2027 lines
49 KiB
C
2027 lines
49 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
#include <linux/pagewalk.h>
|
||
|
#include <linux/mm_inline.h>
|
||
|
#include <linux/hugetlb.h>
|
||
|
#include <linux/huge_mm.h>
|
||
|
#include <linux/mount.h>
|
||
|
#include <linux/seq_file.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/ptrace.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/pagemap.h>
|
||
|
#include <linux/mempolicy.h>
|
||
|
#include <linux/rmap.h>
|
||
|
#include <linux/swap.h>
|
||
|
#include <linux/sched/mm.h>
|
||
|
#include <linux/swapops.h>
|
||
|
#include <linux/mmu_notifier.h>
|
||
|
#include <linux/page_idle.h>
|
||
|
#include <linux/shmem_fs.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <linux/pkeys.h>
|
||
|
|
||
|
#include <asm/elf.h>
|
||
|
#include <asm/tlb.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
#include "internal.h"
|
||
|
|
||
|
#define SEQ_PUT_DEC(str, val) \
|
||
|
seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
|
||
|
void task_mem(struct seq_file *m, struct mm_struct *mm)
|
||
|
{
|
||
|
unsigned long text, lib, swap, anon, file, shmem;
|
||
|
unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
|
||
|
|
||
|
anon = get_mm_counter(mm, MM_ANONPAGES);
|
||
|
file = get_mm_counter(mm, MM_FILEPAGES);
|
||
|
shmem = get_mm_counter(mm, MM_SHMEMPAGES);
|
||
|
|
||
|
/*
|
||
|
* Note: to minimize their overhead, mm maintains hiwater_vm and
|
||
|
* hiwater_rss only when about to *lower* total_vm or rss. Any
|
||
|
* collector of these hiwater stats must therefore get total_vm
|
||
|
* and rss too, which will usually be the higher. Barriers? not
|
||
|
* worth the effort, such snapshots can always be inconsistent.
|
||
|
*/
|
||
|
hiwater_vm = total_vm = mm->total_vm;
|
||
|
if (hiwater_vm < mm->hiwater_vm)
|
||
|
hiwater_vm = mm->hiwater_vm;
|
||
|
hiwater_rss = total_rss = anon + file + shmem;
|
||
|
if (hiwater_rss < mm->hiwater_rss)
|
||
|
hiwater_rss = mm->hiwater_rss;
|
||
|
|
||
|
/* split executable areas between text and lib */
|
||
|
text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
|
||
|
text = min(text, mm->exec_vm << PAGE_SHIFT);
|
||
|
lib = (mm->exec_vm << PAGE_SHIFT) - text;
|
||
|
|
||
|
swap = get_mm_counter(mm, MM_SWAPENTS);
|
||
|
SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
|
||
|
SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
|
||
|
SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
|
||
|
SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
|
||
|
SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
|
||
|
SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
|
||
|
SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
|
||
|
SEQ_PUT_DEC(" kB\nRssFile:\t", file);
|
||
|
SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
|
||
|
SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
|
||
|
SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
|
||
|
seq_put_decimal_ull_width(m,
|
||
|
" kB\nVmExe:\t", text >> 10, 8);
|
||
|
seq_put_decimal_ull_width(m,
|
||
|
" kB\nVmLib:\t", lib >> 10, 8);
|
||
|
seq_put_decimal_ull_width(m,
|
||
|
" kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
|
||
|
SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
|
||
|
seq_puts(m, " kB\n");
|
||
|
hugetlb_report_usage(m, mm);
|
||
|
}
|
||
|
#undef SEQ_PUT_DEC
|
||
|
|
||
|
unsigned long task_vsize(struct mm_struct *mm)
|
||
|
{
|
||
|
return PAGE_SIZE * mm->total_vm;
|
||
|
}
|
||
|
|
||
|
unsigned long task_statm(struct mm_struct *mm,
|
||
|
unsigned long *shared, unsigned long *text,
|
||
|
unsigned long *data, unsigned long *resident)
|
||
|
{
|
||
|
*shared = get_mm_counter(mm, MM_FILEPAGES) +
|
||
|
get_mm_counter(mm, MM_SHMEMPAGES);
|
||
|
*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
|
||
|
>> PAGE_SHIFT;
|
||
|
*data = mm->data_vm + mm->stack_vm;
|
||
|
*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
|
||
|
return mm->total_vm;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_NUMA
|
||
|
/*
|
||
|
* Save get_task_policy() for show_numa_map().
|
||
|
*/
|
||
|
static void hold_task_mempolicy(struct proc_maps_private *priv)
|
||
|
{
|
||
|
struct task_struct *task = priv->task;
|
||
|
|
||
|
task_lock(task);
|
||
|
priv->task_mempolicy = get_task_policy(task);
|
||
|
mpol_get(priv->task_mempolicy);
|
||
|
task_unlock(task);
|
||
|
}
|
||
|
static void release_task_mempolicy(struct proc_maps_private *priv)
|
||
|
{
|
||
|
mpol_put(priv->task_mempolicy);
|
||
|
}
|
||
|
#else
|
||
|
static void hold_task_mempolicy(struct proc_maps_private *priv)
|
||
|
{
|
||
|
}
|
||
|
static void release_task_mempolicy(struct proc_maps_private *priv)
|
||
|
{
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
|
||
|
loff_t *ppos)
|
||
|
{
|
||
|
struct vm_area_struct *vma = vma_next(&priv->iter);
|
||
|
|
||
|
if (vma) {
|
||
|
*ppos = vma->vm_start;
|
||
|
} else {
|
||
|
*ppos = -2UL;
|
||
|
vma = get_gate_vma(priv->mm);
|
||
|
}
|
||
|
|
||
|
return vma;
|
||
|
}
|
||
|
|
||
|
static void *m_start(struct seq_file *m, loff_t *ppos)
|
||
|
{
|
||
|
struct proc_maps_private *priv = m->private;
|
||
|
unsigned long last_addr = *ppos;
|
||
|
struct mm_struct *mm;
|
||
|
|
||
|
/* See m_next(). Zero at the start or after lseek. */
|
||
|
if (last_addr == -1UL)
|
||
|
return NULL;
|
||
|
|
||
|
priv->task = get_proc_task(priv->inode);
|
||
|
if (!priv->task)
|
||
|
return ERR_PTR(-ESRCH);
|
||
|
|
||
|
mm = priv->mm;
|
||
|
if (!mm || !mmget_not_zero(mm)) {
|
||
|
put_task_struct(priv->task);
|
||
|
priv->task = NULL;
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if (mmap_read_lock_killable(mm)) {
|
||
|
mmput(mm);
|
||
|
put_task_struct(priv->task);
|
||
|
priv->task = NULL;
|
||
|
return ERR_PTR(-EINTR);
|
||
|
}
|
||
|
|
||
|
vma_iter_init(&priv->iter, mm, last_addr);
|
||
|
hold_task_mempolicy(priv);
|
||
|
if (last_addr == -2UL)
|
||
|
return get_gate_vma(mm);
|
||
|
|
||
|
return proc_get_vma(priv, ppos);
|
||
|
}
|
||
|
|
||
|
static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
|
||
|
{
|
||
|
if (*ppos == -2UL) {
|
||
|
*ppos = -1UL;
|
||
|
return NULL;
|
||
|
}
|
||
|
return proc_get_vma(m->private, ppos);
|
||
|
}
|
||
|
|
||
|
static void m_stop(struct seq_file *m, void *v)
|
||
|
{
|
||
|
struct proc_maps_private *priv = m->private;
|
||
|
struct mm_struct *mm = priv->mm;
|
||
|
|
||
|
if (!priv->task)
|
||
|
return;
|
||
|
|
||
|
release_task_mempolicy(priv);
|
||
|
mmap_read_unlock(mm);
|
||
|
mmput(mm);
|
||
|
put_task_struct(priv->task);
|
||
|
priv->task = NULL;
|
||
|
}
|
||
|
|
||
|
static int proc_maps_open(struct inode *inode, struct file *file,
|
||
|
const struct seq_operations *ops, int psize)
|
||
|
{
|
||
|
struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
|
||
|
|
||
|
if (!priv)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
priv->inode = inode;
|
||
|
priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
|
||
|
if (IS_ERR(priv->mm)) {
|
||
|
int err = PTR_ERR(priv->mm);
|
||
|
|
||
|
seq_release_private(inode, file);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int proc_map_release(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
struct seq_file *seq = file->private_data;
|
||
|
struct proc_maps_private *priv = seq->private;
|
||
|
|
||
|
if (priv->mm)
|
||
|
mmdrop(priv->mm);
|
||
|
|
||
|
return seq_release_private(inode, file);
|
||
|
}
|
||
|
|
||
|
static int do_maps_open(struct inode *inode, struct file *file,
|
||
|
const struct seq_operations *ops)
|
||
|
{
|
||
|
return proc_maps_open(inode, file, ops,
|
||
|
sizeof(struct proc_maps_private));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Indicate if the VMA is a stack for the given task; for
|
||
|
* /proc/PID/maps that is the stack of the main task.
|
||
|
*/
|
||
|
static int is_stack(struct vm_area_struct *vma)
|
||
|
{
|
||
|
/*
|
||
|
* We make no effort to guess what a given thread considers to be
|
||
|
* its "stack". It's not even well-defined for programs written
|
||
|
* languages like Go.
|
||
|
*/
|
||
|
return vma->vm_start <= vma->vm_mm->start_stack &&
|
||
|
vma->vm_end >= vma->vm_mm->start_stack;
|
||
|
}
|
||
|
|
||
|
static void show_vma_header_prefix(struct seq_file *m,
|
||
|
unsigned long start, unsigned long end,
|
||
|
vm_flags_t flags, unsigned long long pgoff,
|
||
|
dev_t dev, unsigned long ino)
|
||
|
{
|
||
|
seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
|
||
|
seq_put_hex_ll(m, NULL, start, 8);
|
||
|
seq_put_hex_ll(m, "-", end, 8);
|
||
|
seq_putc(m, ' ');
|
||
|
seq_putc(m, flags & VM_READ ? 'r' : '-');
|
||
|
seq_putc(m, flags & VM_WRITE ? 'w' : '-');
|
||
|
seq_putc(m, flags & VM_EXEC ? 'x' : '-');
|
||
|
seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
|
||
|
seq_put_hex_ll(m, " ", pgoff, 8);
|
||
|
seq_put_hex_ll(m, " ", MAJOR(dev), 2);
|
||
|
seq_put_hex_ll(m, ":", MINOR(dev), 2);
|
||
|
seq_put_decimal_ull(m, " ", ino);
|
||
|
seq_putc(m, ' ');
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
|
||
|
{
|
||
|
struct mm_struct *mm = vma->vm_mm;
|
||
|
struct file *file = vma->vm_file;
|
||
|
vm_flags_t flags = vma->vm_flags;
|
||
|
unsigned long ino = 0;
|
||
|
unsigned long long pgoff = 0;
|
||
|
unsigned long start, end;
|
||
|
dev_t dev = 0;
|
||
|
const char *name = NULL;
|
||
|
|
||
|
if (file) {
|
||
|
struct inode *inode = file_inode(vma->vm_file);
|
||
|
dev = inode->i_sb->s_dev;
|
||
|
ino = inode->i_ino;
|
||
|
pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
|
||
|
}
|
||
|
|
||
|
start = vma->vm_start;
|
||
|
end = vma->vm_end;
|
||
|
show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
|
||
|
|
||
|
/*
|
||
|
* Print the dentry name for named mappings, and a
|
||
|
* special [heap] marker for the heap:
|
||
|
*/
|
||
|
if (file) {
|
||
|
seq_pad(m, ' ');
|
||
|
seq_file_path(m, file, "\n");
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
if (vma->vm_ops && vma->vm_ops->name) {
|
||
|
name = vma->vm_ops->name(vma);
|
||
|
if (name)
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
name = arch_vma_name(vma);
|
||
|
if (!name) {
|
||
|
struct anon_vma_name *anon_name;
|
||
|
|
||
|
if (!mm) {
|
||
|
name = "[vdso]";
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
if (vma->vm_start <= mm->brk &&
|
||
|
vma->vm_end >= mm->start_brk) {
|
||
|
name = "[heap]";
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
if (is_stack(vma)) {
|
||
|
name = "[stack]";
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
anon_name = anon_vma_name(vma);
|
||
|
if (anon_name) {
|
||
|
seq_pad(m, ' ');
|
||
|
seq_printf(m, "[anon:%s]", anon_name->name);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
if (name) {
|
||
|
seq_pad(m, ' ');
|
||
|
seq_puts(m, name);
|
||
|
}
|
||
|
seq_putc(m, '\n');
|
||
|
}
|
||
|
|
||
|
static int show_map(struct seq_file *m, void *v)
|
||
|
{
|
||
|
show_map_vma(m, v);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct seq_operations proc_pid_maps_op = {
|
||
|
.start = m_start,
|
||
|
.next = m_next,
|
||
|
.stop = m_stop,
|
||
|
.show = show_map
|
||
|
};
|
||
|
|
||
|
static int pid_maps_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
return do_maps_open(inode, file, &proc_pid_maps_op);
|
||
|
}
|
||
|
|
||
|
const struct file_operations proc_pid_maps_operations = {
|
||
|
.open = pid_maps_open,
|
||
|
.read = seq_read,
|
||
|
.llseek = seq_lseek,
|
||
|
.release = proc_map_release,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Proportional Set Size(PSS): my share of RSS.
|
||
|
*
|
||
|
* PSS of a process is the count of pages it has in memory, where each
|
||
|
* page is divided by the number of processes sharing it. So if a
|
||
|
* process has 1000 pages all to itself, and 1000 shared with one other
|
||
|
* process, its PSS will be 1500.
|
||
|
*
|
||
|
* To keep (accumulated) division errors low, we adopt a 64bit
|
||
|
* fixed-point pss counter to minimize division errors. So (pss >>
|
||
|
* PSS_SHIFT) would be the real byte count.
|
||
|
*
|
||
|
* A shift of 12 before division means (assuming 4K page size):
|
||
|
* - 1M 3-user-pages add up to 8KB errors;
|
||
|
* - supports mapcount up to 2^24, or 16M;
|
||
|
* - supports PSS up to 2^52 bytes, or 4PB.
|
||
|
*/
|
||
|
#define PSS_SHIFT 12
|
||
|
|
||
|
#ifdef CONFIG_PROC_PAGE_MONITOR
|
||
|
struct mem_size_stats {
|
||
|
unsigned long resident;
|
||
|
unsigned long shared_clean;
|
||
|
unsigned long shared_dirty;
|
||
|
unsigned long private_clean;
|
||
|
unsigned long private_dirty;
|
||
|
unsigned long referenced;
|
||
|
unsigned long anonymous;
|
||
|
unsigned long lazyfree;
|
||
|
unsigned long anonymous_thp;
|
||
|
unsigned long shmem_thp;
|
||
|
unsigned long file_thp;
|
||
|
unsigned long swap;
|
||
|
unsigned long shared_hugetlb;
|
||
|
unsigned long private_hugetlb;
|
||
|
u64 pss;
|
||
|
u64 pss_anon;
|
||
|
u64 pss_file;
|
||
|
u64 pss_shmem;
|
||
|
u64 pss_dirty;
|
||
|
u64 pss_locked;
|
||
|
u64 swap_pss;
|
||
|
};
|
||
|
|
||
|
static void smaps_page_accumulate(struct mem_size_stats *mss,
|
||
|
struct page *page, unsigned long size, unsigned long pss,
|
||
|
bool dirty, bool locked, bool private)
|
||
|
{
|
||
|
mss->pss += pss;
|
||
|
|
||
|
if (PageAnon(page))
|
||
|
mss->pss_anon += pss;
|
||
|
else if (PageSwapBacked(page))
|
||
|
mss->pss_shmem += pss;
|
||
|
else
|
||
|
mss->pss_file += pss;
|
||
|
|
||
|
if (locked)
|
||
|
mss->pss_locked += pss;
|
||
|
|
||
|
if (dirty || PageDirty(page)) {
|
||
|
mss->pss_dirty += pss;
|
||
|
if (private)
|
||
|
mss->private_dirty += size;
|
||
|
else
|
||
|
mss->shared_dirty += size;
|
||
|
} else {
|
||
|
if (private)
|
||
|
mss->private_clean += size;
|
||
|
else
|
||
|
mss->shared_clean += size;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void smaps_account(struct mem_size_stats *mss, struct page *page,
|
||
|
bool compound, bool young, bool dirty, bool locked,
|
||
|
bool migration)
|
||
|
{
|
||
|
int i, nr = compound ? compound_nr(page) : 1;
|
||
|
unsigned long size = nr * PAGE_SIZE;
|
||
|
|
||
|
/*
|
||
|
* First accumulate quantities that depend only on |size| and the type
|
||
|
* of the compound page.
|
||
|
*/
|
||
|
if (PageAnon(page)) {
|
||
|
mss->anonymous += size;
|
||
|
if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
|
||
|
mss->lazyfree += size;
|
||
|
}
|
||
|
|
||
|
mss->resident += size;
|
||
|
/* Accumulate the size in pages that have been accessed. */
|
||
|
if (young || page_is_young(page) || PageReferenced(page))
|
||
|
mss->referenced += size;
|
||
|
|
||
|
/*
|
||
|
* Then accumulate quantities that may depend on sharing, or that may
|
||
|
* differ page-by-page.
|
||
|
*
|
||
|
* page_count(page) == 1 guarantees the page is mapped exactly once.
|
||
|
* If any subpage of the compound page mapped with PTE it would elevate
|
||
|
* page_count().
|
||
|
*
|
||
|
* The page_mapcount() is called to get a snapshot of the mapcount.
|
||
|
* Without holding the page lock this snapshot can be slightly wrong as
|
||
|
* we cannot always read the mapcount atomically. It is not safe to
|
||
|
* call page_mapcount() even with PTL held if the page is not mapped,
|
||
|
* especially for migration entries. Treat regular migration entries
|
||
|
* as mapcount == 1.
|
||
|
*/
|
||
|
if ((page_count(page) == 1) || migration) {
|
||
|
smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
|
||
|
locked, true);
|
||
|
return;
|
||
|
}
|
||
|
for (i = 0; i < nr; i++, page++) {
|
||
|
int mapcount = page_mapcount(page);
|
||
|
unsigned long pss = PAGE_SIZE << PSS_SHIFT;
|
||
|
if (mapcount >= 2)
|
||
|
pss /= mapcount;
|
||
|
smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
|
||
|
mapcount < 2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_SHMEM
|
||
|
static int smaps_pte_hole(unsigned long addr, unsigned long end,
|
||
|
__always_unused int depth, struct mm_walk *walk)
|
||
|
{
|
||
|
struct mem_size_stats *mss = walk->private;
|
||
|
struct vm_area_struct *vma = walk->vma;
|
||
|
|
||
|
mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
|
||
|
linear_page_index(vma, addr),
|
||
|
linear_page_index(vma, end));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
#else
|
||
|
#define smaps_pte_hole NULL
|
||
|
#endif /* CONFIG_SHMEM */
|
||
|
|
||
|
static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
|
||
|
{
|
||
|
#ifdef CONFIG_SHMEM
|
||
|
if (walk->ops->pte_hole) {
|
||
|
/* depth is not used */
|
||
|
smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static void smaps_pte_entry(pte_t *pte, unsigned long addr,
|
||
|
struct mm_walk *walk)
|
||
|
{
|
||
|
struct mem_size_stats *mss = walk->private;
|
||
|
struct vm_area_struct *vma = walk->vma;
|
||
|
bool locked = !!(vma->vm_flags & VM_LOCKED);
|
||
|
struct page *page = NULL;
|
||
|
bool migration = false, young = false, dirty = false;
|
||
|
|
||
|
if (pte_present(*pte)) {
|
||
|
page = vm_normal_page(vma, addr, *pte);
|
||
|
young = pte_young(*pte);
|
||
|
dirty = pte_dirty(*pte);
|
||
|
} else if (is_swap_pte(*pte)) {
|
||
|
swp_entry_t swpent = pte_to_swp_entry(*pte);
|
||
|
|
||
|
if (!non_swap_entry(swpent)) {
|
||
|
int mapcount;
|
||
|
|
||
|
mss->swap += PAGE_SIZE;
|
||
|
mapcount = swp_swapcount(swpent);
|
||
|
if (mapcount >= 2) {
|
||
|
u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
|
||
|
|
||
|
do_div(pss_delta, mapcount);
|
||
|
mss->swap_pss += pss_delta;
|
||
|
} else {
|
||
|
mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
|
||
|
}
|
||
|
} else if (is_pfn_swap_entry(swpent)) {
|
||
|
if (is_migration_entry(swpent))
|
||
|
migration = true;
|
||
|
page = pfn_swap_entry_to_page(swpent);
|
||
|
}
|
||
|
} else {
|
||
|
smaps_pte_hole_lookup(addr, walk);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!page)
|
||
|
return;
|
||
|
|
||
|
smaps_account(mss, page, false, young, dirty, locked, migration);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
|
||
|
struct mm_walk *walk)
|
||
|
{
|
||
|
struct mem_size_stats *mss = walk->private;
|
||
|
struct vm_area_struct *vma = walk->vma;
|
||
|
bool locked = !!(vma->vm_flags & VM_LOCKED);
|
||
|
struct page *page = NULL;
|
||
|
bool migration = false;
|
||
|
|
||
|
if (pmd_present(*pmd)) {
|
||
|
/* FOLL_DUMP will return -EFAULT on huge zero page */
|
||
|
page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
|
||
|
} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
|
||
|
swp_entry_t entry = pmd_to_swp_entry(*pmd);
|
||
|
|
||
|
if (is_migration_entry(entry)) {
|
||
|
migration = true;
|
||
|
page = pfn_swap_entry_to_page(entry);
|
||
|
}
|
||
|
}
|
||
|
if (IS_ERR_OR_NULL(page))
|
||
|
return;
|
||
|
if (PageAnon(page))
|
||
|
mss->anonymous_thp += HPAGE_PMD_SIZE;
|
||
|
else if (PageSwapBacked(page))
|
||
|
mss->shmem_thp += HPAGE_PMD_SIZE;
|
||
|
else if (is_zone_device_page(page))
|
||
|
/* pass */;
|
||
|
else
|
||
|
mss->file_thp += HPAGE_PMD_SIZE;
|
||
|
|
||
|
smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
|
||
|
locked, migration);
|
||
|
}
|
||
|
#else
|
||
|
static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
|
||
|
struct mm_walk *walk)
|
||
|
{
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
|
||
|
struct mm_walk *walk)
|
||
|
{
|
||
|
struct vm_area_struct *vma = walk->vma;
|
||
|
pte_t *pte;
|
||
|
spinlock_t *ptl;
|
||
|
|
||
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
||
|
if (ptl) {
|
||
|
smaps_pmd_entry(pmd, addr, walk);
|
||
|
spin_unlock(ptl);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (pmd_trans_unstable(pmd))
|
||
|
goto out;
|
||
|
/*
|
||
|
* The mmap_lock held all the way back in m_start() is what
|
||
|
* keeps khugepaged out of here and from collapsing things
|
||
|
* in here.
|
||
|
*/
|
||
|
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
||
|
for (; addr != end; pte++, addr += PAGE_SIZE)
|
||
|
smaps_pte_entry(pte, addr, walk);
|
||
|
pte_unmap_unlock(pte - 1, ptl);
|
||
|
out:
|
||
|
cond_resched();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
|
||
|
{
|
||
|
/*
|
||
|
* Don't forget to update Documentation/ on changes.
|
||
|
*/
|
||
|
static const char mnemonics[BITS_PER_LONG][2] = {
|
||
|
/*
|
||
|
* In case if we meet a flag we don't know about.
|
||
|
*/
|
||
|
[0 ... (BITS_PER_LONG-1)] = "??",
|
||
|
|
||
|
[ilog2(VM_READ)] = "rd",
|
||
|
[ilog2(VM_WRITE)] = "wr",
|
||
|
[ilog2(VM_EXEC)] = "ex",
|
||
|
[ilog2(VM_SHARED)] = "sh",
|
||
|
[ilog2(VM_MAYREAD)] = "mr",
|
||
|
[ilog2(VM_MAYWRITE)] = "mw",
|
||
|
[ilog2(VM_MAYEXEC)] = "me",
|
||
|
[ilog2(VM_MAYSHARE)] = "ms",
|
||
|
[ilog2(VM_GROWSDOWN)] = "gd",
|
||
|
[ilog2(VM_PFNMAP)] = "pf",
|
||
|
[ilog2(VM_LOCKED)] = "lo",
|
||
|
[ilog2(VM_IO)] = "io",
|
||
|
[ilog2(VM_SEQ_READ)] = "sr",
|
||
|
[ilog2(VM_RAND_READ)] = "rr",
|
||
|
[ilog2(VM_DONTCOPY)] = "dc",
|
||
|
[ilog2(VM_DONTEXPAND)] = "de",
|
||
|
[ilog2(VM_ACCOUNT)] = "ac",
|
||
|
[ilog2(VM_NORESERVE)] = "nr",
|
||
|
[ilog2(VM_HUGETLB)] = "ht",
|
||
|
[ilog2(VM_SYNC)] = "sf",
|
||
|
[ilog2(VM_ARCH_1)] = "ar",
|
||
|
[ilog2(VM_WIPEONFORK)] = "wf",
|
||
|
[ilog2(VM_DONTDUMP)] = "dd",
|
||
|
#ifdef CONFIG_ARM64_BTI
|
||
|
[ilog2(VM_ARM64_BTI)] = "bt",
|
||
|
#endif
|
||
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
||
|
[ilog2(VM_SOFTDIRTY)] = "sd",
|
||
|
#endif
|
||
|
[ilog2(VM_MIXEDMAP)] = "mm",
|
||
|
[ilog2(VM_HUGEPAGE)] = "hg",
|
||
|
[ilog2(VM_NOHUGEPAGE)] = "nh",
|
||
|
[ilog2(VM_MERGEABLE)] = "mg",
|
||
|
[ilog2(VM_UFFD_MISSING)]= "um",
|
||
|
[ilog2(VM_UFFD_WP)] = "uw",
|
||
|
#ifdef CONFIG_ARM64_MTE
|
||
|
[ilog2(VM_MTE)] = "mt",
|
||
|
[ilog2(VM_MTE_ALLOWED)] = "",
|
||
|
#endif
|
||
|
#ifdef CONFIG_ARCH_HAS_PKEYS
|
||
|
/* These come out via ProtectionKey: */
|
||
|
[ilog2(VM_PKEY_BIT0)] = "",
|
||
|
[ilog2(VM_PKEY_BIT1)] = "",
|
||
|
[ilog2(VM_PKEY_BIT2)] = "",
|
||
|
[ilog2(VM_PKEY_BIT3)] = "",
|
||
|
#if VM_PKEY_BIT4
|
||
|
[ilog2(VM_PKEY_BIT4)] = "",
|
||
|
#endif
|
||
|
#endif /* CONFIG_ARCH_HAS_PKEYS */
|
||
|
#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
|
||
|
[ilog2(VM_UFFD_MINOR)] = "ui",
|
||
|
#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
|
||
|
};
|
||
|
size_t i;
|
||
|
|
||
|
seq_puts(m, "VmFlags: ");
|
||
|
for (i = 0; i < BITS_PER_LONG; i++) {
|
||
|
if (!mnemonics[i][0])
|
||
|
continue;
|
||
|
if (vma->vm_flags & (1UL << i)) {
|
||
|
seq_putc(m, mnemonics[i][0]);
|
||
|
seq_putc(m, mnemonics[i][1]);
|
||
|
seq_putc(m, ' ');
|
||
|
}
|
||
|
}
|
||
|
seq_putc(m, '\n');
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_HUGETLB_PAGE
|
||
|
static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
|
||
|
unsigned long addr, unsigned long end,
|
||
|
struct mm_walk *walk)
|
||
|
{
|
||
|
struct mem_size_stats *mss = walk->private;
|
||
|
struct vm_area_struct *vma = walk->vma;
|
||
|
struct page *page = NULL;
|
||
|
|
||
|
if (pte_present(*pte)) {
|
||
|
page = vm_normal_page(vma, addr, *pte);
|
||
|
} else if (is_swap_pte(*pte)) {
|
||
|
swp_entry_t swpent = pte_to_swp_entry(*pte);
|
||
|
|
||
|
if (is_pfn_swap_entry(swpent))
|
||
|
page = pfn_swap_entry_to_page(swpent);
|
||
|
}
|
||
|
if (page) {
|
||
|
if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
|
||
|
mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
|
||
|
else
|
||
|
mss->private_hugetlb += huge_page_size(hstate_vma(vma));
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
#else
|
||
|
#define smaps_hugetlb_range NULL
|
||
|
#endif /* HUGETLB_PAGE */
|
||
|
|
||
|
static const struct mm_walk_ops smaps_walk_ops = {
|
||
|
.pmd_entry = smaps_pte_range,
|
||
|
.hugetlb_entry = smaps_hugetlb_range,
|
||
|
};
|
||
|
|
||
|
static const struct mm_walk_ops smaps_shmem_walk_ops = {
|
||
|
.pmd_entry = smaps_pte_range,
|
||
|
.hugetlb_entry = smaps_hugetlb_range,
|
||
|
.pte_hole = smaps_pte_hole,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Gather mem stats from @vma with the indicated beginning
|
||
|
* address @start, and keep them in @mss.
|
||
|
*
|
||
|
* Use vm_start of @vma as the beginning address if @start is 0.
|
||
|
*/
|
||
|
static void smap_gather_stats(struct vm_area_struct *vma,
|
||
|
struct mem_size_stats *mss, unsigned long start)
|
||
|
{
|
||
|
const struct mm_walk_ops *ops = &smaps_walk_ops;
|
||
|
|
||
|
/* Invalid start */
|
||
|
if (start >= vma->vm_end)
|
||
|
return;
|
||
|
|
||
|
#ifdef CONFIG_SHMEM
|
||
|
if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
|
||
|
/*
|
||
|
* For shared or readonly shmem mappings we know that all
|
||
|
* swapped out pages belong to the shmem object, and we can
|
||
|
* obtain the swap value much more efficiently. For private
|
||
|
* writable mappings, we might have COW pages that are
|
||
|
* not affected by the parent swapped out pages of the shmem
|
||
|
* object, so we have to distinguish them during the page walk.
|
||
|
* Unless we know that the shmem object (or the part mapped by
|
||
|
* our VMA) has no swapped out pages at all.
|
||
|
*/
|
||
|
unsigned long shmem_swapped = shmem_swap_usage(vma);
|
||
|
|
||
|
if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
|
||
|
!(vma->vm_flags & VM_WRITE))) {
|
||
|
mss->swap += shmem_swapped;
|
||
|
} else {
|
||
|
ops = &smaps_shmem_walk_ops;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
/* mmap_lock is held in m_start */
|
||
|
if (!start)
|
||
|
walk_page_vma(vma, ops, mss);
|
||
|
else
|
||
|
walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
|
||
|
}
|
||
|
|
||
|
#define SEQ_PUT_DEC(str, val) \
|
||
|
seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
|
||
|
|
||
|
/* Show the contents common for smaps and smaps_rollup */
|
||
|
static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
|
||
|
bool rollup_mode)
|
||
|
{
|
||
|
SEQ_PUT_DEC("Rss: ", mss->resident);
|
||
|
SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
|
||
|
SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT);
|
||
|
if (rollup_mode) {
|
||
|
/*
|
||
|
* These are meaningful only for smaps_rollup, otherwise two of
|
||
|
* them are zero, and the other one is the same as Pss.
|
||
|
*/
|
||
|
SEQ_PUT_DEC(" kB\nPss_Anon: ",
|
||
|
mss->pss_anon >> PSS_SHIFT);
|
||
|
SEQ_PUT_DEC(" kB\nPss_File: ",
|
||
|
mss->pss_file >> PSS_SHIFT);
|
||
|
SEQ_PUT_DEC(" kB\nPss_Shmem: ",
|
||
|
mss->pss_shmem >> PSS_SHIFT);
|
||
|
}
|
||
|
SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
|
||
|
SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
|
||
|
SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
|
||
|
SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
|
||
|
SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
|
||
|
SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
|
||
|
SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
|
||
|
SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
|
||
|
SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
|
||
|
SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
|
||
|
SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
|
||
|
seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
|
||
|
mss->private_hugetlb >> 10, 7);
|
||
|
SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
|
||
|
SEQ_PUT_DEC(" kB\nSwapPss: ",
|
||
|
mss->swap_pss >> PSS_SHIFT);
|
||
|
SEQ_PUT_DEC(" kB\nLocked: ",
|
||
|
mss->pss_locked >> PSS_SHIFT);
|
||
|
seq_puts(m, " kB\n");
|
||
|
}
|
||
|
|
||
|
static int show_smap(struct seq_file *m, void *v)
|
||
|
{
|
||
|
struct vm_area_struct *vma = v;
|
||
|
struct mem_size_stats mss;
|
||
|
|
||
|
memset(&mss, 0, sizeof(mss));
|
||
|
|
||
|
smap_gather_stats(vma, &mss, 0);
|
||
|
|
||
|
show_map_vma(m, vma);
|
||
|
|
||
|
SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
|
||
|
SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
|
||
|
SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
|
||
|
seq_puts(m, " kB\n");
|
||
|
|
||
|
__show_smap(m, &mss, false);
|
||
|
|
||
|
seq_printf(m, "THPeligible: %d\n",
|
||
|
hugepage_vma_check(vma, vma->vm_flags, true, false, true));
|
||
|
|
||
|
if (arch_pkeys_enabled())
|
||
|
seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
|
||
|
show_smap_vma_flags(m, vma);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int show_smaps_rollup(struct seq_file *m, void *v)
|
||
|
{
|
||
|
struct proc_maps_private *priv = m->private;
|
||
|
struct mem_size_stats mss;
|
||
|
struct mm_struct *mm = priv->mm;
|
||
|
struct vm_area_struct *vma;
|
||
|
unsigned long vma_start = 0, last_vma_end = 0;
|
||
|
int ret = 0;
|
||
|
MA_STATE(mas, &mm->mm_mt, 0, 0);
|
||
|
|
||
|
priv->task = get_proc_task(priv->inode);
|
||
|
if (!priv->task)
|
||
|
return -ESRCH;
|
||
|
|
||
|
if (!mm || !mmget_not_zero(mm)) {
|
||
|
ret = -ESRCH;
|
||
|
goto out_put_task;
|
||
|
}
|
||
|
|
||
|
memset(&mss, 0, sizeof(mss));
|
||
|
|
||
|
ret = mmap_read_lock_killable(mm);
|
||
|
if (ret)
|
||
|
goto out_put_mm;
|
||
|
|
||
|
hold_task_mempolicy(priv);
|
||
|
vma = mas_find(&mas, ULONG_MAX);
|
||
|
|
||
|
if (unlikely(!vma))
|
||
|
goto empty_set;
|
||
|
|
||
|
vma_start = vma->vm_start;
|
||
|
do {
|
||
|
smap_gather_stats(vma, &mss, 0);
|
||
|
last_vma_end = vma->vm_end;
|
||
|
|
||
|
/*
|
||
|
* Release mmap_lock temporarily if someone wants to
|
||
|
* access it for write request.
|
||
|
*/
|
||
|
if (mmap_lock_is_contended(mm)) {
|
||
|
mas_pause(&mas);
|
||
|
mmap_read_unlock(mm);
|
||
|
ret = mmap_read_lock_killable(mm);
|
||
|
if (ret) {
|
||
|
release_task_mempolicy(priv);
|
||
|
goto out_put_mm;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* After dropping the lock, there are four cases to
|
||
|
* consider. See the following example for explanation.
|
||
|
*
|
||
|
* +------+------+-----------+
|
||
|
* | VMA1 | VMA2 | VMA3 |
|
||
|
* +------+------+-----------+
|
||
|
* | | | |
|
||
|
* 4k 8k 16k 400k
|
||
|
*
|
||
|
* Suppose we drop the lock after reading VMA2 due to
|
||
|
* contention, then we get:
|
||
|
*
|
||
|
* last_vma_end = 16k
|
||
|
*
|
||
|
* 1) VMA2 is freed, but VMA3 exists:
|
||
|
*
|
||
|
* find_vma(mm, 16k - 1) will return VMA3.
|
||
|
* In this case, just continue from VMA3.
|
||
|
*
|
||
|
* 2) VMA2 still exists:
|
||
|
*
|
||
|
* find_vma(mm, 16k - 1) will return VMA2.
|
||
|
* Iterate the loop like the original one.
|
||
|
*
|
||
|
* 3) No more VMAs can be found:
|
||
|
*
|
||
|
* find_vma(mm, 16k - 1) will return NULL.
|
||
|
* No more things to do, just break.
|
||
|
*
|
||
|
* 4) (last_vma_end - 1) is the middle of a vma (VMA'):
|
||
|
*
|
||
|
* find_vma(mm, 16k - 1) will return VMA' whose range
|
||
|
* contains last_vma_end.
|
||
|
* Iterate VMA' from last_vma_end.
|
||
|
*/
|
||
|
vma = mas_find(&mas, ULONG_MAX);
|
||
|
/* Case 3 above */
|
||
|
if (!vma)
|
||
|
break;
|
||
|
|
||
|
/* Case 1 above */
|
||
|
if (vma->vm_start >= last_vma_end)
|
||
|
continue;
|
||
|
|
||
|
/* Case 4 above */
|
||
|
if (vma->vm_end > last_vma_end)
|
||
|
smap_gather_stats(vma, &mss, last_vma_end);
|
||
|
}
|
||
|
/* Case 2 above */
|
||
|
} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
|
||
|
|
||
|
empty_set:
|
||
|
show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
|
||
|
seq_pad(m, ' ');
|
||
|
seq_puts(m, "[rollup]\n");
|
||
|
|
||
|
__show_smap(m, &mss, true);
|
||
|
|
||
|
release_task_mempolicy(priv);
|
||
|
mmap_read_unlock(mm);
|
||
|
|
||
|
out_put_mm:
|
||
|
mmput(mm);
|
||
|
out_put_task:
|
||
|
put_task_struct(priv->task);
|
||
|
priv->task = NULL;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
#undef SEQ_PUT_DEC
|
||
|
|
||
|
static const struct seq_operations proc_pid_smaps_op = {
|
||
|
.start = m_start,
|
||
|
.next = m_next,
|
||
|
.stop = m_stop,
|
||
|
.show = show_smap
|
||
|
};
|
||
|
|
||
|
static int pid_smaps_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
return do_maps_open(inode, file, &proc_pid_smaps_op);
|
||
|
}
|
||
|
|
||
|
static int smaps_rollup_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
int ret;
|
||
|
struct proc_maps_private *priv;
|
||
|
|
||
|
priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
|
||
|
if (!priv)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
ret = single_open(file, show_smaps_rollup, priv);
|
||
|
if (ret)
|
||
|
goto out_free;
|
||
|
|
||
|
priv->inode = inode;
|
||
|
priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
|
||
|
if (IS_ERR(priv->mm)) {
|
||
|
ret = PTR_ERR(priv->mm);
|
||
|
|
||
|
single_release(inode, file);
|
||
|
goto out_free;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
out_free:
|
||
|
kfree(priv);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int smaps_rollup_release(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
struct seq_file *seq = file->private_data;
|
||
|
struct proc_maps_private *priv = seq->private;
|
||
|
|
||
|
if (priv->mm)
|
||
|
mmdrop(priv->mm);
|
||
|
|
||
|
kfree(priv);
|
||
|
return single_release(inode, file);
|
||
|
}
|
||
|
|
||
|
const struct file_operations proc_pid_smaps_operations = {
|
||
|
.open = pid_smaps_open,
|
||
|
.read = seq_read,
|
||
|
.llseek = seq_lseek,
|
||
|
.release = proc_map_release,
|
||
|
};
|
||
|
|
||
|
const struct file_operations proc_pid_smaps_rollup_operations = {
|
||
|
.open = smaps_rollup_open,
|
||
|
.read = seq_read,
|
||
|
.llseek = seq_lseek,
|
||
|
.release = smaps_rollup_release,
|
||
|
};
|
||
|
|
||
|
enum clear_refs_types {
|
||
|
CLEAR_REFS_ALL = 1,
|
||
|
CLEAR_REFS_ANON,
|
||
|
CLEAR_REFS_MAPPED,
|
||
|
CLEAR_REFS_SOFT_DIRTY,
|
||
|
CLEAR_REFS_MM_HIWATER_RSS,
|
||
|
CLEAR_REFS_LAST,
|
||
|
};
|
||
|
|
||
|
struct clear_refs_private {
|
||
|
enum clear_refs_types type;
|
||
|
};
|
||
|
|
||
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
||
|
|
||
|
static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
|
||
|
{
|
||
|
struct page *page;
|
||
|
|
||
|
if (!pte_write(pte))
|
||
|
return false;
|
||
|
if (!is_cow_mapping(vma->vm_flags))
|
||
|
return false;
|
||
|
if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
|
||
|
return false;
|
||
|
page = vm_normal_page(vma, addr, pte);
|
||
|
if (!page)
|
||
|
return false;
|
||
|
return page_maybe_dma_pinned(page);
|
||
|
}
|
||
|
|
||
|
static inline void clear_soft_dirty(struct vm_area_struct *vma,
|
||
|
unsigned long addr, pte_t *pte)
|
||
|
{
|
||
|
/*
|
||
|
* The soft-dirty tracker uses #PF-s to catch writes
|
||
|
* to pages, so write-protect the pte as well. See the
|
||
|
* Documentation/admin-guide/mm/soft-dirty.rst for full description
|
||
|
* of how soft-dirty works.
|
||
|
*/
|
||
|
pte_t ptent = *pte;
|
||
|
|
||
|
if (pte_present(ptent)) {
|
||
|
pte_t old_pte;
|
||
|
|
||
|
if (pte_is_pinned(vma, addr, ptent))
|
||
|
return;
|
||
|
old_pte = ptep_modify_prot_start(vma, addr, pte);
|
||
|
ptent = pte_wrprotect(old_pte);
|
||
|
ptent = pte_clear_soft_dirty(ptent);
|
||
|
ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
|
||
|
} else if (is_swap_pte(ptent)) {
|
||
|
ptent = pte_swp_clear_soft_dirty(ptent);
|
||
|
set_pte_at(vma->vm_mm, addr, pte, ptent);
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
static inline void clear_soft_dirty(struct vm_area_struct *vma,
|
||
|
unsigned long addr, pte_t *pte)
|
||
|
{
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
||
|
static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
|
||
|
unsigned long addr, pmd_t *pmdp)
|
||
|
{
|
||
|
pmd_t old, pmd = *pmdp;
|
||
|
|
||
|
if (pmd_present(pmd)) {
|
||
|
/* See comment in change_huge_pmd() */
|
||
|
old = pmdp_invalidate(vma, addr, pmdp);
|
||
|
if (pmd_dirty(old))
|
||
|
pmd = pmd_mkdirty(pmd);
|
||
|
if (pmd_young(old))
|
||
|
pmd = pmd_mkyoung(pmd);
|
||
|
|
||
|
pmd = pmd_wrprotect(pmd);
|
||
|
pmd = pmd_clear_soft_dirty(pmd);
|
||
|
|
||
|
set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
|
||
|
} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
|
||
|
pmd = pmd_swp_clear_soft_dirty(pmd);
|
||
|
set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
|
||
|
unsigned long addr, pmd_t *pmdp)
|
||
|
{
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
|
||
|
unsigned long end, struct mm_walk *walk)
|
||
|
{
|
||
|
struct clear_refs_private *cp = walk->private;
|
||
|
struct vm_area_struct *vma = walk->vma;
|
||
|
pte_t *pte, ptent;
|
||
|
spinlock_t *ptl;
|
||
|
struct page *page;
|
||
|
|
||
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
||
|
if (ptl) {
|
||
|
if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
|
||
|
clear_soft_dirty_pmd(vma, addr, pmd);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (!pmd_present(*pmd))
|
||
|
goto out;
|
||
|
|
||
|
page = pmd_page(*pmd);
|
||
|
|
||
|
/* Clear accessed and referenced bits. */
|
||
|
pmdp_test_and_clear_young(vma, addr, pmd);
|
||
|
test_and_clear_page_young(page);
|
||
|
ClearPageReferenced(page);
|
||
|
out:
|
||
|
spin_unlock(ptl);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (pmd_trans_unstable(pmd))
|
||
|
return 0;
|
||
|
|
||
|
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
||
|
for (; addr != end; pte++, addr += PAGE_SIZE) {
|
||
|
ptent = *pte;
|
||
|
|
||
|
if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
|
||
|
clear_soft_dirty(vma, addr, pte);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (!pte_present(ptent))
|
||
|
continue;
|
||
|
|
||
|
page = vm_normal_page(vma, addr, ptent);
|
||
|
if (!page)
|
||
|
continue;
|
||
|
|
||
|
/* Clear accessed and referenced bits. */
|
||
|
ptep_test_and_clear_young(vma, addr, pte);
|
||
|
test_and_clear_page_young(page);
|
||
|
ClearPageReferenced(page);
|
||
|
}
|
||
|
pte_unmap_unlock(pte - 1, ptl);
|
||
|
cond_resched();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int clear_refs_test_walk(unsigned long start, unsigned long end,
|
||
|
struct mm_walk *walk)
|
||
|
{
|
||
|
struct clear_refs_private *cp = walk->private;
|
||
|
struct vm_area_struct *vma = walk->vma;
|
||
|
|
||
|
if (vma->vm_flags & VM_PFNMAP)
|
||
|
return 1;
|
||
|
|
||
|
/*
|
||
|
* Writing 1 to /proc/pid/clear_refs affects all pages.
|
||
|
* Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
|
||
|
* Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
|
||
|
* Writing 4 to /proc/pid/clear_refs affects all pages.
|
||
|
*/
|
||
|
if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
|
||
|
return 1;
|
||
|
if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct mm_walk_ops clear_refs_walk_ops = {
|
||
|
.pmd_entry = clear_refs_pte_range,
|
||
|
.test_walk = clear_refs_test_walk,
|
||
|
};
|
||
|
|
||
|
static ssize_t clear_refs_write(struct file *file, const char __user *buf,
|
||
|
size_t count, loff_t *ppos)
|
||
|
{
|
||
|
struct task_struct *task;
|
||
|
char buffer[PROC_NUMBUF];
|
||
|
struct mm_struct *mm;
|
||
|
struct vm_area_struct *vma;
|
||
|
enum clear_refs_types type;
|
||
|
int itype;
|
||
|
int rv;
|
||
|
|
||
|
memset(buffer, 0, sizeof(buffer));
|
||
|
if (count > sizeof(buffer) - 1)
|
||
|
count = sizeof(buffer) - 1;
|
||
|
if (copy_from_user(buffer, buf, count))
|
||
|
return -EFAULT;
|
||
|
rv = kstrtoint(strstrip(buffer), 10, &itype);
|
||
|
if (rv < 0)
|
||
|
return rv;
|
||
|
type = (enum clear_refs_types)itype;
|
||
|
if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
|
||
|
return -EINVAL;
|
||
|
|
||
|
task = get_proc_task(file_inode(file));
|
||
|
if (!task)
|
||
|
return -ESRCH;
|
||
|
mm = get_task_mm(task);
|
||
|
if (mm) {
|
||
|
MA_STATE(mas, &mm->mm_mt, 0, 0);
|
||
|
struct mmu_notifier_range range;
|
||
|
struct clear_refs_private cp = {
|
||
|
.type = type,
|
||
|
};
|
||
|
|
||
|
if (mmap_write_lock_killable(mm)) {
|
||
|
count = -EINTR;
|
||
|
goto out_mm;
|
||
|
}
|
||
|
if (type == CLEAR_REFS_MM_HIWATER_RSS) {
|
||
|
/*
|
||
|
* Writing 5 to /proc/pid/clear_refs resets the peak
|
||
|
* resident set size to this mm's current rss value.
|
||
|
*/
|
||
|
reset_mm_hiwater_rss(mm);
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
if (type == CLEAR_REFS_SOFT_DIRTY) {
|
||
|
mas_for_each(&mas, vma, ULONG_MAX) {
|
||
|
if (!(vma->vm_flags & VM_SOFTDIRTY))
|
||
|
continue;
|
||
|
vma->vm_flags &= ~VM_SOFTDIRTY;
|
||
|
vma_set_page_prot(vma);
|
||
|
}
|
||
|
|
||
|
inc_tlb_flush_pending(mm);
|
||
|
mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
|
||
|
0, NULL, mm, 0, -1UL);
|
||
|
mmu_notifier_invalidate_range_start(&range);
|
||
|
}
|
||
|
walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
|
||
|
if (type == CLEAR_REFS_SOFT_DIRTY) {
|
||
|
mmu_notifier_invalidate_range_end(&range);
|
||
|
flush_tlb_mm(mm);
|
||
|
dec_tlb_flush_pending(mm);
|
||
|
}
|
||
|
out_unlock:
|
||
|
mmap_write_unlock(mm);
|
||
|
out_mm:
|
||
|
mmput(mm);
|
||
|
}
|
||
|
put_task_struct(task);
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
const struct file_operations proc_clear_refs_operations = {
|
||
|
.write = clear_refs_write,
|
||
|
.llseek = noop_llseek,
|
||
|
};
|
||
|
|
||
|
typedef struct {
|
||
|
u64 pme;
|
||
|
} pagemap_entry_t;
|
||
|
|
||
|
struct pagemapread {
|
||
|
int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
|
||
|
pagemap_entry_t *buffer;
|
||
|
bool show_pfn;
|
||
|
};
|
||
|
|
||
|
#define PAGEMAP_WALK_SIZE (PMD_SIZE)
|
||
|
#define PAGEMAP_WALK_MASK (PMD_MASK)
|
||
|
|
||
|
#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
|
||
|
#define PM_PFRAME_BITS 55
|
||
|
#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
|
||
|
#define PM_SOFT_DIRTY BIT_ULL(55)
|
||
|
#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
|
||
|
#define PM_UFFD_WP BIT_ULL(57)
|
||
|
#define PM_FILE BIT_ULL(61)
|
||
|
#define PM_SWAP BIT_ULL(62)
|
||
|
#define PM_PRESENT BIT_ULL(63)
|
||
|
|
||
|
#define PM_END_OF_BUFFER 1
|
||
|
|
||
|
static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
|
||
|
{
|
||
|
return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
|
||
|
}
|
||
|
|
||
|
static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
|
||
|
struct pagemapread *pm)
|
||
|
{
|
||
|
pm->buffer[pm->pos++] = *pme;
|
||
|
if (pm->pos >= pm->len)
|
||
|
return PM_END_OF_BUFFER;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pagemap_pte_hole(unsigned long start, unsigned long end,
|
||
|
__always_unused int depth, struct mm_walk *walk)
|
||
|
{
|
||
|
struct pagemapread *pm = walk->private;
|
||
|
unsigned long addr = start;
|
||
|
int err = 0;
|
||
|
|
||
|
while (addr < end) {
|
||
|
struct vm_area_struct *vma = find_vma(walk->mm, addr);
|
||
|
pagemap_entry_t pme = make_pme(0, 0);
|
||
|
/* End of address space hole, which we mark as non-present. */
|
||
|
unsigned long hole_end;
|
||
|
|
||
|
if (vma)
|
||
|
hole_end = min(end, vma->vm_start);
|
||
|
else
|
||
|
hole_end = end;
|
||
|
|
||
|
for (; addr < hole_end; addr += PAGE_SIZE) {
|
||
|
err = add_to_pagemap(addr, &pme, pm);
|
||
|
if (err)
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (!vma)
|
||
|
break;
|
||
|
|
||
|
/* Addresses in the VMA. */
|
||
|
if (vma->vm_flags & VM_SOFTDIRTY)
|
||
|
pme = make_pme(0, PM_SOFT_DIRTY);
|
||
|
for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
|
||
|
err = add_to_pagemap(addr, &pme, pm);
|
||
|
if (err)
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
out:
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
|
||
|
struct vm_area_struct *vma, unsigned long addr, pte_t pte)
|
||
|
{
|
||
|
u64 frame = 0, flags = 0;
|
||
|
struct page *page = NULL;
|
||
|
bool migration = false;
|
||
|
|
||
|
if (pte_present(pte)) {
|
||
|
if (pm->show_pfn)
|
||
|
frame = pte_pfn(pte);
|
||
|
flags |= PM_PRESENT;
|
||
|
page = vm_normal_page(vma, addr, pte);
|
||
|
if (pte_soft_dirty(pte))
|
||
|
flags |= PM_SOFT_DIRTY;
|
||
|
if (pte_uffd_wp(pte))
|
||
|
flags |= PM_UFFD_WP;
|
||
|
} else if (is_swap_pte(pte)) {
|
||
|
swp_entry_t entry;
|
||
|
if (pte_swp_soft_dirty(pte))
|
||
|
flags |= PM_SOFT_DIRTY;
|
||
|
if (pte_swp_uffd_wp(pte))
|
||
|
flags |= PM_UFFD_WP;
|
||
|
entry = pte_to_swp_entry(pte);
|
||
|
if (pm->show_pfn) {
|
||
|
pgoff_t offset;
|
||
|
/*
|
||
|
* For PFN swap offsets, keeping the offset field
|
||
|
* to be PFN only to be compatible with old smaps.
|
||
|
*/
|
||
|
if (is_pfn_swap_entry(entry))
|
||
|
offset = swp_offset_pfn(entry);
|
||
|
else
|
||
|
offset = swp_offset(entry);
|
||
|
frame = swp_type(entry) |
|
||
|
(offset << MAX_SWAPFILES_SHIFT);
|
||
|
}
|
||
|
flags |= PM_SWAP;
|
||
|
migration = is_migration_entry(entry);
|
||
|
if (is_pfn_swap_entry(entry))
|
||
|
page = pfn_swap_entry_to_page(entry);
|
||
|
if (pte_marker_entry_uffd_wp(entry))
|
||
|
flags |= PM_UFFD_WP;
|
||
|
}
|
||
|
|
||
|
if (page && !PageAnon(page))
|
||
|
flags |= PM_FILE;
|
||
|
if (page && !migration && page_mapcount(page) == 1)
|
||
|
flags |= PM_MMAP_EXCLUSIVE;
|
||
|
if (vma->vm_flags & VM_SOFTDIRTY)
|
||
|
flags |= PM_SOFT_DIRTY;
|
||
|
|
||
|
return make_pme(frame, flags);
|
||
|
}
|
||
|
|
||
|
static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
|
||
|
struct mm_walk *walk)
|
||
|
{
|
||
|
struct vm_area_struct *vma = walk->vma;
|
||
|
struct pagemapread *pm = walk->private;
|
||
|
spinlock_t *ptl;
|
||
|
pte_t *pte, *orig_pte;
|
||
|
int err = 0;
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
bool migration = false;
|
||
|
|
||
|
ptl = pmd_trans_huge_lock(pmdp, vma);
|
||
|
if (ptl) {
|
||
|
u64 flags = 0, frame = 0;
|
||
|
pmd_t pmd = *pmdp;
|
||
|
struct page *page = NULL;
|
||
|
|
||
|
if (vma->vm_flags & VM_SOFTDIRTY)
|
||
|
flags |= PM_SOFT_DIRTY;
|
||
|
|
||
|
if (pmd_present(pmd)) {
|
||
|
page = pmd_page(pmd);
|
||
|
|
||
|
flags |= PM_PRESENT;
|
||
|
if (pmd_soft_dirty(pmd))
|
||
|
flags |= PM_SOFT_DIRTY;
|
||
|
if (pmd_uffd_wp(pmd))
|
||
|
flags |= PM_UFFD_WP;
|
||
|
if (pm->show_pfn)
|
||
|
frame = pmd_pfn(pmd) +
|
||
|
((addr & ~PMD_MASK) >> PAGE_SHIFT);
|
||
|
}
|
||
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
||
|
else if (is_swap_pmd(pmd)) {
|
||
|
swp_entry_t entry = pmd_to_swp_entry(pmd);
|
||
|
unsigned long offset;
|
||
|
|
||
|
if (pm->show_pfn) {
|
||
|
if (is_pfn_swap_entry(entry))
|
||
|
offset = swp_offset_pfn(entry);
|
||
|
else
|
||
|
offset = swp_offset(entry);
|
||
|
offset = offset +
|
||
|
((addr & ~PMD_MASK) >> PAGE_SHIFT);
|
||
|
frame = swp_type(entry) |
|
||
|
(offset << MAX_SWAPFILES_SHIFT);
|
||
|
}
|
||
|
flags |= PM_SWAP;
|
||
|
if (pmd_swp_soft_dirty(pmd))
|
||
|
flags |= PM_SOFT_DIRTY;
|
||
|
if (pmd_swp_uffd_wp(pmd))
|
||
|
flags |= PM_UFFD_WP;
|
||
|
VM_BUG_ON(!is_pmd_migration_entry(pmd));
|
||
|
migration = is_migration_entry(entry);
|
||
|
page = pfn_swap_entry_to_page(entry);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (page && !migration && page_mapcount(page) == 1)
|
||
|
flags |= PM_MMAP_EXCLUSIVE;
|
||
|
|
||
|
for (; addr != end; addr += PAGE_SIZE) {
|
||
|
pagemap_entry_t pme = make_pme(frame, flags);
|
||
|
|
||
|
err = add_to_pagemap(addr, &pme, pm);
|
||
|
if (err)
|
||
|
break;
|
||
|
if (pm->show_pfn) {
|
||
|
if (flags & PM_PRESENT)
|
||
|
frame++;
|
||
|
else if (flags & PM_SWAP)
|
||
|
frame += (1 << MAX_SWAPFILES_SHIFT);
|
||
|
}
|
||
|
}
|
||
|
spin_unlock(ptl);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
if (pmd_trans_unstable(pmdp))
|
||
|
return 0;
|
||
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
|
||
|
/*
|
||
|
* We can assume that @vma always points to a valid one and @end never
|
||
|
* goes beyond vma->vm_end.
|
||
|
*/
|
||
|
orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
|
||
|
for (; addr < end; pte++, addr += PAGE_SIZE) {
|
||
|
pagemap_entry_t pme;
|
||
|
|
||
|
pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
|
||
|
err = add_to_pagemap(addr, &pme, pm);
|
||
|
if (err)
|
||
|
break;
|
||
|
}
|
||
|
pte_unmap_unlock(orig_pte, ptl);
|
||
|
|
||
|
cond_resched();
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_HUGETLB_PAGE
|
||
|
/* This function walks within one hugetlb entry in the single call */
|
||
|
static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
|
||
|
unsigned long addr, unsigned long end,
|
||
|
struct mm_walk *walk)
|
||
|
{
|
||
|
struct pagemapread *pm = walk->private;
|
||
|
struct vm_area_struct *vma = walk->vma;
|
||
|
u64 flags = 0, frame = 0;
|
||
|
int err = 0;
|
||
|
pte_t pte;
|
||
|
|
||
|
if (vma->vm_flags & VM_SOFTDIRTY)
|
||
|
flags |= PM_SOFT_DIRTY;
|
||
|
|
||
|
pte = huge_ptep_get(ptep);
|
||
|
if (pte_present(pte)) {
|
||
|
struct page *page = pte_page(pte);
|
||
|
|
||
|
if (!PageAnon(page))
|
||
|
flags |= PM_FILE;
|
||
|
|
||
|
if (page_mapcount(page) == 1)
|
||
|
flags |= PM_MMAP_EXCLUSIVE;
|
||
|
|
||
|
if (huge_pte_uffd_wp(pte))
|
||
|
flags |= PM_UFFD_WP;
|
||
|
|
||
|
flags |= PM_PRESENT;
|
||
|
if (pm->show_pfn)
|
||
|
frame = pte_pfn(pte) +
|
||
|
((addr & ~hmask) >> PAGE_SHIFT);
|
||
|
} else if (pte_swp_uffd_wp_any(pte)) {
|
||
|
flags |= PM_UFFD_WP;
|
||
|
}
|
||
|
|
||
|
for (; addr != end; addr += PAGE_SIZE) {
|
||
|
pagemap_entry_t pme = make_pme(frame, flags);
|
||
|
|
||
|
err = add_to_pagemap(addr, &pme, pm);
|
||
|
if (err)
|
||
|
return err;
|
||
|
if (pm->show_pfn && (flags & PM_PRESENT))
|
||
|
frame++;
|
||
|
}
|
||
|
|
||
|
cond_resched();
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
#else
|
||
|
#define pagemap_hugetlb_range NULL
|
||
|
#endif /* HUGETLB_PAGE */
|
||
|
|
||
|
static const struct mm_walk_ops pagemap_ops = {
|
||
|
.pmd_entry = pagemap_pmd_range,
|
||
|
.pte_hole = pagemap_pte_hole,
|
||
|
.hugetlb_entry = pagemap_hugetlb_range,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* /proc/pid/pagemap - an array mapping virtual pages to pfns
|
||
|
*
|
||
|
* For each page in the address space, this file contains one 64-bit entry
|
||
|
* consisting of the following:
|
||
|
*
|
||
|
* Bits 0-54 page frame number (PFN) if present
|
||
|
* Bits 0-4 swap type if swapped
|
||
|
* Bits 5-54 swap offset if swapped
|
||
|
* Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
|
||
|
* Bit 56 page exclusively mapped
|
||
|
* Bit 57 pte is uffd-wp write-protected
|
||
|
* Bits 58-60 zero
|
||
|
* Bit 61 page is file-page or shared-anon
|
||
|
* Bit 62 page swapped
|
||
|
* Bit 63 page present
|
||
|
*
|
||
|
* If the page is not present but in swap, then the PFN contains an
|
||
|
* encoding of the swap file number and the page's offset into the
|
||
|
* swap. Unmapped pages return a null PFN. This allows determining
|
||
|
* precisely which pages are mapped (or in swap) and comparing mapped
|
||
|
* pages between processes.
|
||
|
*
|
||
|
* Efficient users of this interface will use /proc/pid/maps to
|
||
|
* determine which areas of memory are actually mapped and llseek to
|
||
|
* skip over unmapped regions.
|
||
|
*/
|
||
|
static ssize_t pagemap_read(struct file *file, char __user *buf,
|
||
|
size_t count, loff_t *ppos)
|
||
|
{
|
||
|
struct mm_struct *mm = file->private_data;
|
||
|
struct pagemapread pm;
|
||
|
unsigned long src;
|
||
|
unsigned long svpfn;
|
||
|
unsigned long start_vaddr;
|
||
|
unsigned long end_vaddr;
|
||
|
int ret = 0, copied = 0;
|
||
|
|
||
|
if (!mm || !mmget_not_zero(mm))
|
||
|
goto out;
|
||
|
|
||
|
ret = -EINVAL;
|
||
|
/* file position must be aligned */
|
||
|
if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
|
||
|
goto out_mm;
|
||
|
|
||
|
ret = 0;
|
||
|
if (!count)
|
||
|
goto out_mm;
|
||
|
|
||
|
/* do not disclose physical addresses: attack vector */
|
||
|
pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
|
||
|
|
||
|
pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
|
||
|
pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
|
||
|
ret = -ENOMEM;
|
||
|
if (!pm.buffer)
|
||
|
goto out_mm;
|
||
|
|
||
|
src = *ppos;
|
||
|
svpfn = src / PM_ENTRY_BYTES;
|
||
|
end_vaddr = mm->task_size;
|
||
|
|
||
|
/* watch out for wraparound */
|
||
|
start_vaddr = end_vaddr;
|
||
|
if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
|
||
|
start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
|
||
|
|
||
|
/* Ensure the address is inside the task */
|
||
|
if (start_vaddr > mm->task_size)
|
||
|
start_vaddr = end_vaddr;
|
||
|
|
||
|
/*
|
||
|
* The odds are that this will stop walking way
|
||
|
* before end_vaddr, because the length of the
|
||
|
* user buffer is tracked in "pm", and the walk
|
||
|
* will stop when we hit the end of the buffer.
|
||
|
*/
|
||
|
ret = 0;
|
||
|
while (count && (start_vaddr < end_vaddr)) {
|
||
|
int len;
|
||
|
unsigned long end;
|
||
|
|
||
|
pm.pos = 0;
|
||
|
end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
|
||
|
/* overflow ? */
|
||
|
if (end < start_vaddr || end > end_vaddr)
|
||
|
end = end_vaddr;
|
||
|
ret = mmap_read_lock_killable(mm);
|
||
|
if (ret)
|
||
|
goto out_free;
|
||
|
ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
|
||
|
mmap_read_unlock(mm);
|
||
|
start_vaddr = end;
|
||
|
|
||
|
len = min(count, PM_ENTRY_BYTES * pm.pos);
|
||
|
if (copy_to_user(buf, pm.buffer, len)) {
|
||
|
ret = -EFAULT;
|
||
|
goto out_free;
|
||
|
}
|
||
|
copied += len;
|
||
|
buf += len;
|
||
|
count -= len;
|
||
|
}
|
||
|
*ppos += copied;
|
||
|
if (!ret || ret == PM_END_OF_BUFFER)
|
||
|
ret = copied;
|
||
|
|
||
|
out_free:
|
||
|
kfree(pm.buffer);
|
||
|
out_mm:
|
||
|
mmput(mm);
|
||
|
out:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int pagemap_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
struct mm_struct *mm;
|
||
|
|
||
|
mm = proc_mem_open(inode, PTRACE_MODE_READ);
|
||
|
if (IS_ERR(mm))
|
||
|
return PTR_ERR(mm);
|
||
|
file->private_data = mm;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pagemap_release(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
struct mm_struct *mm = file->private_data;
|
||
|
|
||
|
if (mm)
|
||
|
mmdrop(mm);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
const struct file_operations proc_pagemap_operations = {
|
||
|
.llseek = mem_lseek, /* borrow this */
|
||
|
.read = pagemap_read,
|
||
|
.open = pagemap_open,
|
||
|
.release = pagemap_release,
|
||
|
};
|
||
|
#endif /* CONFIG_PROC_PAGE_MONITOR */
|
||
|
|
||
|
#ifdef CONFIG_NUMA
|
||
|
|
||
|
struct numa_maps {
|
||
|
unsigned long pages;
|
||
|
unsigned long anon;
|
||
|
unsigned long active;
|
||
|
unsigned long writeback;
|
||
|
unsigned long mapcount_max;
|
||
|
unsigned long dirty;
|
||
|
unsigned long swapcache;
|
||
|
unsigned long node[MAX_NUMNODES];
|
||
|
};
|
||
|
|
||
|
struct numa_maps_private {
|
||
|
struct proc_maps_private proc_maps;
|
||
|
struct numa_maps md;
|
||
|
};
|
||
|
|
||
|
static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
|
||
|
unsigned long nr_pages)
|
||
|
{
|
||
|
int count = page_mapcount(page);
|
||
|
|
||
|
md->pages += nr_pages;
|
||
|
if (pte_dirty || PageDirty(page))
|
||
|
md->dirty += nr_pages;
|
||
|
|
||
|
if (PageSwapCache(page))
|
||
|
md->swapcache += nr_pages;
|
||
|
|
||
|
if (PageActive(page) || PageUnevictable(page))
|
||
|
md->active += nr_pages;
|
||
|
|
||
|
if (PageWriteback(page))
|
||
|
md->writeback += nr_pages;
|
||
|
|
||
|
if (PageAnon(page))
|
||
|
md->anon += nr_pages;
|
||
|
|
||
|
if (count > md->mapcount_max)
|
||
|
md->mapcount_max = count;
|
||
|
|
||
|
md->node[page_to_nid(page)] += nr_pages;
|
||
|
}
|
||
|
|
||
|
static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
|
||
|
unsigned long addr)
|
||
|
{
|
||
|
struct page *page;
|
||
|
int nid;
|
||
|
|
||
|
if (!pte_present(pte))
|
||
|
return NULL;
|
||
|
|
||
|
page = vm_normal_page(vma, addr, pte);
|
||
|
if (!page || is_zone_device_page(page))
|
||
|
return NULL;
|
||
|
|
||
|
if (PageReserved(page))
|
||
|
return NULL;
|
||
|
|
||
|
nid = page_to_nid(page);
|
||
|
if (!node_isset(nid, node_states[N_MEMORY]))
|
||
|
return NULL;
|
||
|
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
|
||
|
struct vm_area_struct *vma,
|
||
|
unsigned long addr)
|
||
|
{
|
||
|
struct page *page;
|
||
|
int nid;
|
||
|
|
||
|
if (!pmd_present(pmd))
|
||
|
return NULL;
|
||
|
|
||
|
page = vm_normal_page_pmd(vma, addr, pmd);
|
||
|
if (!page)
|
||
|
return NULL;
|
||
|
|
||
|
if (PageReserved(page))
|
||
|
return NULL;
|
||
|
|
||
|
nid = page_to_nid(page);
|
||
|
if (!node_isset(nid, node_states[N_MEMORY]))
|
||
|
return NULL;
|
||
|
|
||
|
return page;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
|
||
|
unsigned long end, struct mm_walk *walk)
|
||
|
{
|
||
|
struct numa_maps *md = walk->private;
|
||
|
struct vm_area_struct *vma = walk->vma;
|
||
|
spinlock_t *ptl;
|
||
|
pte_t *orig_pte;
|
||
|
pte_t *pte;
|
||
|
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
||
|
if (ptl) {
|
||
|
struct page *page;
|
||
|
|
||
|
page = can_gather_numa_stats_pmd(*pmd, vma, addr);
|
||
|
if (page)
|
||
|
gather_stats(page, md, pmd_dirty(*pmd),
|
||
|
HPAGE_PMD_SIZE/PAGE_SIZE);
|
||
|
spin_unlock(ptl);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (pmd_trans_unstable(pmd))
|
||
|
return 0;
|
||
|
#endif
|
||
|
orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
|
||
|
do {
|
||
|
struct page *page = can_gather_numa_stats(*pte, vma, addr);
|
||
|
if (!page)
|
||
|
continue;
|
||
|
gather_stats(page, md, pte_dirty(*pte), 1);
|
||
|
|
||
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
||
|
pte_unmap_unlock(orig_pte, ptl);
|
||
|
cond_resched();
|
||
|
return 0;
|
||
|
}
|
||
|
#ifdef CONFIG_HUGETLB_PAGE
|
||
|
static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
|
||
|
unsigned long addr, unsigned long end, struct mm_walk *walk)
|
||
|
{
|
||
|
pte_t huge_pte = huge_ptep_get(pte);
|
||
|
struct numa_maps *md;
|
||
|
struct page *page;
|
||
|
|
||
|
if (!pte_present(huge_pte))
|
||
|
return 0;
|
||
|
|
||
|
page = pte_page(huge_pte);
|
||
|
|
||
|
md = walk->private;
|
||
|
gather_stats(page, md, pte_dirty(huge_pte), 1);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
|
||
|
unsigned long addr, unsigned long end, struct mm_walk *walk)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static const struct mm_walk_ops show_numa_ops = {
|
||
|
.hugetlb_entry = gather_hugetlb_stats,
|
||
|
.pmd_entry = gather_pte_stats,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Display pages allocated per node and memory policy via /proc.
|
||
|
*/
|
||
|
static int show_numa_map(struct seq_file *m, void *v)
|
||
|
{
|
||
|
struct numa_maps_private *numa_priv = m->private;
|
||
|
struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
|
||
|
struct vm_area_struct *vma = v;
|
||
|
struct numa_maps *md = &numa_priv->md;
|
||
|
struct file *file = vma->vm_file;
|
||
|
struct mm_struct *mm = vma->vm_mm;
|
||
|
struct mempolicy *pol;
|
||
|
char buffer[64];
|
||
|
int nid;
|
||
|
|
||
|
if (!mm)
|
||
|
return 0;
|
||
|
|
||
|
/* Ensure we start with an empty set of numa_maps statistics. */
|
||
|
memset(md, 0, sizeof(*md));
|
||
|
|
||
|
pol = __get_vma_policy(vma, vma->vm_start);
|
||
|
if (pol) {
|
||
|
mpol_to_str(buffer, sizeof(buffer), pol);
|
||
|
mpol_cond_put(pol);
|
||
|
} else {
|
||
|
mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
|
||
|
}
|
||
|
|
||
|
seq_printf(m, "%08lx %s", vma->vm_start, buffer);
|
||
|
|
||
|
if (file) {
|
||
|
seq_puts(m, " file=");
|
||
|
seq_file_path(m, file, "\n\t= ");
|
||
|
} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
|
||
|
seq_puts(m, " heap");
|
||
|
} else if (is_stack(vma)) {
|
||
|
seq_puts(m, " stack");
|
||
|
}
|
||
|
|
||
|
if (is_vm_hugetlb_page(vma))
|
||
|
seq_puts(m, " huge");
|
||
|
|
||
|
/* mmap_lock is held by m_start */
|
||
|
walk_page_vma(vma, &show_numa_ops, md);
|
||
|
|
||
|
if (!md->pages)
|
||
|
goto out;
|
||
|
|
||
|
if (md->anon)
|
||
|
seq_printf(m, " anon=%lu", md->anon);
|
||
|
|
||
|
if (md->dirty)
|
||
|
seq_printf(m, " dirty=%lu", md->dirty);
|
||
|
|
||
|
if (md->pages != md->anon && md->pages != md->dirty)
|
||
|
seq_printf(m, " mapped=%lu", md->pages);
|
||
|
|
||
|
if (md->mapcount_max > 1)
|
||
|
seq_printf(m, " mapmax=%lu", md->mapcount_max);
|
||
|
|
||
|
if (md->swapcache)
|
||
|
seq_printf(m, " swapcache=%lu", md->swapcache);
|
||
|
|
||
|
if (md->active < md->pages && !is_vm_hugetlb_page(vma))
|
||
|
seq_printf(m, " active=%lu", md->active);
|
||
|
|
||
|
if (md->writeback)
|
||
|
seq_printf(m, " writeback=%lu", md->writeback);
|
||
|
|
||
|
for_each_node_state(nid, N_MEMORY)
|
||
|
if (md->node[nid])
|
||
|
seq_printf(m, " N%d=%lu", nid, md->node[nid]);
|
||
|
|
||
|
seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
|
||
|
out:
|
||
|
seq_putc(m, '\n');
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct seq_operations proc_pid_numa_maps_op = {
|
||
|
.start = m_start,
|
||
|
.next = m_next,
|
||
|
.stop = m_stop,
|
||
|
.show = show_numa_map,
|
||
|
};
|
||
|
|
||
|
static int pid_numa_maps_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
|
||
|
sizeof(struct numa_maps_private));
|
||
|
}
|
||
|
|
||
|
const struct file_operations proc_pid_numa_maps_operations = {
|
||
|
.open = pid_numa_maps_open,
|
||
|
.read = seq_read,
|
||
|
.llseek = seq_lseek,
|
||
|
.release = proc_map_release,
|
||
|
};
|
||
|
|
||
|
#endif /* CONFIG_NUMA */
|