of page, until leaving pool.
|
||
|
*/
|
||
|
dma = dma_map_page_attrs(pool->p.dev, page, 0,
|
||
|
(PAGE_SIZE << pool->p.order),
|
||
|
pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
|
||
|
if (dma_mapping_error(pool->p.dev, dma))
|
||
|
return false;
|
||
|
|
||
|
page_pool_set_dma_addr(page, dma);
|
||
|
|
||
|
if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
|
||
|
page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void page_pool_set_pp_info(struct page_pool *pool,
|
||
|
struct page *page)
|
||
|
{
|
||
|
page->pp = pool;
|
||
|
page->pp_magic |= PP_SIGNATURE;
|
||
|
if (pool->p.init_callback)
|
||
|
pool->p.init_callback(page, pool->p.init_arg);
|
||
|
}
|
||
|
|
||
|
static void page_pool_clear_pp_info(struct page *page)
|
||
|
{
|
||
|
page->pp_magic = 0;
|
||
|
page->pp = NULL;
|
||
|
}
|
||
|
|
||
|
static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
|
||
|
gfp_t gfp)
|
||
|
{
|
||
|
struct page *page;
|
||
|
|
||
|
gfp |= __GFP_COMP;
|
||
|
page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
|
||
|
if (unlikely(!page))
|
||
|
return NULL;
|
||
|
|
||
|
if ((pool->p.flags & PP_FLAG_DMA_MAP) &&
|
||
|
unlikely(!page_pool_dma_map(pool, page))) {
|
||
|
put_page(page);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
alloc_stat_inc(pool, slow_high_order);
|
||
|
page_pool_set_pp_info(pool, page);
|
||
|
|
||
|
/* Track how many pages are held 'in-flight' */
|
||
|
pool->pages_state_hold_cnt++;
|
||
|
trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt);
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
/* slow path */
|
||
|
noinline
|
||
|
static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
|
||
|
gfp_t gfp)
|
||
|
{
|
||
|
const int bulk = PP_ALLOC_CACHE_REFILL;
|
||
|
unsigned int pp_flags = pool->p.flags;
|
||
|
unsigned int pp_order = pool->p.order;
|
||
|
struct page *page;
|
||
|
int i, nr_pages;
|
||
|
|
||
|
/* Don't support bulk alloc for high-order pages */
|
||
|
if (unlikely(pp_order))
|
||
|
return __page_pool_alloc_page_order(pool, gfp);
|
||
|
|
||
|
/* Unnecessary as alloc cache is empty, but guarantees zero count */
|
||
|
if (unlikely(pool->alloc.count > 0))
|
||
|
return pool->alloc.cache[--pool->alloc.count];
|
||
|
|
||
|
/* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */
|
||
|
memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
|
||
|
|
||
|
nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk,
|
||
|
pool->alloc.cache);
|
||
|
if (unlikely(!nr_pages))
|
||
|
return NULL;
|
||
|
|
||
|
/* Pages have been filled into alloc.cache array, but count is zero and
|
||
|
* page element have not been (possibly) DMA mapped.
|
||
|
*/
|
||
|
for (i = 0; i < nr_pages; i++) {
|
||
|
page = pool->alloc.cache[i];
|
||
|
if ((pp_flags & PP_FLAG_DMA_MAP) &&
|
||
|
unlikely(!page_pool_dma_map(pool, page))) {
|
||
|
put_page(page);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
page_pool_set_pp_info(pool, page);
|
||
|
pool->alloc.cache[pool->alloc.count++] = page;
|
||
|
/* Track how many pages are held 'in-flight' */
|
||
|
pool->pages_state_hold_cnt++;
|
||
|
trace_page_pool_state_hold(pool, page,
|
||
|
pool->pages_state_hold_cnt);
|
||
|
}
|
||
|
|
||
|
/* Return last page */
|
||
|
if (likely(pool->alloc.count > 0)) {
|
||
|
page = pool->alloc.cache[--pool->alloc.count];
|
||
|
alloc_stat_inc(pool, slow);
|
||
|
} else {
|
||
|
page = NULL;
|
||
|
}
|
||
|
|
||
|
/* When page just alloc'ed is should/must have refcnt 1. */
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
/* For using page_pool replace: alloc_pages() API calls, but provide
|
||
|
* synchronization guarantee for allocation side.
|
||
|
*/
|
||
|
struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
|
||
|
{
|
||
|
struct page *page;
|
||
|
|
||
|
/* Fast-path: Get a page from cache */
|
||
|
page = __page_pool_get_cached(pool);
|
||
|
if (page)
|
||
|
return page;
|
||
|
|
||
|
/* Slow-path: cache empty, do real allocation */
|
||
|
page = __page_pool_alloc_pages_slow(pool, gfp);
|
||
|
return page;
|
||
|
}
|
||
|
EXPORT_SYMBOL(page_pool_alloc_pages);
|
||
|
|
||
|
/* Calculate distance between two u32 values, valid if distance is below 2^(31)
|
||
|
* https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
|
||
|
*/
|
||
|
#define _distance(a, b) (s32)((a) - (b))
|
||
|
|
||
|
static s32 page_pool_inflight(struct page_pool *pool)
|
||
|
{
|
||
|
u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
|
||
|
u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
|
||
|
s32 inflight;
|
||
|
|
||
|
inflight = _distance(hold_cnt, release_cnt);
|
||
|
|
||
|
trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
|
||
|
WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight);
|
||
|
|
||
|
return inflight;
|
||
|
}
|
||
|
|
||
|
/* Disconnects a page (from a page_pool). API users can have a need
|
||
|
* to disconnect a page (from a page_pool), to allow it to be used as
|
||
|
* a regular page (that will eventually be returned to the normal
|
||
|
* page-allocator via put_page).
|
||
|
*/
|
||
|
void page_pool_release_page(struct page_pool *pool, struct page *page)
|
||
|
{
|
||
|
dma_addr_t dma;
|
||
|
int count;
|
||
|
|
||
|
if (!(pool->p.flags & PP_FLAG_DMA_MAP))
|
||
|
/* Always account for inflight pages, even if we didn't
|
||
|
* map them
|
||
|
*/
|
||
|
goto skip_dma_unmap;
|
||
|
|
||
|
dma = page_pool_get_dma_addr(page);
|
||
|
|
||
|
/* When page is unmapped, it cannot be returned to our pool */
|
||
|
dma_unmap_page_attrs(pool->p.dev, dma,
|
||
|
PAGE_SIZE << pool->p.order, pool->p.dma_dir,
|
||
|
DMA_ATTR_SKIP_CPU_SYNC);
|
||
|
page_pool_set_dma_addr(page, 0);
|
||
|
skip_dma_unmap:
|
||
|
page_pool_clear_pp_info(page);
|
||
|
|
||
|
/* This may be the last page returned, releasing the pool, so
|
||
|
* it is not safe to reference pool afterwards.
|
||
|
*/
|
||
|
count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
|
||
|
trace_page_pool_state_release(pool, page, count);
|
||
|
}
|
||
|
EXPORT_SYMBOL(page_pool_release_page);
|
||
|
|
||
|
/* Return a page to the page allocator, cleaning up our state */
|
||
|
static void page_pool_return_page(struct page_pool *pool, struct page *page)
|
||
|
{
|
||
|
page_pool_release_page(pool, page);
|
||
|
|
||
|
put_page(page);
|
||
|
/* An optimization would be to call __free_pages(page, pool->p.order)
|
||
|
* knowing page is not part of page-cache (thus avoiding a
|
||
|
* __page_cache_release() call).
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page)
|
||
|
{
|
||
|
int ret;
|
||
|
/* BH protection not needed if current is softirq */
|
||
|
if (in_softirq())
|
||
|
ret = ptr_ring_produce(&pool->ring, page);
|
||
|
else
|
||
|
ret = ptr_ring_produce_bh(&pool->ring, page);
|
||
|
|
||
|
if (!ret) {
|
||
|
recycle_stat_inc(pool, ring);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* Only allow direct recycling in special circumstances, into the
|
||
|
* alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case.
|
||
|
*
|
||
|
* Caller must provide appropriate safe context.
|
||
|
*/
|
||
|
static bool page_pool_recycle_in_cache(struct page *page,
|
||
|
struct page_pool *pool)
|
||
|
{
|
||
|
if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
|
||
|
recycle_stat_inc(pool, cache_full);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* Caller MUST have verified/know (page_ref_count(page) == 1) */
|
||
|
pool->alloc.cache[pool->alloc.count++] = page;
|
||
|
recycle_stat_inc(pool, cached);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/* If the page refcnt == 1, this will try to recycle the page.
|
||
|
* if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for
|
||
|
* the configured size min(dma_sync_size, pool->max_len).
|
||
|
* If the page refcnt != 1, then the page will be returned to memory
|
||
|
* subsystem.
|
||
|
*/
|
||
|
static __always_inline struct page *
|
||
|
__page_pool_put_page(struct page_pool *pool, struct page *page,
|
||
|
unsigned int dma_sync_size, bool allow_direct)
|
||
|
{
|
||
|
/* This allocator is optimized for the XDP mode that uses
|
||
|
* one-frame-per-page, but have fallbacks that act like the
|
||
|
* regular page allocator APIs.
|
||
|
*
|
||
|
* refcnt == 1 means page_pool owns page, and can recycle it.
|
||
|
*
|
||
|
* page is NOT reusable when allocated when system is under
|
||
|
* some pressure. (page_is_pfmemalloc)
|
||
|
*/
|
||
|
if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) {
|
||
|
/* Read barrier done in page_ref_count / READ_ONCE */
|
||
|
|
||
|
if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
|
||
|
page_pool_dma_sync_for_device(pool, page,
|
||
|
dma_sync_size);
|
||
|
|
||
|
if (allow_direct && in_softirq() &&
|
||
|
page_pool_recycle_in_cache(page, pool))
|
||
|
return NULL;
|
||
|
|
||
|
/* Page found as candidate for recycling */
|
||
|
return page;
|
||
|
}
|
||
|
/* Fallback/non-XDP mode: API user have elevated refcnt.
|
||
|
*
|
||
|
* Many drivers split up the page into fragments, and some
|
||
|
* want to keep doing this to save memory and do refcnt based
|
||
|
* recycling. Support this use case too, to ease drivers
|
||
|
* switching between XDP/non-XDP.
|
||
|
*
|
||
|
* In-case page_pool maintains the DMA mapping, API user must
|
||
|
* call page_pool_put_page once. In this elevated refcnt
|
||
|
* case, the DMA is unmapped/released, as driver is likely
|
||
|
* doing refcnt based recycle tricks, meaning another process
|
||
|
* will be invoking put_page.
|
||
|
*/
|
||
|
recycle_stat_inc(pool, released_refcnt);
|
||
|
/* Do not replace this with page_pool_return_page() */
|
||
|
page_pool_release_page(pool, page);
|
||
|
put_page(page);
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
void page_pool_put_defragged_page(struct page_pool *pool, struct page *page,
|
||
|
unsigned int dma_sync_size, bool allow_direct)
|
||
|
{
|
||
|
page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct);
|
||
|
if (page && !page_pool_recycle_in_ring(pool, page)) {
|
||
|
/* Cache full, fallback to free pages */
|
||
|
recycle_stat_inc(pool, ring_full);
|
||
|
page_pool_return_page(pool, page);
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(page_pool_put_defragged_page);
|
||
|
|
||
|
/* Caller must not use data area after call, as this function overwrites it */
|
||
|
void page_pool_put_page_bulk(struct page_pool *pool, void **data,
|
||
|
int count)
|
||
|
{
|
||
|
int i, bulk_len = 0;
|
||
|
bool in_softirq;
|
||
|
|
||
|
for (i = 0; i < count; i++) {
|
||
|
struct page *page = virt_to_head_page(data[i]);
|
||
|
|
||
|
/* It is not the last user for the page frag case */
|
||
|
if (!page_pool_is_last_frag(pool, page))
|
||
|
continue;
|
||
|
|
||
|
page = __page_pool_put_page(pool, page, -1, false);
|
||
|
/* Approved for bulk recycling in ptr_ring cache */
|
||
|
if (page)
|
||
|
data[bulk_len++] = page;
|
||
|
}
|
||
|
|
||
|
if (unlikely(!bulk_len))
|
||
|
return;
|
||
|
|
||
|
/* Bulk producer into ptr_ring page_pool cache */
|
||
|
in_softirq = page_pool_producer_lock(pool);
|
||
|
for (i = 0; i < bulk_len; i++) {
|
||
|
if (__ptr_ring_produce(&pool->ring, data[i])) {
|
||
|
/* ring full */
|
||
|
recycle_stat_inc(pool, ring_full);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
recycle_stat_add(pool, ring, i);
|
||
|
page_pool_producer_unlock(pool, in_softirq);
|
||
|
|
||
|
/* Hopefully all pages was return into ptr_ring */
|
||
|
if (likely(i == bulk_len))
|
||
|
return;
|
||
|
|
||
|
/* ptr_ring cache full, free remaining pages outside producer lock
|
||
|
* since put_page() with refcnt == 1 can be an expensive operation
|
||
|
*/
|
||
|
for (; i < bulk_len; i++)
|
||
|
page_pool_return_page(pool, data[i]);
|
||
|
}
|
||
|
EXPORT_SYMBOL(page_pool_put_page_bulk);
|
||
|
|
||
|
static struct page *page_pool_drain_frag(struct page_pool *pool,
|
||
|
struct page *page)
|
||
|
{
|
||
|
long drain_count = BIAS_MAX - pool->frag_users;
|
||
|
|
||
|
/* Some user is still using the page frag */
|
||
|
if (likely(page_pool_defrag_page(page, drain_count)))
|
||
|
return NULL;
|
||
|
|
||
|
if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) {
|
||
|
if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
|
||
|
page_pool_dma_sync_for_device(pool, page, -1);
|
||
|
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
page_pool_return_page(pool, page);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static void page_pool_free_frag(struct page_pool *pool)
|
||
|
{
|
||
|
long drain_count = BIAS_MAX - pool->frag_users;
|
||
|
struct page *page = pool->frag_page;
|
||
|
|
||
|
pool->frag_page = NULL;
|
||
|
|
||
|
if (!page || page_pool_defrag_page(page, drain_count))
|
||
|
return;
|
||
|
|
||
|
page_pool_return_page(pool, page);
|
||
|
}
|
||
|
|
||
|
struct page *page_pool_alloc_frag(struct page_pool *pool,
|
||
|
unsigned int *offset,
|
||
|
unsigned int size, gfp_t gfp)
|
||
|
{
|
||
|
unsigned int max_size = PAGE_SIZE << pool->p.order;
|
||
|
struct page *page = pool->frag_page;
|
||
|
|
||
|
if (WARN_ON(!(pool->p.flags & PP_FLAG_PAGE_FRAG) ||
|
||
|
size > max_size))
|
||
|
return NULL;
|
||
|
|
||
|
size = ALIGN(size, dma_get_cache_alignment());
|
||
|
*offset = pool->frag_offset;
|
||
|
|
||
|
if (page && *offset + size > max_size) {
|
||
|
page = page_pool_drain_frag(pool, page);
|
||
|
if (page) {
|
||
|
alloc_stat_inc(pool, fast);
|
||
|
goto frag_reset;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!page) {
|
||
|
page = page_pool_alloc_pages(pool, gfp);
|
||
|
if (unlikely(!page)) {
|
||
|
pool->frag_page = NULL;
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
pool->frag_page = page;
|
||
|
|
||
|
frag_reset:
|
||
|
pool->frag_users = 1;
|
||
|
*offset = 0;
|
||
|
pool->frag_offset = size;
|
||
|
page_pool_fragment_page(page, BIAS_MAX);
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
pool->frag_users++;
|
||
|
pool->frag_offset = *offset + size;
|
||
|
alloc_stat_inc(pool, fast);
|
||
|
return page;
|
||
|
}
|
||
|
EXPORT_SYMBOL(page_pool_alloc_frag);
|
||
|
|
||
|
static void page_pool_empty_ring(struct page_pool *pool)
|
||
|
{
|
||
|
struct page *page;
|
||
|
|
||
|
/* Empty recycle ring */
|
||
|
while ((page = ptr_ring_consume_bh(&pool->ring))) {
|
||
|
/* Verify the refcnt invariant of cached pages */
|
||
|
if (!(page_ref_count(page) == 1))
|
||
|
pr_crit("%s() page_pool refcnt %d violation\n",
|
||
|
__func__, page_ref_count(page));
|
||
|
|
||
|
page_pool_return_page(pool, page);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void page_pool_free(struct page_pool *pool)
|
||
|
{
|
||
|
if (pool->disconnect)
|
||
|
pool->disconnect(pool);
|
||
|
|
||
|
ptr_ring_cleanup(&pool->ring, NULL);
|
||
|
|
||
|
if (pool->p.flags & PP_FLAG_DMA_MAP)
|
||
|
put_device(pool->p.dev);
|
||
|
|
||
|
#ifdef CONFIG_PAGE_POOL_STATS
|
||
|
free_percpu(pool->recycle_stats);
|
||
|
#endif
|
||
|
kfree(pool);
|
||
|
}
|
||
|
|
||
|
static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
|
||
|
{
|
||
|
struct page *page;
|
||
|
|
||
|
if (pool->destroy_cnt)
|
||
|
return;
|
||
|
|
||
|
/* Empty alloc cache, assume caller made sure this is
|
||
|
* no-longer in use, and page_pool_alloc_pages() cannot be
|
||
|
* call concurrently.
|
||
|
*/
|
||
|
while (pool->alloc.count) {
|
||
|
page = pool->alloc.cache[--pool->alloc.count];
|
||
|
page_pool_return_page(pool, page);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void page_pool_scrub(struct page_pool *pool)
|
||
|
{
|
||
|
page_pool_empty_alloc_cache_once(pool);
|
||
|
pool->destroy_cnt++;
|
||
|
|
||
|
/* No more consumers should exist, but producers could still
|
||
|
* be in-flight.
|
||
|
*/
|
||
|
page_pool_empty_ring(pool);
|
||
|
}
|
||
|
|
||
|
static int page_pool_release(struct page_pool *pool)
|
||
|
{
|
||
|
int inflight;
|
||
|
|
||
|
page_pool_scrub(pool);
|
||
|
inflight = page_pool_inflight(pool);
|
||
|
if (!inflight)
|
||
|
page_pool_free(pool);
|
||
|
|
||
|
return inflight;
|
||
|
}
|
||
|
|
||
|
static void page_pool_release_retry(struct work_struct *wq)
|
||
|
{
|
||
|
struct delayed_work *dwq = to_delayed_work(wq);
|
||
|
struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
|
||
|
int inflight;
|
||
|
|
||
|
inflight = page_pool_release(pool);
|
||
|
if (!inflight)
|
||
|
return;
|
||
|
|
||
|
/* Periodic warning */
|
||
|
if (time_after_eq(jiffies, pool->defer_warn)) {
|
||
|
int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
|
||
|
|
||
|
pr_warn("%s() stalled pool shutdown %d inflight %d sec\n",
|
||
|
__func__, inflight, sec);
|
||
|
pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
|
||
|
}
|
||
|
|
||
|
/* Still not ready to be disconnected, retry later */
|
||
|
schedule_delayed_work(&pool->release_dw, DEFER_TIME);
|
||
|
}
|
||
|
|
||
|
void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
|
||
|
struct xdp_mem_info *mem)
|
||
|
{
|
||
|
refcount_inc(&pool->user_cnt);
|
||
|
pool->disconnect = disconnect;
|
||
|
pool->xdp_mem_id = mem->id;
|
||
|
}
|
||
|
|
||
|
void page_pool_destroy(struct page_pool *pool)
|
||
|
{
|
||
|
if (!pool)
|
||
|
return;
|
||
|
|
||
|
if (!page_pool_put(pool))
|
||
|
return;
|
||
|
|
||
|
page_pool_free_frag(pool);
|
||
|
|
||
|
if (!page_pool_release(pool))
|
||
|
return;
|
||
|
|
||
|
pool->defer_start = jiffies;
|
||
|
pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
|
||
|
|
||
|
INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
|
||
|
schedule_delayed_work(&pool->release_dw, DEFER_TIME);
|
||
|
}
|
||
|
EXPORT_SYMBOL(page_pool_destroy);
|
||
|
|
||
|
/* Caller must provide appropriate safe context, e.g. NAPI. */
|
||
|
void page_pool_update_nid(struct page_pool *pool, int new_nid)
|
||
|
{
|
||
|
struct page *page;
|
||
|
|
||
|
trace_page_pool_update_nid(pool, new_nid);
|
||
|
pool->p.nid = new_nid;
|
||
|
|
||
|
/* Flush pool alloc cache, as refill will check NUMA node */
|
||
|
while (pool->alloc.count) {
|
||
|
page = pool->alloc.cache[--pool->alloc.count];
|
||
|
page_pool_return_page(pool, page);
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(page_pool_update_nid);
|
||
|
|
||
|
bool page_pool_return_skb_page(struct page *page)
|
||
|
{
|
||
|
struct page_pool *pp;
|
||
|
|
||
|
page = compound_head(page);
|
||
|
|
||
|
/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
|
||
|
* in order to preserve any existing bits, such as bit 0 for the
|
||
|
* head page of compound page and bit 1 for pfmemalloc page, so
|
||
|
* mask those bits for freeing side when doing below checking,
|
||
|
* and page_is_pfmemalloc() is checked in __page_pool_put_page()
|
||
|
* to avoid recycling the pfmemalloc page.
|
||
|
*/
|
||
|
if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE))
|
||
|
return false;
|
||
|
|
||
|
pp = page->pp;
|
||
|
|
||
|
/* Driver set this to memory recycling info. Reset it on recycle.
|
||
|
* This will *not* work for NIC using a split-page memory model.
|
||
|
* The page will be returned to the pool here regardless of the
|
||
|
* 'flipped' fragment being in use or not.
|
||
|
*/
|
||
|
page_pool_put_full_page(pp, page, false);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
EXPORT_SYMBOL(page_pool_return_skb_page);
|