524 lines
12 KiB
C
524 lines
12 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Generic entry points for the idle threads and
|
||
|
* implementation of the idle task scheduling class.
|
||
|
*
|
||
|
* (NOTE: these are not related to SCHED_IDLE batch scheduled
|
||
|
* tasks which are handled in sched/fair.c )
|
||
|
*/
|
||
|
|
||
|
/* Linker adds these: start and end of __cpuidle functions */
|
||
|
extern char __cpuidle_text_start[], __cpuidle_text_end[];
|
||
|
|
||
|
/**
|
||
|
* sched_idle_set_state - Record idle state for the current CPU.
|
||
|
* @idle_state: State to record.
|
||
|
*/
|
||
|
void sched_idle_set_state(struct cpuidle_state *idle_state)
|
||
|
{
|
||
|
idle_set_state(this_rq(), idle_state);
|
||
|
}
|
||
|
|
||
|
static int __read_mostly cpu_idle_force_poll;
|
||
|
|
||
|
void cpu_idle_poll_ctrl(bool enable)
|
||
|
{
|
||
|
if (enable) {
|
||
|
cpu_idle_force_poll++;
|
||
|
} else {
|
||
|
cpu_idle_force_poll--;
|
||
|
WARN_ON_ONCE(cpu_idle_force_poll < 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_GENERIC_IDLE_POLL_SETUP
|
||
|
static int __init cpu_idle_poll_setup(char *__unused)
|
||
|
{
|
||
|
cpu_idle_force_poll = 1;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
__setup("nohlt", cpu_idle_poll_setup);
|
||
|
|
||
|
static int __init cpu_idle_nopoll_setup(char *__unused)
|
||
|
{
|
||
|
cpu_idle_force_poll = 0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
__setup("hlt", cpu_idle_nopoll_setup);
|
||
|
#endif
|
||
|
|
||
|
static noinline int __cpuidle cpu_idle_poll(void)
|
||
|
{
|
||
|
trace_cpu_idle(0, smp_processor_id());
|
||
|
stop_critical_timings();
|
||
|
ct_idle_enter();
|
||
|
local_irq_enable();
|
||
|
|
||
|
while (!tif_need_resched() &&
|
||
|
(cpu_idle_force_poll || tick_check_broadcast_expired()))
|
||
|
cpu_relax();
|
||
|
|
||
|
ct_idle_exit();
|
||
|
start_critical_timings();
|
||
|
trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* Weak implementations for optional arch specific functions */
|
||
|
void __weak arch_cpu_idle_prepare(void) { }
|
||
|
void __weak arch_cpu_idle_enter(void) { }
|
||
|
void __weak arch_cpu_idle_exit(void) { }
|
||
|
void __weak arch_cpu_idle_dead(void) { }
|
||
|
void __weak arch_cpu_idle(void)
|
||
|
{
|
||
|
cpu_idle_force_poll = 1;
|
||
|
raw_local_irq_enable();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* default_idle_call - Default CPU idle routine.
|
||
|
*
|
||
|
* To use when the cpuidle framework cannot be used.
|
||
|
*/
|
||
|
void __cpuidle default_idle_call(void)
|
||
|
{
|
||
|
if (current_clr_polling_and_test()) {
|
||
|
local_irq_enable();
|
||
|
} else {
|
||
|
|
||
|
trace_cpu_idle(1, smp_processor_id());
|
||
|
stop_critical_timings();
|
||
|
|
||
|
/*
|
||
|
* arch_cpu_idle() is supposed to enable IRQs, however
|
||
|
* we can't do that because of RCU and tracing.
|
||
|
*
|
||
|
* Trace IRQs enable here, then switch off RCU, and have
|
||
|
* arch_cpu_idle() use raw_local_irq_enable(). Note that
|
||
|
* ct_idle_enter() relies on lockdep IRQ state, so switch that
|
||
|
* last -- this is very similar to the entry code.
|
||
|
*/
|
||
|
trace_hardirqs_on_prepare();
|
||
|
lockdep_hardirqs_on_prepare();
|
||
|
ct_idle_enter();
|
||
|
lockdep_hardirqs_on(_THIS_IP_);
|
||
|
|
||
|
arch_cpu_idle();
|
||
|
|
||
|
/*
|
||
|
* OK, so IRQs are enabled here, but RCU needs them disabled to
|
||
|
* turn itself back on.. funny thing is that disabling IRQs
|
||
|
* will cause tracing, which needs RCU. Jump through hoops to
|
||
|
* make it 'work'.
|
||
|
*/
|
||
|
raw_local_irq_disable();
|
||
|
lockdep_hardirqs_off(_THIS_IP_);
|
||
|
ct_idle_exit();
|
||
|
lockdep_hardirqs_on(_THIS_IP_);
|
||
|
raw_local_irq_enable();
|
||
|
|
||
|
start_critical_timings();
|
||
|
trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int call_cpuidle_s2idle(struct cpuidle_driver *drv,
|
||
|
struct cpuidle_device *dev)
|
||
|
{
|
||
|
if (current_clr_polling_and_test())
|
||
|
return -EBUSY;
|
||
|
|
||
|
return cpuidle_enter_s2idle(drv, dev);
|
||
|
}
|
||
|
|
||
|
static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev,
|
||
|
int next_state)
|
||
|
{
|
||
|
/*
|
||
|
* The idle task must be scheduled, it is pointless to go to idle, just
|
||
|
* update no idle residency and return.
|
||
|
*/
|
||
|
if (current_clr_polling_and_test()) {
|
||
|
dev->last_residency_ns = 0;
|
||
|
local_irq_enable();
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Enter the idle state previously returned by the governor decision.
|
||
|
* This function will block until an interrupt occurs and will take
|
||
|
* care of re-enabling the local interrupts
|
||
|
*/
|
||
|
return cpuidle_enter(drv, dev, next_state);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* cpuidle_idle_call - the main idle function
|
||
|
*
|
||
|
* NOTE: no locks or semaphores should be used here
|
||
|
*
|
||
|
* On architectures that support TIF_POLLING_NRFLAG, is called with polling
|
||
|
* set, and it returns with polling set. If it ever stops polling, it
|
||
|
* must clear the polling bit.
|
||
|
*/
|
||
|
static void cpuidle_idle_call(void)
|
||
|
{
|
||
|
struct cpuidle_device *dev = cpuidle_get_device();
|
||
|
struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
|
||
|
int next_state, entered_state;
|
||
|
|
||
|
/*
|
||
|
* Check if the idle task must be rescheduled. If it is the
|
||
|
* case, exit the function after re-enabling the local irq.
|
||
|
*/
|
||
|
if (need_resched()) {
|
||
|
local_irq_enable();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The RCU framework needs to be told that we are entering an idle
|
||
|
* section, so no more rcu read side critical sections and one more
|
||
|
* step to the grace period
|
||
|
*/
|
||
|
|
||
|
if (cpuidle_not_available(drv, dev)) {
|
||
|
tick_nohz_idle_stop_tick();
|
||
|
|
||
|
default_idle_call();
|
||
|
goto exit_idle;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Suspend-to-idle ("s2idle") is a system state in which all user space
|
||
|
* has been frozen, all I/O devices have been suspended and the only
|
||
|
* activity happens here and in interrupts (if any). In that case bypass
|
||
|
* the cpuidle governor and go straight for the deepest idle state
|
||
|
* available. Possibly also suspend the local tick and the entire
|
||
|
* timekeeping to prevent timer interrupts from kicking us out of idle
|
||
|
* until a proper wakeup interrupt happens.
|
||
|
*/
|
||
|
|
||
|
if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) {
|
||
|
u64 max_latency_ns;
|
||
|
|
||
|
if (idle_should_enter_s2idle()) {
|
||
|
|
||
|
entered_state = call_cpuidle_s2idle(drv, dev);
|
||
|
if (entered_state > 0)
|
||
|
goto exit_idle;
|
||
|
|
||
|
max_latency_ns = U64_MAX;
|
||
|
} else {
|
||
|
max_latency_ns = dev->forced_idle_latency_limit_ns;
|
||
|
}
|
||
|
|
||
|
tick_nohz_idle_stop_tick();
|
||
|
|
||
|
next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns);
|
||
|
call_cpuidle(drv, dev, next_state);
|
||
|
} else {
|
||
|
bool stop_tick = true;
|
||
|
|
||
|
/*
|
||
|
* Ask the cpuidle framework to choose a convenient idle state.
|
||
|
*/
|
||
|
next_state = cpuidle_select(drv, dev, &stop_tick);
|
||
|
|
||
|
if (stop_tick || tick_nohz_tick_stopped())
|
||
|
tick_nohz_idle_stop_tick();
|
||
|
else
|
||
|
tick_nohz_idle_retain_tick();
|
||
|
|
||
|
entered_state = call_cpuidle(drv, dev, next_state);
|
||
|
/*
|
||
|
* Give the governor an opportunity to reflect on the outcome
|
||
|
*/
|
||
|
cpuidle_reflect(dev, entered_state);
|
||
|
}
|
||
|
|
||
|
exit_idle:
|
||
|
__current_set_polling();
|
||
|
|
||
|
/*
|
||
|
* It is up to the idle functions to reenable local interrupts
|
||
|
*/
|
||
|
if (WARN_ON_ONCE(irqs_disabled()))
|
||
|
local_irq_enable();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Generic idle loop implementation
|
||
|
*
|
||
|
* Called with polling cleared.
|
||
|
*/
|
||
|
static void do_idle(void)
|
||
|
{
|
||
|
int cpu = smp_processor_id();
|
||
|
|
||
|
/*
|
||
|
* Check if we need to update blocked load
|
||
|
*/
|
||
|
nohz_run_idle_balance(cpu);
|
||
|
|
||
|
/*
|
||
|
* If the arch has a polling bit, we maintain an invariant:
|
||
|
*
|
||
|
* Our polling bit is clear if we're not scheduled (i.e. if rq->curr !=
|
||
|
* rq->idle). This means that, if rq->idle has the polling bit set,
|
||
|
* then setting need_resched is guaranteed to cause the CPU to
|
||
|
* reschedule.
|
||
|
*/
|
||
|
|
||
|
__current_set_polling();
|
||
|
tick_nohz_idle_enter();
|
||
|
|
||
|
while (!need_resched()) {
|
||
|
rmb();
|
||
|
|
||
|
local_irq_disable();
|
||
|
|
||
|
if (cpu_is_offline(cpu)) {
|
||
|
tick_nohz_idle_stop_tick();
|
||
|
cpuhp_report_idle_dead();
|
||
|
arch_cpu_idle_dead();
|
||
|
}
|
||
|
|
||
|
arch_cpu_idle_enter();
|
||
|
rcu_nocb_flush_deferred_wakeup();
|
||
|
|
||
|
/*
|
||
|
* In poll mode we reenable interrupts and spin. Also if we
|
||
|
* detected in the wakeup from idle path that the tick
|
||
|
* broadcast device expired for us, we don't want to go deep
|
||
|
* idle as we know that the IPI is going to arrive right away.
|
||
|
*/
|
||
|
if (cpu_idle_force_poll || tick_check_broadcast_expired()) {
|
||
|
tick_nohz_idle_restart_tick();
|
||
|
cpu_idle_poll();
|
||
|
} else {
|
||
|
cpuidle_idle_call();
|
||
|
}
|
||
|
arch_cpu_idle_exit();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Since we fell out of the loop above, we know TIF_NEED_RESCHED must
|
||
|
* be set, propagate it into PREEMPT_NEED_RESCHED.
|
||
|
*
|
||
|
* This is required because for polling idle loops we will not have had
|
||
|
* an IPI to fold the state for us.
|
||
|
*/
|
||
|
preempt_set_need_resched();
|
||
|
tick_nohz_idle_exit();
|
||
|
__current_clr_polling();
|
||
|
|
||
|
/*
|
||
|
* We promise to call sched_ttwu_pending() and reschedule if
|
||
|
* need_resched() is set while polling is set. That means that clearing
|
||
|
* polling needs to be visible before doing these things.
|
||
|
*/
|
||
|
smp_mb__after_atomic();
|
||
|
|
||
|
/*
|
||
|
* RCU relies on this call to be done outside of an RCU read-side
|
||
|
* critical section.
|
||
|
*/
|
||
|
flush_smp_call_function_queue();
|
||
|
schedule_idle();
|
||
|
|
||
|
if (unlikely(klp_patch_pending(current)))
|
||
|
klp_update_patch_state(current);
|
||
|
}
|
||
|
|
||
|
bool cpu_in_idle(unsigned long pc)
|
||
|
{
|
||
|
return pc >= (unsigned long)__cpuidle_text_start &&
|
||
|
pc < (unsigned long)__cpuidle_text_end;
|
||
|
}
|
||
|
|
||
|
struct idle_timer {
|
||
|
struct hrtimer timer;
|
||
|
int done;
|
||
|
};
|
||
|
|
||
|
static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer)
|
||
|
{
|
||
|
struct idle_timer *it = container_of(timer, struct idle_timer, timer);
|
||
|
|
||
|
WRITE_ONCE(it->done, 1);
|
||
|
set_tsk_need_resched(current);
|
||
|
|
||
|
return HRTIMER_NORESTART;
|
||
|
}
|
||
|
|
||
|
void play_idle_precise(u64 duration_ns, u64 latency_ns)
|
||
|
{
|
||
|
struct idle_timer it;
|
||
|
|
||
|
/*
|
||
|
* Only FIFO tasks can disable the tick since they don't need the forced
|
||
|
* preemption.
|
||
|
*/
|
||
|
WARN_ON_ONCE(current->policy != SCHED_FIFO);
|
||
|
WARN_ON_ONCE(current->nr_cpus_allowed != 1);
|
||
|
WARN_ON_ONCE(!(current->flags & PF_KTHREAD));
|
||
|
WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY));
|
||
|
WARN_ON_ONCE(!duration_ns);
|
||
|
WARN_ON_ONCE(current->mm);
|
||
|
|
||
|
rcu_sleep_check();
|
||
|
preempt_disable();
|
||
|
current->flags |= PF_IDLE;
|
||
|
cpuidle_use_deepest_state(latency_ns);
|
||
|
|
||
|
it.done = 0;
|
||
|
hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
|
||
|
it.timer.function = idle_inject_timer_fn;
|
||
|
hrtimer_start(&it.timer, ns_to_ktime(duration_ns),
|
||
|
HRTIMER_MODE_REL_PINNED_HARD);
|
||
|
|
||
|
while (!READ_ONCE(it.done))
|
||
|
do_idle();
|
||
|
|
||
|
cpuidle_use_deepest_state(0);
|
||
|
current->flags &= ~PF_IDLE;
|
||
|
|
||
|
preempt_fold_need_resched();
|
||
|
preempt_enable();
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(play_idle_precise);
|
||
|
|
||
|
void cpu_startup_entry(enum cpuhp_state state)
|
||
|
{
|
||
|
arch_cpu_idle_prepare();
|
||
|
cpuhp_online_idle(state);
|
||
|
while (1)
|
||
|
do_idle();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* idle-task scheduling class.
|
||
|
*/
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
static int
|
||
|
select_task_rq_idle(struct task_struct *p, int cpu, int flags)
|
||
|
{
|
||
|
return task_cpu(p); /* IDLE tasks as never migrated */
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
|
||
|
{
|
||
|
return WARN_ON_ONCE(1);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Idle tasks are unconditionally rescheduled:
|
||
|
*/
|
||
|
static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags)
|
||
|
{
|
||
|
resched_curr(rq);
|
||
|
}
|
||
|
|
||
|
static void put_prev_task_idle(struct rq *rq, struct task_struct *prev)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first)
|
||
|
{
|
||
|
update_idle_core(rq);
|
||
|
schedstat_inc(rq->sched_goidle);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
static struct task_struct *pick_task_idle(struct rq *rq)
|
||
|
{
|
||
|
return rq->idle;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
struct task_struct *pick_next_task_idle(struct rq *rq)
|
||
|
{
|
||
|
struct task_struct *next = rq->idle;
|
||
|
|
||
|
set_next_task_idle(rq, next, true);
|
||
|
|
||
|
return next;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* It is not legal to sleep in the idle task - print a warning
|
||
|
* message if some code attempts to do it:
|
||
|
*/
|
||
|
static void
|
||
|
dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
|
||
|
{
|
||
|
raw_spin_rq_unlock_irq(rq);
|
||
|
printk(KERN_ERR "bad: scheduling from the idle thread!\n");
|
||
|
dump_stack();
|
||
|
raw_spin_rq_lock_irq(rq);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* scheduler tick hitting a task of our scheduling class.
|
||
|
*
|
||
|
* NOTE: This function can be called remotely by the tick offload that
|
||
|
* goes along full dynticks. Therefore no local assumption can be made
|
||
|
* and everything must be accessed through the @rq and @curr passed in
|
||
|
* parameters.
|
||
|
*/
|
||
|
static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static void switched_to_idle(struct rq *rq, struct task_struct *p)
|
||
|
{
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio)
|
||
|
{
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
static void update_curr_idle(struct rq *rq)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Simple, special scheduling class for the per-CPU idle tasks:
|
||
|
*/
|
||
|
DEFINE_SCHED_CLASS(idle) = {
|
||
|
|
||
|
/* no enqueue/yield_task for idle tasks */
|
||
|
|
||
|
/* dequeue is not valid, we print a debug message there: */
|
||
|
.dequeue_task = dequeue_task_idle,
|
||
|
|
||
|
.check_preempt_curr = check_preempt_curr_idle,
|
||
|
|
||
|
.pick_next_task = pick_next_task_idle,
|
||
|
.put_prev_task = put_prev_task_idle,
|
||
|
.set_next_task = set_next_task_idle,
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
.balance = balance_idle,
|
||
|
.pick_task = pick_task_idle,
|
||
|
.select_task_rq = select_task_rq_idle,
|
||
|
.set_cpus_allowed = set_cpus_allowed_common,
|
||
|
#endif
|
||
|
|
||
|
.task_tick = task_tick_idle,
|
||
|
|
||
|
.prio_changed = prio_changed_idle,
|
||
|
.switched_to = switched_to_idle,
|
||
|
.update_curr = update_curr_idle,
|
||
|
};
|