3741 lines
110 KiB
C
3741 lines
110 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* This file is subject to the terms and conditions of the GNU General Public
|
||
|
* License. See the file "COPYING" in the main directory of this archive
|
||
|
* for more details.
|
||
|
*
|
||
|
* Copyright (C) 2008 Cavium Networks
|
||
|
*
|
||
|
* Some parts of the code were originally released under BSD license:
|
||
|
*
|
||
|
* Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
|
||
|
* reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are
|
||
|
* met:
|
||
|
*
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* * Redistributions in binary form must reproduce the above
|
||
|
* copyright notice, this list of conditions and the following
|
||
|
* disclaimer in the documentation and/or other materials provided
|
||
|
* with the distribution.
|
||
|
*
|
||
|
* * Neither the name of Cavium Networks nor the names of
|
||
|
* its contributors may be used to endorse or promote products
|
||
|
* derived from this software without specific prior written
|
||
|
* permission.
|
||
|
*
|
||
|
* This Software, including technical data, may be subject to U.S. export
|
||
|
* control laws, including the U.S. Export Administration Act and its associated
|
||
|
* regulations, and may be subject to export or import regulations in other
|
||
|
* countries.
|
||
|
*
|
||
|
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
|
||
|
* AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
|
||
|
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
|
||
|
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
|
||
|
* OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
|
||
|
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
|
||
|
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
|
||
|
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
|
||
|
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
|
||
|
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
|
||
|
*/
|
||
|
|
||
|
#include <linux/usb.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/usb/hcd.h>
|
||
|
#include <linux/prefetch.h>
|
||
|
#include <linux/irqdomain.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/of.h>
|
||
|
|
||
|
#include <asm/octeon/octeon.h>
|
||
|
|
||
|
#include "octeon-hcd.h"
|
||
|
|
||
|
/**
|
||
|
* enum cvmx_usb_speed - the possible USB device speeds
|
||
|
*
|
||
|
* @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
|
||
|
* @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
|
||
|
* @CVMX_USB_SPEED_LOW: Device is operation at 1.5Mbps
|
||
|
*/
|
||
|
enum cvmx_usb_speed {
|
||
|
CVMX_USB_SPEED_HIGH = 0,
|
||
|
CVMX_USB_SPEED_FULL = 1,
|
||
|
CVMX_USB_SPEED_LOW = 2,
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* enum cvmx_usb_transfer - the possible USB transfer types
|
||
|
*
|
||
|
* @CVMX_USB_TRANSFER_CONTROL: USB transfer type control for hub and status
|
||
|
* transfers
|
||
|
* @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
|
||
|
* priority periodic transfers
|
||
|
* @CVMX_USB_TRANSFER_BULK: USB transfer type bulk for large low priority
|
||
|
* transfers
|
||
|
* @CVMX_USB_TRANSFER_INTERRUPT: USB transfer type interrupt for high priority
|
||
|
* periodic transfers
|
||
|
*/
|
||
|
enum cvmx_usb_transfer {
|
||
|
CVMX_USB_TRANSFER_CONTROL = 0,
|
||
|
CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
|
||
|
CVMX_USB_TRANSFER_BULK = 2,
|
||
|
CVMX_USB_TRANSFER_INTERRUPT = 3,
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* enum cvmx_usb_direction - the transfer directions
|
||
|
*
|
||
|
* @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
|
||
|
* @CVMX_USB_DIRECTION_IN: Data is transferring from the device/host to Octeon
|
||
|
*/
|
||
|
enum cvmx_usb_direction {
|
||
|
CVMX_USB_DIRECTION_OUT,
|
||
|
CVMX_USB_DIRECTION_IN,
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* enum cvmx_usb_status - possible callback function status codes
|
||
|
*
|
||
|
* @CVMX_USB_STATUS_OK: The transaction / operation finished without
|
||
|
* any errors
|
||
|
* @CVMX_USB_STATUS_SHORT: FIXME: This is currently not implemented
|
||
|
* @CVMX_USB_STATUS_CANCEL: The transaction was canceled while in flight
|
||
|
* by a user call to cvmx_usb_cancel
|
||
|
* @CVMX_USB_STATUS_ERROR: The transaction aborted with an unexpected
|
||
|
* error status
|
||
|
* @CVMX_USB_STATUS_STALL: The transaction received a USB STALL response
|
||
|
* from the device
|
||
|
* @CVMX_USB_STATUS_XACTERR: The transaction failed with an error from the
|
||
|
* device even after a number of retries
|
||
|
* @CVMX_USB_STATUS_DATATGLERR: The transaction failed with a data toggle
|
||
|
* error even after a number of retries
|
||
|
* @CVMX_USB_STATUS_BABBLEERR: The transaction failed with a babble error
|
||
|
* @CVMX_USB_STATUS_FRAMEERR: The transaction failed with a frame error
|
||
|
* even after a number of retries
|
||
|
*/
|
||
|
enum cvmx_usb_status {
|
||
|
CVMX_USB_STATUS_OK,
|
||
|
CVMX_USB_STATUS_SHORT,
|
||
|
CVMX_USB_STATUS_CANCEL,
|
||
|
CVMX_USB_STATUS_ERROR,
|
||
|
CVMX_USB_STATUS_STALL,
|
||
|
CVMX_USB_STATUS_XACTERR,
|
||
|
CVMX_USB_STATUS_DATATGLERR,
|
||
|
CVMX_USB_STATUS_BABBLEERR,
|
||
|
CVMX_USB_STATUS_FRAMEERR,
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* struct cvmx_usb_port_status - the USB port status information
|
||
|
*
|
||
|
* @port_enabled: 1 = Usb port is enabled, 0 = disabled
|
||
|
* @port_over_current: 1 = Over current detected, 0 = Over current not
|
||
|
* detected. Octeon doesn't support over current detection.
|
||
|
* @port_powered: 1 = Port power is being supplied to the device, 0 =
|
||
|
* power is off. Octeon doesn't support turning port power
|
||
|
* off.
|
||
|
* @port_speed: Current port speed.
|
||
|
* @connected: 1 = A device is connected to the port, 0 = No device is
|
||
|
* connected.
|
||
|
* @connect_change: 1 = Device connected state changed since the last set
|
||
|
* status call.
|
||
|
*/
|
||
|
struct cvmx_usb_port_status {
|
||
|
u32 reserved : 25;
|
||
|
u32 port_enabled : 1;
|
||
|
u32 port_over_current : 1;
|
||
|
u32 port_powered : 1;
|
||
|
enum cvmx_usb_speed port_speed : 2;
|
||
|
u32 connected : 1;
|
||
|
u32 connect_change : 1;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* struct cvmx_usb_iso_packet - descriptor for Isochronous packets
|
||
|
*
|
||
|
* @offset: This is the offset in bytes into the main buffer where this data
|
||
|
* is stored.
|
||
|
* @length: This is the length in bytes of the data.
|
||
|
* @status: This is the status of this individual packet transfer.
|
||
|
*/
|
||
|
struct cvmx_usb_iso_packet {
|
||
|
int offset;
|
||
|
int length;
|
||
|
enum cvmx_usb_status status;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* enum cvmx_usb_initialize_flags - flags used by the initialization function
|
||
|
*
|
||
|
* @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI: The USB port uses a 12MHz crystal
|
||
|
* as clock source at USB_XO and
|
||
|
* USB_XI.
|
||
|
* @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND: The USB port uses 12/24/48MHz 2.5V
|
||
|
* board clock source at USB_XO.
|
||
|
* USB_XI should be tied to GND.
|
||
|
* @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
|
||
|
* @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: Speed of reference clock or
|
||
|
* crystal
|
||
|
* @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: Speed of reference clock
|
||
|
* @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: Speed of reference clock
|
||
|
* @CVMX_USB_INITIALIZE_FLAGS_NO_DMA: Disable DMA and used polled IO for
|
||
|
* data transfer use for the USB
|
||
|
*/
|
||
|
enum cvmx_usb_initialize_flags {
|
||
|
CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI = 1 << 0,
|
||
|
CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND = 1 << 1,
|
||
|
CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK = 3 << 3,
|
||
|
CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ = 1 << 3,
|
||
|
CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ = 2 << 3,
|
||
|
CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ = 3 << 3,
|
||
|
/* Bits 3-4 used to encode the clock frequency */
|
||
|
CVMX_USB_INITIALIZE_FLAGS_NO_DMA = 1 << 5,
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* enum cvmx_usb_pipe_flags - internal flags for a pipe.
|
||
|
*
|
||
|
* @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
|
||
|
* actively using hardware.
|
||
|
* @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
|
||
|
* pipe is in the ping state.
|
||
|
*/
|
||
|
enum cvmx_usb_pipe_flags {
|
||
|
CVMX_USB_PIPE_FLAGS_SCHEDULED = 1 << 17,
|
||
|
CVMX_USB_PIPE_FLAGS_NEED_PING = 1 << 18,
|
||
|
};
|
||
|
|
||
|
/* Maximum number of times to retry failed transactions */
|
||
|
#define MAX_RETRIES 3
|
||
|
|
||
|
/* Maximum number of hardware channels supported by the USB block */
|
||
|
#define MAX_CHANNELS 8
|
||
|
|
||
|
/*
|
||
|
* The low level hardware can transfer a maximum of this number of bytes in each
|
||
|
* transfer. The field is 19 bits wide
|
||
|
*/
|
||
|
#define MAX_TRANSFER_BYTES ((1 << 19) - 1)
|
||
|
|
||
|
/*
|
||
|
* The low level hardware can transfer a maximum of this number of packets in
|
||
|
* each transfer. The field is 10 bits wide
|
||
|
*/
|
||
|
#define MAX_TRANSFER_PACKETS ((1 << 10) - 1)
|
||
|
|
||
|
/**
|
||
|
* Logical transactions may take numerous low level
|
||
|
* transactions, especially when splits are concerned. This
|
||
|
* enum represents all of the possible stages a transaction can
|
||
|
* be in. Note that split completes are always even. This is so
|
||
|
* the NAK handler can backup to the previous low level
|
||
|
* transaction with a simple clearing of bit 0.
|
||
|
*/
|
||
|
enum cvmx_usb_stage {
|
||
|
CVMX_USB_STAGE_NON_CONTROL,
|
||
|
CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
|
||
|
CVMX_USB_STAGE_SETUP,
|
||
|
CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
|
||
|
CVMX_USB_STAGE_DATA,
|
||
|
CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
|
||
|
CVMX_USB_STAGE_STATUS,
|
||
|
CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* struct cvmx_usb_transaction - describes each pending USB transaction
|
||
|
* regardless of type. These are linked together
|
||
|
* to form a list of pending requests for a pipe.
|
||
|
*
|
||
|
* @node: List node for transactions in the pipe.
|
||
|
* @type: Type of transaction, duplicated of the pipe.
|
||
|
* @flags: State flags for this transaction.
|
||
|
* @buffer: User's physical buffer address to read/write.
|
||
|
* @buffer_length: Size of the user's buffer in bytes.
|
||
|
* @control_header: For control transactions, physical address of the 8
|
||
|
* byte standard header.
|
||
|
* @iso_start_frame: For ISO transactions, the starting frame number.
|
||
|
* @iso_number_packets: For ISO transactions, the number of packets in the
|
||
|
* request.
|
||
|
* @iso_packets: For ISO transactions, the sub packets in the request.
|
||
|
* @actual_bytes: Actual bytes transfer for this transaction.
|
||
|
* @stage: For control transactions, the current stage.
|
||
|
* @urb: URB.
|
||
|
*/
|
||
|
struct cvmx_usb_transaction {
|
||
|
struct list_head node;
|
||
|
enum cvmx_usb_transfer type;
|
||
|
u64 buffer;
|
||
|
int buffer_length;
|
||
|
u64 control_header;
|
||
|
int iso_start_frame;
|
||
|
int iso_number_packets;
|
||
|
struct cvmx_usb_iso_packet *iso_packets;
|
||
|
int xfersize;
|
||
|
int pktcnt;
|
||
|
int retries;
|
||
|
int actual_bytes;
|
||
|
enum cvmx_usb_stage stage;
|
||
|
struct urb *urb;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
|
||
|
* and some USB device. It contains a list of pending
|
||
|
* request to the device.
|
||
|
*
|
||
|
* @node: List node for pipe list
|
||
|
* @next: Pipe after this one in the list
|
||
|
* @transactions: List of pending transactions
|
||
|
* @interval: For periodic pipes, the interval between packets in
|
||
|
* frames
|
||
|
* @next_tx_frame: The next frame this pipe is allowed to transmit on
|
||
|
* @flags: State flags for this pipe
|
||
|
* @device_speed: Speed of device connected to this pipe
|
||
|
* @transfer_type: Type of transaction supported by this pipe
|
||
|
* @transfer_dir: IN or OUT. Ignored for Control
|
||
|
* @multi_count: Max packet in a row for the device
|
||
|
* @max_packet: The device's maximum packet size in bytes
|
||
|
* @device_addr: USB device address at other end of pipe
|
||
|
* @endpoint_num: USB endpoint number at other end of pipe
|
||
|
* @hub_device_addr: Hub address this device is connected to
|
||
|
* @hub_port: Hub port this device is connected to
|
||
|
* @pid_toggle: This toggles between 0/1 on every packet send to track
|
||
|
* the data pid needed
|
||
|
* @channel: Hardware DMA channel for this pipe
|
||
|
* @split_sc_frame: The low order bits of the frame number the split
|
||
|
* complete should be sent on
|
||
|
*/
|
||
|
struct cvmx_usb_pipe {
|
||
|
struct list_head node;
|
||
|
struct list_head transactions;
|
||
|
u64 interval;
|
||
|
u64 next_tx_frame;
|
||
|
enum cvmx_usb_pipe_flags flags;
|
||
|
enum cvmx_usb_speed device_speed;
|
||
|
enum cvmx_usb_transfer transfer_type;
|
||
|
enum cvmx_usb_direction transfer_dir;
|
||
|
int multi_count;
|
||
|
u16 max_packet;
|
||
|
u8 device_addr;
|
||
|
u8 endpoint_num;
|
||
|
u8 hub_device_addr;
|
||
|
u8 hub_port;
|
||
|
u8 pid_toggle;
|
||
|
u8 channel;
|
||
|
s8 split_sc_frame;
|
||
|
};
|
||
|
|
||
|
struct cvmx_usb_tx_fifo {
|
||
|
struct {
|
||
|
int channel;
|
||
|
int size;
|
||
|
u64 address;
|
||
|
} entry[MAX_CHANNELS + 1];
|
||
|
int head;
|
||
|
int tail;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* struct octeon_hcd - the state of the USB block
|
||
|
*
|
||
|
* lock: Serialization lock.
|
||
|
* init_flags: Flags passed to initialize.
|
||
|
* index: Which USB block this is for.
|
||
|
* idle_hardware_channels: Bit set for every idle hardware channel.
|
||
|
* usbcx_hprt: Stored port status so we don't need to read a CSR to
|
||
|
* determine splits.
|
||
|
* pipe_for_channel: Map channels to pipes.
|
||
|
* pipe: Storage for pipes.
|
||
|
* indent: Used by debug output to indent functions.
|
||
|
* port_status: Last port status used for change notification.
|
||
|
* idle_pipes: List of open pipes that have no transactions.
|
||
|
* active_pipes: Active pipes indexed by transfer type.
|
||
|
* frame_number: Increments every SOF interrupt for time keeping.
|
||
|
* active_split: Points to the current active split, or NULL.
|
||
|
*/
|
||
|
struct octeon_hcd {
|
||
|
spinlock_t lock; /* serialization lock */
|
||
|
int init_flags;
|
||
|
int index;
|
||
|
int idle_hardware_channels;
|
||
|
union cvmx_usbcx_hprt usbcx_hprt;
|
||
|
struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
|
||
|
int indent;
|
||
|
struct cvmx_usb_port_status port_status;
|
||
|
struct list_head idle_pipes;
|
||
|
struct list_head active_pipes[4];
|
||
|
u64 frame_number;
|
||
|
struct cvmx_usb_transaction *active_split;
|
||
|
struct cvmx_usb_tx_fifo periodic;
|
||
|
struct cvmx_usb_tx_fifo nonperiodic;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* This macro logically sets a single field in a CSR. It does the sequence
|
||
|
* read, modify, and write
|
||
|
*/
|
||
|
#define USB_SET_FIELD32(address, _union, field, value) \
|
||
|
do { \
|
||
|
union _union c; \
|
||
|
\
|
||
|
c.u32 = cvmx_usb_read_csr32(usb, address); \
|
||
|
c.s.field = value; \
|
||
|
cvmx_usb_write_csr32(usb, address, c.u32); \
|
||
|
} while (0)
|
||
|
|
||
|
/* Returns the IO address to push/pop stuff data from the FIFOs */
|
||
|
#define USB_FIFO_ADDRESS(channel, usb_index) \
|
||
|
(CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000)
|
||
|
|
||
|
/**
|
||
|
* struct octeon_temp_buffer - a bounce buffer for USB transfers
|
||
|
* @orig_buffer: the original buffer passed by the USB stack
|
||
|
* @data: the newly allocated temporary buffer (excluding meta-data)
|
||
|
*
|
||
|
* Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
|
||
|
* the buffer is too short, we need to allocate a temporary one, and this struct
|
||
|
* represents it.
|
||
|
*/
|
||
|
struct octeon_temp_buffer {
|
||
|
void *orig_buffer;
|
||
|
u8 data[];
|
||
|
};
|
||
|
|
||
|
static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
|
||
|
{
|
||
|
return container_of((void *)p, struct usb_hcd, hcd_priv);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
|
||
|
* (if needed)
|
||
|
* @urb: URB.
|
||
|
* @mem_flags: Memory allocation flags.
|
||
|
*
|
||
|
* This function allocates a temporary bounce buffer whenever it's needed
|
||
|
* due to HW limitations.
|
||
|
*/
|
||
|
static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
|
||
|
{
|
||
|
struct octeon_temp_buffer *temp;
|
||
|
|
||
|
if (urb->num_sgs || urb->sg ||
|
||
|
(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) ||
|
||
|
!(urb->transfer_buffer_length % sizeof(u32)))
|
||
|
return 0;
|
||
|
|
||
|
temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) +
|
||
|
sizeof(*temp), mem_flags);
|
||
|
if (!temp)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
temp->orig_buffer = urb->transfer_buffer;
|
||
|
if (usb_urb_dir_out(urb))
|
||
|
memcpy(temp->data, urb->transfer_buffer,
|
||
|
urb->transfer_buffer_length);
|
||
|
urb->transfer_buffer = temp->data;
|
||
|
urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
|
||
|
* @urb: URB.
|
||
|
*
|
||
|
* Frees a buffer allocated by octeon_alloc_temp_buffer().
|
||
|
*/
|
||
|
static void octeon_free_temp_buffer(struct urb *urb)
|
||
|
{
|
||
|
struct octeon_temp_buffer *temp;
|
||
|
size_t length;
|
||
|
|
||
|
if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
|
||
|
return;
|
||
|
|
||
|
temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer,
|
||
|
data);
|
||
|
if (usb_urb_dir_in(urb)) {
|
||
|
if (usb_pipeisoc(urb->pipe))
|
||
|
length = urb->transfer_buffer_length;
|
||
|
else
|
||
|
length = urb->actual_length;
|
||
|
|
||
|
memcpy(temp->orig_buffer, urb->transfer_buffer, length);
|
||
|
}
|
||
|
urb->transfer_buffer = temp->orig_buffer;
|
||
|
urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
|
||
|
kfree(temp);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
|
||
|
* @hcd: USB HCD structure.
|
||
|
* @urb: URB.
|
||
|
* @mem_flags: Memory allocation flags.
|
||
|
*/
|
||
|
static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
|
||
|
gfp_t mem_flags)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = octeon_alloc_temp_buffer(urb, mem_flags);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
|
||
|
if (ret)
|
||
|
octeon_free_temp_buffer(urb);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
|
||
|
* @hcd: USB HCD structure.
|
||
|
* @urb: URB.
|
||
|
*/
|
||
|
static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
|
||
|
{
|
||
|
usb_hcd_unmap_urb_for_dma(hcd, urb);
|
||
|
octeon_free_temp_buffer(urb);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Read a USB 32bit CSR. It performs the necessary address swizzle
|
||
|
* for 32bit CSRs and logs the value in a readable format if
|
||
|
* debugging is on.
|
||
|
*
|
||
|
* @usb: USB block this access is for
|
||
|
* @address: 64bit address to read
|
||
|
*
|
||
|
* Returns: Result of the read
|
||
|
*/
|
||
|
static inline u32 cvmx_usb_read_csr32(struct octeon_hcd *usb, u64 address)
|
||
|
{
|
||
|
return cvmx_read64_uint32(address ^ 4);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Write a USB 32bit CSR. It performs the necessary address
|
||
|
* swizzle for 32bit CSRs and logs the value in a readable format
|
||
|
* if debugging is on.
|
||
|
*
|
||
|
* @usb: USB block this access is for
|
||
|
* @address: 64bit address to write
|
||
|
* @value: Value to write
|
||
|
*/
|
||
|
static inline void cvmx_usb_write_csr32(struct octeon_hcd *usb,
|
||
|
u64 address, u32 value)
|
||
|
{
|
||
|
cvmx_write64_uint32(address ^ 4, value);
|
||
|
cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return non zero if this pipe connects to a non HIGH speed
|
||
|
* device through a high speed hub.
|
||
|
*
|
||
|
* @usb: USB block this access is for
|
||
|
* @pipe: Pipe to check
|
||
|
*
|
||
|
* Returns: Non zero if we need to do split transactions
|
||
|
*/
|
||
|
static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_pipe *pipe)
|
||
|
{
|
||
|
return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
|
||
|
usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Trivial utility function to return the correct PID for a pipe
|
||
|
*
|
||
|
* @pipe: pipe to check
|
||
|
*
|
||
|
* Returns: PID for pipe
|
||
|
*/
|
||
|
static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
|
||
|
{
|
||
|
if (pipe->pid_toggle)
|
||
|
return 2; /* Data1 */
|
||
|
return 0; /* Data0 */
|
||
|
}
|
||
|
|
||
|
/* Loops through register until txfflsh or rxfflsh become zero.*/
|
||
|
static int cvmx_wait_tx_rx(struct octeon_hcd *usb, int fflsh_type)
|
||
|
{
|
||
|
int result;
|
||
|
u64 address = CVMX_USBCX_GRSTCTL(usb->index);
|
||
|
u64 done = cvmx_get_cycle() + 100 *
|
||
|
(u64)octeon_get_clock_rate / 1000000;
|
||
|
union cvmx_usbcx_grstctl c;
|
||
|
|
||
|
while (1) {
|
||
|
c.u32 = cvmx_usb_read_csr32(usb, address);
|
||
|
if (fflsh_type == 0 && c.s.txfflsh == 0) {
|
||
|
result = 0;
|
||
|
break;
|
||
|
} else if (fflsh_type == 1 && c.s.rxfflsh == 0) {
|
||
|
result = 0;
|
||
|
break;
|
||
|
} else if (cvmx_get_cycle() > done) {
|
||
|
result = -1;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
__delay(100);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static void cvmx_fifo_setup(struct octeon_hcd *usb)
|
||
|
{
|
||
|
union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
|
||
|
union cvmx_usbcx_gnptxfsiz npsiz;
|
||
|
union cvmx_usbcx_hptxfsiz psiz;
|
||
|
|
||
|
usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_GHWCFG3(usb->index));
|
||
|
|
||
|
/*
|
||
|
* Program the USBC_GRXFSIZ register to select the size of the receive
|
||
|
* FIFO (25%).
|
||
|
*/
|
||
|
USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz,
|
||
|
rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
|
||
|
|
||
|
/*
|
||
|
* Program the USBC_GNPTXFSIZ register to select the size and the start
|
||
|
* address of the non-periodic transmit FIFO for nonperiodic
|
||
|
* transactions (50%).
|
||
|
*/
|
||
|
npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
|
||
|
npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
|
||
|
npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
|
||
|
cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32);
|
||
|
|
||
|
/*
|
||
|
* Program the USBC_HPTXFSIZ register to select the size and start
|
||
|
* address of the periodic transmit FIFO for periodic transactions
|
||
|
* (25%).
|
||
|
*/
|
||
|
psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
|
||
|
psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
|
||
|
psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
|
||
|
cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32);
|
||
|
|
||
|
/* Flush all FIFOs */
|
||
|
USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
|
||
|
cvmx_usbcx_grstctl, txfnum, 0x10);
|
||
|
USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
|
||
|
cvmx_usbcx_grstctl, txfflsh, 1);
|
||
|
cvmx_wait_tx_rx(usb, 0);
|
||
|
USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
|
||
|
cvmx_usbcx_grstctl, rxfflsh, 1);
|
||
|
cvmx_wait_tx_rx(usb, 1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Shutdown a USB port after a call to cvmx_usb_initialize().
|
||
|
* The port should be disabled with all pipes closed when this
|
||
|
* function is called.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
*
|
||
|
* Returns: 0 or a negative error code.
|
||
|
*/
|
||
|
static int cvmx_usb_shutdown(struct octeon_hcd *usb)
|
||
|
{
|
||
|
union cvmx_usbnx_clk_ctl usbn_clk_ctl;
|
||
|
|
||
|
/* Make sure all pipes are closed */
|
||
|
if (!list_empty(&usb->idle_pipes) ||
|
||
|
!list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
|
||
|
!list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
|
||
|
!list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
|
||
|
!list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
|
||
|
return -EBUSY;
|
||
|
|
||
|
/* Disable the clocks and put them in power on reset */
|
||
|
usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
|
||
|
usbn_clk_ctl.s.enable = 1;
|
||
|
usbn_clk_ctl.s.por = 1;
|
||
|
usbn_clk_ctl.s.hclk_rst = 1;
|
||
|
usbn_clk_ctl.s.prst = 0;
|
||
|
usbn_clk_ctl.s.hrst = 0;
|
||
|
cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Initialize a USB port for use. This must be called before any
|
||
|
* other access to the Octeon USB port is made. The port starts
|
||
|
* off in the disabled state.
|
||
|
*
|
||
|
* @dev: Pointer to struct device for logging purposes.
|
||
|
* @usb: Pointer to struct octeon_hcd.
|
||
|
*
|
||
|
* Returns: 0 or a negative error code.
|
||
|
*/
|
||
|
static int cvmx_usb_initialize(struct device *dev,
|
||
|
struct octeon_hcd *usb)
|
||
|
{
|
||
|
int channel;
|
||
|
int divisor;
|
||
|
int retries = 0;
|
||
|
union cvmx_usbcx_hcfg usbcx_hcfg;
|
||
|
union cvmx_usbnx_clk_ctl usbn_clk_ctl;
|
||
|
union cvmx_usbcx_gintsts usbc_gintsts;
|
||
|
union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
|
||
|
union cvmx_usbcx_gintmsk usbcx_gintmsk;
|
||
|
union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
|
||
|
union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
|
||
|
|
||
|
retry:
|
||
|
/*
|
||
|
* Power On Reset and PHY Initialization
|
||
|
*
|
||
|
* 1. Wait for DCOK to assert (nothing to do)
|
||
|
*
|
||
|
* 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
|
||
|
* USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
|
||
|
*/
|
||
|
usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
|
||
|
usbn_clk_ctl.s.por = 1;
|
||
|
usbn_clk_ctl.s.hrst = 0;
|
||
|
usbn_clk_ctl.s.prst = 0;
|
||
|
usbn_clk_ctl.s.hclk_rst = 0;
|
||
|
usbn_clk_ctl.s.enable = 0;
|
||
|
/*
|
||
|
* 2b. Select the USB reference clock/crystal parameters by writing
|
||
|
* appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
|
||
|
*/
|
||
|
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
|
||
|
/*
|
||
|
* The USB port uses 12/24/48MHz 2.5V board clock
|
||
|
* source at USB_XO. USB_XI should be tied to GND.
|
||
|
* Most Octeon evaluation boards require this setting
|
||
|
*/
|
||
|
if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
|
||
|
OCTEON_IS_MODEL(OCTEON_CN56XX) ||
|
||
|
OCTEON_IS_MODEL(OCTEON_CN50XX))
|
||
|
/* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
|
||
|
usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
|
||
|
else
|
||
|
/* From CN52XX manual */
|
||
|
usbn_clk_ctl.s.p_rtype = 1;
|
||
|
|
||
|
switch (usb->init_flags &
|
||
|
CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
|
||
|
case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
|
||
|
usbn_clk_ctl.s.p_c_sel = 0;
|
||
|
break;
|
||
|
case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
|
||
|
usbn_clk_ctl.s.p_c_sel = 1;
|
||
|
break;
|
||
|
case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
|
||
|
usbn_clk_ctl.s.p_c_sel = 2;
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* The USB port uses a 12MHz crystal as clock source
|
||
|
* at USB_XO and USB_XI
|
||
|
*/
|
||
|
if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
|
||
|
/* From CN31XX,CN30XX manual */
|
||
|
usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
|
||
|
else
|
||
|
/* From CN56XX,CN52XX,CN50XX manuals. */
|
||
|
usbn_clk_ctl.s.p_rtype = 0;
|
||
|
|
||
|
usbn_clk_ctl.s.p_c_sel = 0;
|
||
|
}
|
||
|
/*
|
||
|
* 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
|
||
|
* setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
|
||
|
* such that USB is as close as possible to 125Mhz
|
||
|
*/
|
||
|
divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
|
||
|
/* Lower than 4 doesn't seem to work properly */
|
||
|
if (divisor < 4)
|
||
|
divisor = 4;
|
||
|
usbn_clk_ctl.s.divide = divisor;
|
||
|
usbn_clk_ctl.s.divide2 = 0;
|
||
|
cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
|
||
|
|
||
|
/* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
|
||
|
usbn_clk_ctl.s.hclk_rst = 1;
|
||
|
cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
|
||
|
/* 2e. Wait 64 core-clock cycles for HCLK to stabilize */
|
||
|
__delay(64);
|
||
|
/*
|
||
|
* 3. Program the power-on reset field in the USBN clock-control
|
||
|
* register:
|
||
|
* USBN_CLK_CTL[POR] = 0
|
||
|
*/
|
||
|
usbn_clk_ctl.s.por = 0;
|
||
|
cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
|
||
|
/* 4. Wait 1 ms for PHY clock to start */
|
||
|
mdelay(1);
|
||
|
/*
|
||
|
* 5. Program the Reset input from automatic test equipment field in the
|
||
|
* USBP control and status register:
|
||
|
* USBN_USBP_CTL_STATUS[ATE_RESET] = 1
|
||
|
*/
|
||
|
usbn_usbp_ctl_status.u64 =
|
||
|
cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index));
|
||
|
usbn_usbp_ctl_status.s.ate_reset = 1;
|
||
|
cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
|
||
|
usbn_usbp_ctl_status.u64);
|
||
|
/* 6. Wait 10 cycles */
|
||
|
__delay(10);
|
||
|
/*
|
||
|
* 7. Clear ATE_RESET field in the USBN clock-control register:
|
||
|
* USBN_USBP_CTL_STATUS[ATE_RESET] = 0
|
||
|
*/
|
||
|
usbn_usbp_ctl_status.s.ate_reset = 0;
|
||
|
cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
|
||
|
usbn_usbp_ctl_status.u64);
|
||
|
/*
|
||
|
* 8. Program the PHY reset field in the USBN clock-control register:
|
||
|
* USBN_CLK_CTL[PRST] = 1
|
||
|
*/
|
||
|
usbn_clk_ctl.s.prst = 1;
|
||
|
cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
|
||
|
/*
|
||
|
* 9. Program the USBP control and status register to select host or
|
||
|
* device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
|
||
|
* device
|
||
|
*/
|
||
|
usbn_usbp_ctl_status.s.hst_mode = 0;
|
||
|
cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
|
||
|
usbn_usbp_ctl_status.u64);
|
||
|
/* 10. Wait 1 us */
|
||
|
udelay(1);
|
||
|
/*
|
||
|
* 11. Program the hreset_n field in the USBN clock-control register:
|
||
|
* USBN_CLK_CTL[HRST] = 1
|
||
|
*/
|
||
|
usbn_clk_ctl.s.hrst = 1;
|
||
|
cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
|
||
|
/* 12. Proceed to USB core initialization */
|
||
|
usbn_clk_ctl.s.enable = 1;
|
||
|
cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
|
||
|
udelay(1);
|
||
|
|
||
|
/*
|
||
|
* USB Core Initialization
|
||
|
*
|
||
|
* 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
|
||
|
* determine USB core configuration parameters.
|
||
|
*
|
||
|
* Nothing needed
|
||
|
*
|
||
|
* 2. Program the following fields in the global AHB configuration
|
||
|
* register (USBC_GAHBCFG)
|
||
|
* DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
|
||
|
* Burst length, USBC_GAHBCFG[HBSTLEN] = 0
|
||
|
* Nonperiodic TxFIFO empty level (slave mode only),
|
||
|
* USBC_GAHBCFG[NPTXFEMPLVL]
|
||
|
* Periodic TxFIFO empty level (slave mode only),
|
||
|
* USBC_GAHBCFG[PTXFEMPLVL]
|
||
|
* Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
|
||
|
*/
|
||
|
usbcx_gahbcfg.u32 = 0;
|
||
|
usbcx_gahbcfg.s.dmaen = !(usb->init_flags &
|
||
|
CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
|
||
|
usbcx_gahbcfg.s.hbstlen = 0;
|
||
|
usbcx_gahbcfg.s.nptxfemplvl = 1;
|
||
|
usbcx_gahbcfg.s.ptxfemplvl = 1;
|
||
|
usbcx_gahbcfg.s.glblintrmsk = 1;
|
||
|
cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
|
||
|
usbcx_gahbcfg.u32);
|
||
|
|
||
|
/*
|
||
|
* 3. Program the following fields in USBC_GUSBCFG register.
|
||
|
* HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
|
||
|
* ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
|
||
|
* USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
|
||
|
* PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
|
||
|
*/
|
||
|
usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_GUSBCFG(usb->index));
|
||
|
usbcx_gusbcfg.s.toutcal = 0;
|
||
|
usbcx_gusbcfg.s.ddrsel = 0;
|
||
|
usbcx_gusbcfg.s.usbtrdtim = 0x5;
|
||
|
usbcx_gusbcfg.s.phylpwrclksel = 0;
|
||
|
cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
|
||
|
usbcx_gusbcfg.u32);
|
||
|
|
||
|
/*
|
||
|
* 4. The software must unmask the following bits in the USBC_GINTMSK
|
||
|
* register.
|
||
|
* OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
|
||
|
* Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
|
||
|
*/
|
||
|
usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_GINTMSK(usb->index));
|
||
|
usbcx_gintmsk.s.otgintmsk = 1;
|
||
|
usbcx_gintmsk.s.modemismsk = 1;
|
||
|
usbcx_gintmsk.s.hchintmsk = 1;
|
||
|
usbcx_gintmsk.s.sofmsk = 0;
|
||
|
/* We need RX FIFO interrupts if we don't have DMA */
|
||
|
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
|
||
|
usbcx_gintmsk.s.rxflvlmsk = 1;
|
||
|
cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
|
||
|
usbcx_gintmsk.u32);
|
||
|
|
||
|
/*
|
||
|
* Disable all channel interrupts. We'll enable them per channel later.
|
||
|
*/
|
||
|
for (channel = 0; channel < 8; channel++)
|
||
|
cvmx_usb_write_csr32(usb,
|
||
|
CVMX_USBCX_HCINTMSKX(channel, usb->index),
|
||
|
0);
|
||
|
|
||
|
/*
|
||
|
* Host Port Initialization
|
||
|
*
|
||
|
* 1. Program the host-port interrupt-mask field to unmask,
|
||
|
* USBC_GINTMSK[PRTINT] = 1
|
||
|
*/
|
||
|
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
|
||
|
cvmx_usbcx_gintmsk, prtintmsk, 1);
|
||
|
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
|
||
|
cvmx_usbcx_gintmsk, disconnintmsk, 1);
|
||
|
|
||
|
/*
|
||
|
* 2. Program the USBC_HCFG register to select full-speed host
|
||
|
* or high-speed host.
|
||
|
*/
|
||
|
usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
|
||
|
usbcx_hcfg.s.fslssupp = 0;
|
||
|
usbcx_hcfg.s.fslspclksel = 0;
|
||
|
cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
|
||
|
|
||
|
cvmx_fifo_setup(usb);
|
||
|
|
||
|
/*
|
||
|
* If the controller is getting port events right after the reset, it
|
||
|
* means the initialization failed. Try resetting the controller again
|
||
|
* in such case. This is seen to happen after cold boot on DSR-1000N.
|
||
|
*/
|
||
|
usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_GINTSTS(usb->index));
|
||
|
cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
|
||
|
usbc_gintsts.u32);
|
||
|
dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32);
|
||
|
if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint)
|
||
|
return 0;
|
||
|
if (retries++ >= 5)
|
||
|
return -EAGAIN;
|
||
|
dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n",
|
||
|
(int)usbc_gintsts.u32);
|
||
|
msleep(50);
|
||
|
cvmx_usb_shutdown(usb);
|
||
|
msleep(50);
|
||
|
goto retry;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Reset a USB port. After this call succeeds, the USB port is
|
||
|
* online and servicing requests.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
*/
|
||
|
static void cvmx_usb_reset_port(struct octeon_hcd *usb)
|
||
|
{
|
||
|
usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HPRT(usb->index));
|
||
|
|
||
|
/* Program the port reset bit to start the reset process */
|
||
|
USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
|
||
|
prtrst, 1);
|
||
|
|
||
|
/*
|
||
|
* Wait at least 50ms (high speed), or 10ms (full speed) for the reset
|
||
|
* process to complete.
|
||
|
*/
|
||
|
mdelay(50);
|
||
|
|
||
|
/* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
|
||
|
USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
|
||
|
prtrst, 0);
|
||
|
|
||
|
/*
|
||
|
* Read the port speed field to get the enumerated speed,
|
||
|
* USBC_HPRT[PRTSPD].
|
||
|
*/
|
||
|
usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HPRT(usb->index));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Disable a USB port. After this call the USB port will not
|
||
|
* generate data transfers and will not generate events.
|
||
|
* Transactions in process will fail and call their
|
||
|
* associated callbacks.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
*
|
||
|
* Returns: 0 or a negative error code.
|
||
|
*/
|
||
|
static int cvmx_usb_disable(struct octeon_hcd *usb)
|
||
|
{
|
||
|
/* Disable the port */
|
||
|
USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
|
||
|
prtena, 1);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Get the current state of the USB port. Use this call to
|
||
|
* determine if the usb port has anything connected, is enabled,
|
||
|
* or has some sort of error condition. The return value of this
|
||
|
* call has "changed" bits to signal of the value of some fields
|
||
|
* have changed between calls.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
*
|
||
|
* Returns: Port status information
|
||
|
*/
|
||
|
static struct cvmx_usb_port_status cvmx_usb_get_status(struct octeon_hcd *usb)
|
||
|
{
|
||
|
union cvmx_usbcx_hprt usbc_hprt;
|
||
|
struct cvmx_usb_port_status result;
|
||
|
|
||
|
memset(&result, 0, sizeof(result));
|
||
|
|
||
|
usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
|
||
|
result.port_enabled = usbc_hprt.s.prtena;
|
||
|
result.port_over_current = usbc_hprt.s.prtovrcurract;
|
||
|
result.port_powered = usbc_hprt.s.prtpwr;
|
||
|
result.port_speed = usbc_hprt.s.prtspd;
|
||
|
result.connected = usbc_hprt.s.prtconnsts;
|
||
|
result.connect_change =
|
||
|
result.connected != usb->port_status.connected;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Open a virtual pipe between the host and a USB device. A pipe
|
||
|
* must be opened before data can be transferred between a device
|
||
|
* and Octeon.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @device_addr:
|
||
|
* USB device address to open the pipe to
|
||
|
* (0-127).
|
||
|
* @endpoint_num:
|
||
|
* USB endpoint number to open the pipe to
|
||
|
* (0-15).
|
||
|
* @device_speed:
|
||
|
* The speed of the device the pipe is going
|
||
|
* to. This must match the device's speed,
|
||
|
* which may be different than the port speed.
|
||
|
* @max_packet: The maximum packet length the device can
|
||
|
* transmit/receive (low speed=0-8, full
|
||
|
* speed=0-1023, high speed=0-1024). This value
|
||
|
* comes from the standard endpoint descriptor
|
||
|
* field wMaxPacketSize bits <10:0>.
|
||
|
* @transfer_type:
|
||
|
* The type of transfer this pipe is for.
|
||
|
* @transfer_dir:
|
||
|
* The direction the pipe is in. This is not
|
||
|
* used for control pipes.
|
||
|
* @interval: For ISOCHRONOUS and INTERRUPT transfers,
|
||
|
* this is how often the transfer is scheduled
|
||
|
* for. All other transfers should specify
|
||
|
* zero. The units are in frames (8000/sec at
|
||
|
* high speed, 1000/sec for full speed).
|
||
|
* @multi_count:
|
||
|
* For high speed devices, this is the maximum
|
||
|
* allowed number of packet per microframe.
|
||
|
* Specify zero for non high speed devices. This
|
||
|
* value comes from the standard endpoint descriptor
|
||
|
* field wMaxPacketSize bits <12:11>.
|
||
|
* @hub_device_addr:
|
||
|
* Hub device address this device is connected
|
||
|
* to. Devices connected directly to Octeon
|
||
|
* use zero. This is only used when the device
|
||
|
* is full/low speed behind a high speed hub.
|
||
|
* The address will be of the high speed hub,
|
||
|
* not and full speed hubs after it.
|
||
|
* @hub_port: Which port on the hub the device is
|
||
|
* connected. Use zero for devices connected
|
||
|
* directly to Octeon. Like hub_device_addr,
|
||
|
* this is only used for full/low speed
|
||
|
* devices behind a high speed hub.
|
||
|
*
|
||
|
* Returns: A non-NULL value is a pipe. NULL means an error.
|
||
|
*/
|
||
|
static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct octeon_hcd *usb,
|
||
|
int device_addr,
|
||
|
int endpoint_num,
|
||
|
enum cvmx_usb_speed
|
||
|
device_speed,
|
||
|
int max_packet,
|
||
|
enum cvmx_usb_transfer
|
||
|
transfer_type,
|
||
|
enum cvmx_usb_direction
|
||
|
transfer_dir,
|
||
|
int interval, int multi_count,
|
||
|
int hub_device_addr,
|
||
|
int hub_port)
|
||
|
{
|
||
|
struct cvmx_usb_pipe *pipe;
|
||
|
|
||
|
pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
|
||
|
if (!pipe)
|
||
|
return NULL;
|
||
|
if ((device_speed == CVMX_USB_SPEED_HIGH) &&
|
||
|
(transfer_dir == CVMX_USB_DIRECTION_OUT) &&
|
||
|
(transfer_type == CVMX_USB_TRANSFER_BULK))
|
||
|
pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
|
||
|
pipe->device_addr = device_addr;
|
||
|
pipe->endpoint_num = endpoint_num;
|
||
|
pipe->device_speed = device_speed;
|
||
|
pipe->max_packet = max_packet;
|
||
|
pipe->transfer_type = transfer_type;
|
||
|
pipe->transfer_dir = transfer_dir;
|
||
|
INIT_LIST_HEAD(&pipe->transactions);
|
||
|
|
||
|
/*
|
||
|
* All pipes use interval to rate limit NAK processing. Force an
|
||
|
* interval if one wasn't supplied
|
||
|
*/
|
||
|
if (!interval)
|
||
|
interval = 1;
|
||
|
if (cvmx_usb_pipe_needs_split(usb, pipe)) {
|
||
|
pipe->interval = interval * 8;
|
||
|
/* Force start splits to be schedule on uFrame 0 */
|
||
|
pipe->next_tx_frame = ((usb->frame_number + 7) & ~7) +
|
||
|
pipe->interval;
|
||
|
} else {
|
||
|
pipe->interval = interval;
|
||
|
pipe->next_tx_frame = usb->frame_number + pipe->interval;
|
||
|
}
|
||
|
pipe->multi_count = multi_count;
|
||
|
pipe->hub_device_addr = hub_device_addr;
|
||
|
pipe->hub_port = hub_port;
|
||
|
pipe->pid_toggle = 0;
|
||
|
pipe->split_sc_frame = -1;
|
||
|
list_add_tail(&pipe->node, &usb->idle_pipes);
|
||
|
|
||
|
/*
|
||
|
* We don't need to tell the hardware about this pipe yet since
|
||
|
* it doesn't have any submitted requests
|
||
|
*/
|
||
|
|
||
|
return pipe;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Poll the RX FIFOs and remove data as needed. This function is only used
|
||
|
* in non DMA mode. It is very important that this function be called quickly
|
||
|
* enough to prevent FIFO overflow.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
*/
|
||
|
static void cvmx_usb_poll_rx_fifo(struct octeon_hcd *usb)
|
||
|
{
|
||
|
union cvmx_usbcx_grxstsph rx_status;
|
||
|
int channel;
|
||
|
int bytes;
|
||
|
u64 address;
|
||
|
u32 *ptr;
|
||
|
|
||
|
rx_status.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_GRXSTSPH(usb->index));
|
||
|
/* Only read data if IN data is there */
|
||
|
if (rx_status.s.pktsts != 2)
|
||
|
return;
|
||
|
/* Check if no data is available */
|
||
|
if (!rx_status.s.bcnt)
|
||
|
return;
|
||
|
|
||
|
channel = rx_status.s.chnum;
|
||
|
bytes = rx_status.s.bcnt;
|
||
|
if (!bytes)
|
||
|
return;
|
||
|
|
||
|
/* Get where the DMA engine would have written this data */
|
||
|
address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) +
|
||
|
channel * 8);
|
||
|
|
||
|
ptr = cvmx_phys_to_ptr(address);
|
||
|
cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8,
|
||
|
address + bytes);
|
||
|
|
||
|
/* Loop writing the FIFO data for this packet into memory */
|
||
|
while (bytes > 0) {
|
||
|
*ptr++ = cvmx_usb_read_csr32(usb,
|
||
|
USB_FIFO_ADDRESS(channel, usb->index));
|
||
|
bytes -= 4;
|
||
|
}
|
||
|
CVMX_SYNCW;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Fill the TX hardware fifo with data out of the software
|
||
|
* fifos
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @fifo: Software fifo to use
|
||
|
* @available: Amount of space in the hardware fifo
|
||
|
*
|
||
|
* Returns: Non zero if the hardware fifo was too small and needs
|
||
|
* to be serviced again.
|
||
|
*/
|
||
|
static int cvmx_usb_fill_tx_hw(struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_tx_fifo *fifo, int available)
|
||
|
{
|
||
|
/*
|
||
|
* We're done either when there isn't anymore space or the software FIFO
|
||
|
* is empty
|
||
|
*/
|
||
|
while (available && (fifo->head != fifo->tail)) {
|
||
|
int i = fifo->tail;
|
||
|
const u32 *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
|
||
|
u64 csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel,
|
||
|
usb->index) ^ 4;
|
||
|
int words = available;
|
||
|
|
||
|
/* Limit the amount of data to what the SW fifo has */
|
||
|
if (fifo->entry[i].size <= available) {
|
||
|
words = fifo->entry[i].size;
|
||
|
fifo->tail++;
|
||
|
if (fifo->tail > MAX_CHANNELS)
|
||
|
fifo->tail = 0;
|
||
|
}
|
||
|
|
||
|
/* Update the next locations and counts */
|
||
|
available -= words;
|
||
|
fifo->entry[i].address += words * 4;
|
||
|
fifo->entry[i].size -= words;
|
||
|
|
||
|
/*
|
||
|
* Write the HW fifo data. The read every three writes is due
|
||
|
* to an errata on CN3XXX chips
|
||
|
*/
|
||
|
while (words > 3) {
|
||
|
cvmx_write64_uint32(csr_address, *ptr++);
|
||
|
cvmx_write64_uint32(csr_address, *ptr++);
|
||
|
cvmx_write64_uint32(csr_address, *ptr++);
|
||
|
cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
|
||
|
words -= 3;
|
||
|
}
|
||
|
cvmx_write64_uint32(csr_address, *ptr++);
|
||
|
if (--words) {
|
||
|
cvmx_write64_uint32(csr_address, *ptr++);
|
||
|
if (--words)
|
||
|
cvmx_write64_uint32(csr_address, *ptr++);
|
||
|
}
|
||
|
cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
|
||
|
}
|
||
|
return fifo->head != fifo->tail;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Check the hardware FIFOs and fill them as needed
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
*/
|
||
|
static void cvmx_usb_poll_tx_fifo(struct octeon_hcd *usb)
|
||
|
{
|
||
|
if (usb->periodic.head != usb->periodic.tail) {
|
||
|
union cvmx_usbcx_hptxsts tx_status;
|
||
|
|
||
|
tx_status.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HPTXSTS(usb->index));
|
||
|
if (cvmx_usb_fill_tx_hw(usb, &usb->periodic,
|
||
|
tx_status.s.ptxfspcavail))
|
||
|
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
|
||
|
cvmx_usbcx_gintmsk, ptxfempmsk, 1);
|
||
|
else
|
||
|
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
|
||
|
cvmx_usbcx_gintmsk, ptxfempmsk, 0);
|
||
|
}
|
||
|
|
||
|
if (usb->nonperiodic.head != usb->nonperiodic.tail) {
|
||
|
union cvmx_usbcx_gnptxsts tx_status;
|
||
|
|
||
|
tx_status.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_GNPTXSTS(usb->index));
|
||
|
if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic,
|
||
|
tx_status.s.nptxfspcavail))
|
||
|
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
|
||
|
cvmx_usbcx_gintmsk, nptxfempmsk, 1);
|
||
|
else
|
||
|
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
|
||
|
cvmx_usbcx_gintmsk, nptxfempmsk, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Fill the TX FIFO with an outgoing packet
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @channel: Channel number to get packet from
|
||
|
*/
|
||
|
static void cvmx_usb_fill_tx_fifo(struct octeon_hcd *usb, int channel)
|
||
|
{
|
||
|
union cvmx_usbcx_hccharx hcchar;
|
||
|
union cvmx_usbcx_hcspltx usbc_hcsplt;
|
||
|
union cvmx_usbcx_hctsizx usbc_hctsiz;
|
||
|
struct cvmx_usb_tx_fifo *fifo;
|
||
|
|
||
|
/* We only need to fill data on outbound channels */
|
||
|
hcchar.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HCCHARX(channel, usb->index));
|
||
|
if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
|
||
|
return;
|
||
|
|
||
|
/* OUT Splits only have data on the start and not the complete */
|
||
|
usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HCSPLTX(channel, usb->index));
|
||
|
if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Find out how many bytes we need to fill and convert it into 32bit
|
||
|
* words.
|
||
|
*/
|
||
|
usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HCTSIZX(channel, usb->index));
|
||
|
if (!usbc_hctsiz.s.xfersize)
|
||
|
return;
|
||
|
|
||
|
if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
|
||
|
(hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
|
||
|
fifo = &usb->periodic;
|
||
|
else
|
||
|
fifo = &usb->nonperiodic;
|
||
|
|
||
|
fifo->entry[fifo->head].channel = channel;
|
||
|
fifo->entry[fifo->head].address =
|
||
|
cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
|
||
|
channel * 8);
|
||
|
fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize + 3) >> 2;
|
||
|
fifo->head++;
|
||
|
if (fifo->head > MAX_CHANNELS)
|
||
|
fifo->head = 0;
|
||
|
|
||
|
cvmx_usb_poll_tx_fifo(usb);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Perform channel specific setup for Control transactions. All
|
||
|
* the generic stuff will already have been done in cvmx_usb_start_channel().
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @channel: Channel to setup
|
||
|
* @pipe: Pipe for control transaction
|
||
|
*/
|
||
|
static void cvmx_usb_start_channel_control(struct octeon_hcd *usb,
|
||
|
int channel,
|
||
|
struct cvmx_usb_pipe *pipe)
|
||
|
{
|
||
|
struct usb_hcd *hcd = octeon_to_hcd(usb);
|
||
|
struct device *dev = hcd->self.controller;
|
||
|
struct cvmx_usb_transaction *transaction =
|
||
|
list_first_entry(&pipe->transactions, typeof(*transaction),
|
||
|
node);
|
||
|
struct usb_ctrlrequest *header =
|
||
|
cvmx_phys_to_ptr(transaction->control_header);
|
||
|
int bytes_to_transfer = transaction->buffer_length -
|
||
|
transaction->actual_bytes;
|
||
|
int packets_to_transfer;
|
||
|
union cvmx_usbcx_hctsizx usbc_hctsiz;
|
||
|
|
||
|
usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HCTSIZX(channel, usb->index));
|
||
|
|
||
|
switch (transaction->stage) {
|
||
|
case CVMX_USB_STAGE_NON_CONTROL:
|
||
|
case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
|
||
|
dev_err(dev, "%s: ERROR - Non control stage\n", __func__);
|
||
|
break;
|
||
|
case CVMX_USB_STAGE_SETUP:
|
||
|
usbc_hctsiz.s.pid = 3; /* Setup */
|
||
|
bytes_to_transfer = sizeof(*header);
|
||
|
/* All Control operations start with a setup going OUT */
|
||
|
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
|
||
|
cvmx_usbcx_hccharx, epdir,
|
||
|
CVMX_USB_DIRECTION_OUT);
|
||
|
/*
|
||
|
* Setup send the control header instead of the buffer data. The
|
||
|
* buffer data will be used in the next stage
|
||
|
*/
|
||
|
cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
|
||
|
channel * 8,
|
||
|
transaction->control_header);
|
||
|
break;
|
||
|
case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
|
||
|
usbc_hctsiz.s.pid = 3; /* Setup */
|
||
|
bytes_to_transfer = 0;
|
||
|
/* All Control operations start with a setup going OUT */
|
||
|
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
|
||
|
cvmx_usbcx_hccharx, epdir,
|
||
|
CVMX_USB_DIRECTION_OUT);
|
||
|
|
||
|
USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
|
||
|
cvmx_usbcx_hcspltx, compsplt, 1);
|
||
|
break;
|
||
|
case CVMX_USB_STAGE_DATA:
|
||
|
usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
|
||
|
if (cvmx_usb_pipe_needs_split(usb, pipe)) {
|
||
|
if (header->bRequestType & USB_DIR_IN)
|
||
|
bytes_to_transfer = 0;
|
||
|
else if (bytes_to_transfer > pipe->max_packet)
|
||
|
bytes_to_transfer = pipe->max_packet;
|
||
|
}
|
||
|
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
|
||
|
cvmx_usbcx_hccharx, epdir,
|
||
|
((header->bRequestType & USB_DIR_IN) ?
|
||
|
CVMX_USB_DIRECTION_IN :
|
||
|
CVMX_USB_DIRECTION_OUT));
|
||
|
break;
|
||
|
case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
|
||
|
usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
|
||
|
if (!(header->bRequestType & USB_DIR_IN))
|
||
|
bytes_to_transfer = 0;
|
||
|
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
|
||
|
cvmx_usbcx_hccharx, epdir,
|
||
|
((header->bRequestType & USB_DIR_IN) ?
|
||
|
CVMX_USB_DIRECTION_IN :
|
||
|
CVMX_USB_DIRECTION_OUT));
|
||
|
USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
|
||
|
cvmx_usbcx_hcspltx, compsplt, 1);
|
||
|
break;
|
||
|
case CVMX_USB_STAGE_STATUS:
|
||
|
usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
|
||
|
bytes_to_transfer = 0;
|
||
|
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
|
||
|
cvmx_usbcx_hccharx, epdir,
|
||
|
((header->bRequestType & USB_DIR_IN) ?
|
||
|
CVMX_USB_DIRECTION_OUT :
|
||
|
CVMX_USB_DIRECTION_IN));
|
||
|
break;
|
||
|
case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
|
||
|
usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
|
||
|
bytes_to_transfer = 0;
|
||
|
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
|
||
|
cvmx_usbcx_hccharx, epdir,
|
||
|
((header->bRequestType & USB_DIR_IN) ?
|
||
|
CVMX_USB_DIRECTION_OUT :
|
||
|
CVMX_USB_DIRECTION_IN));
|
||
|
USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
|
||
|
cvmx_usbcx_hcspltx, compsplt, 1);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Make sure the transfer never exceeds the byte limit of the hardware.
|
||
|
* Further bytes will be sent as continued transactions
|
||
|
*/
|
||
|
if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
|
||
|
/* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
|
||
|
bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
|
||
|
bytes_to_transfer *= pipe->max_packet;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Calculate the number of packets to transfer. If the length is zero
|
||
|
* we still need to transfer one packet
|
||
|
*/
|
||
|
packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer,
|
||
|
pipe->max_packet);
|
||
|
if (packets_to_transfer == 0) {
|
||
|
packets_to_transfer = 1;
|
||
|
} else if ((packets_to_transfer > 1) &&
|
||
|
(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
|
||
|
/*
|
||
|
* Limit to one packet when not using DMA. Channels must be
|
||
|
* restarted between every packet for IN transactions, so there
|
||
|
* is no reason to do multiple packets in a row
|
||
|
*/
|
||
|
packets_to_transfer = 1;
|
||
|
bytes_to_transfer = packets_to_transfer * pipe->max_packet;
|
||
|
} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
|
||
|
/*
|
||
|
* Limit the number of packet and data transferred to what the
|
||
|
* hardware can handle
|
||
|
*/
|
||
|
packets_to_transfer = MAX_TRANSFER_PACKETS;
|
||
|
bytes_to_transfer = packets_to_transfer * pipe->max_packet;
|
||
|
}
|
||
|
|
||
|
usbc_hctsiz.s.xfersize = bytes_to_transfer;
|
||
|
usbc_hctsiz.s.pktcnt = packets_to_transfer;
|
||
|
|
||
|
cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index),
|
||
|
usbc_hctsiz.u32);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Start a channel to perform the pipe's head transaction
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @channel: Channel to setup
|
||
|
* @pipe: Pipe to start
|
||
|
*/
|
||
|
static void cvmx_usb_start_channel(struct octeon_hcd *usb, int channel,
|
||
|
struct cvmx_usb_pipe *pipe)
|
||
|
{
|
||
|
struct cvmx_usb_transaction *transaction =
|
||
|
list_first_entry(&pipe->transactions, typeof(*transaction),
|
||
|
node);
|
||
|
|
||
|
/* Make sure all writes to the DMA region get flushed */
|
||
|
CVMX_SYNCW;
|
||
|
|
||
|
/* Attach the channel to the pipe */
|
||
|
usb->pipe_for_channel[channel] = pipe;
|
||
|
pipe->channel = channel;
|
||
|
pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED;
|
||
|
|
||
|
/* Mark this channel as in use */
|
||
|
usb->idle_hardware_channels &= ~(1 << channel);
|
||
|
|
||
|
/* Enable the channel interrupt bits */
|
||
|
{
|
||
|
union cvmx_usbcx_hcintx usbc_hcint;
|
||
|
union cvmx_usbcx_hcintmskx usbc_hcintmsk;
|
||
|
union cvmx_usbcx_haintmsk usbc_haintmsk;
|
||
|
|
||
|
/* Clear all channel status bits */
|
||
|
usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HCINTX(channel, usb->index));
|
||
|
|
||
|
cvmx_usb_write_csr32(usb,
|
||
|
CVMX_USBCX_HCINTX(channel, usb->index),
|
||
|
usbc_hcint.u32);
|
||
|
|
||
|
usbc_hcintmsk.u32 = 0;
|
||
|
usbc_hcintmsk.s.chhltdmsk = 1;
|
||
|
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
|
||
|
/*
|
||
|
* Channels need these extra interrupts when we aren't
|
||
|
* in DMA mode.
|
||
|
*/
|
||
|
usbc_hcintmsk.s.datatglerrmsk = 1;
|
||
|
usbc_hcintmsk.s.frmovrunmsk = 1;
|
||
|
usbc_hcintmsk.s.bblerrmsk = 1;
|
||
|
usbc_hcintmsk.s.xacterrmsk = 1;
|
||
|
if (cvmx_usb_pipe_needs_split(usb, pipe)) {
|
||
|
/*
|
||
|
* Splits don't generate xfercompl, so we need
|
||
|
* ACK and NYET.
|
||
|
*/
|
||
|
usbc_hcintmsk.s.nyetmsk = 1;
|
||
|
usbc_hcintmsk.s.ackmsk = 1;
|
||
|
}
|
||
|
usbc_hcintmsk.s.nakmsk = 1;
|
||
|
usbc_hcintmsk.s.stallmsk = 1;
|
||
|
usbc_hcintmsk.s.xfercomplmsk = 1;
|
||
|
}
|
||
|
cvmx_usb_write_csr32(usb,
|
||
|
CVMX_USBCX_HCINTMSKX(channel, usb->index),
|
||
|
usbc_hcintmsk.u32);
|
||
|
|
||
|
/* Enable the channel interrupt to propagate */
|
||
|
usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HAINTMSK(usb->index));
|
||
|
usbc_haintmsk.s.haintmsk |= 1 << channel;
|
||
|
cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index),
|
||
|
usbc_haintmsk.u32);
|
||
|
}
|
||
|
|
||
|
/* Setup the location the DMA engine uses. */
|
||
|
{
|
||
|
u64 reg;
|
||
|
u64 dma_address = transaction->buffer +
|
||
|
transaction->actual_bytes;
|
||
|
|
||
|
if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
|
||
|
dma_address = transaction->buffer +
|
||
|
transaction->iso_packets[0].offset +
|
||
|
transaction->actual_bytes;
|
||
|
|
||
|
if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
|
||
|
reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index);
|
||
|
else
|
||
|
reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index);
|
||
|
cvmx_write64_uint64(reg + channel * 8, dma_address);
|
||
|
}
|
||
|
|
||
|
/* Setup both the size of the transfer and the SPLIT characteristics */
|
||
|
{
|
||
|
union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
|
||
|
union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
|
||
|
int packets_to_transfer;
|
||
|
int bytes_to_transfer = transaction->buffer_length -
|
||
|
transaction->actual_bytes;
|
||
|
|
||
|
/*
|
||
|
* ISOCHRONOUS transactions store each individual transfer size
|
||
|
* in the packet structure, not the global buffer_length
|
||
|
*/
|
||
|
if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
|
||
|
bytes_to_transfer =
|
||
|
transaction->iso_packets[0].length -
|
||
|
transaction->actual_bytes;
|
||
|
|
||
|
/*
|
||
|
* We need to do split transactions when we are talking to non
|
||
|
* high speed devices that are behind a high speed hub
|
||
|
*/
|
||
|
if (cvmx_usb_pipe_needs_split(usb, pipe)) {
|
||
|
/*
|
||
|
* On the start split phase (stage is even) record the
|
||
|
* frame number we will need to send the split complete.
|
||
|
* We only store the lower two bits since the time ahead
|
||
|
* can only be two frames
|
||
|
*/
|
||
|
if ((transaction->stage & 1) == 0) {
|
||
|
if (transaction->type == CVMX_USB_TRANSFER_BULK)
|
||
|
pipe->split_sc_frame =
|
||
|
(usb->frame_number + 1) & 0x7f;
|
||
|
else
|
||
|
pipe->split_sc_frame =
|
||
|
(usb->frame_number + 2) & 0x7f;
|
||
|
} else {
|
||
|
pipe->split_sc_frame = -1;
|
||
|
}
|
||
|
|
||
|
usbc_hcsplt.s.spltena = 1;
|
||
|
usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
|
||
|
usbc_hcsplt.s.prtaddr = pipe->hub_port;
|
||
|
usbc_hcsplt.s.compsplt = (transaction->stage ==
|
||
|
CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
|
||
|
|
||
|
/*
|
||
|
* SPLIT transactions can only ever transmit one data
|
||
|
* packet so limit the transfer size to the max packet
|
||
|
* size
|
||
|
*/
|
||
|
if (bytes_to_transfer > pipe->max_packet)
|
||
|
bytes_to_transfer = pipe->max_packet;
|
||
|
|
||
|
/*
|
||
|
* ISOCHRONOUS OUT splits are unique in that they limit
|
||
|
* data transfers to 188 byte chunks representing the
|
||
|
* begin/middle/end of the data or all
|
||
|
*/
|
||
|
if (!usbc_hcsplt.s.compsplt &&
|
||
|
(pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
|
||
|
(pipe->transfer_type ==
|
||
|
CVMX_USB_TRANSFER_ISOCHRONOUS)) {
|
||
|
/*
|
||
|
* Clear the split complete frame number as
|
||
|
* there isn't going to be a split complete
|
||
|
*/
|
||
|
pipe->split_sc_frame = -1;
|
||
|
/*
|
||
|
* See if we've started this transfer and sent
|
||
|
* data
|
||
|
*/
|
||
|
if (transaction->actual_bytes == 0) {
|
||
|
/*
|
||
|
* Nothing sent yet, this is either a
|
||
|
* begin or the entire payload
|
||
|
*/
|
||
|
if (bytes_to_transfer <= 188)
|
||
|
/* Entire payload in one go */
|
||
|
usbc_hcsplt.s.xactpos = 3;
|
||
|
else
|
||
|
/* First part of payload */
|
||
|
usbc_hcsplt.s.xactpos = 2;
|
||
|
} else {
|
||
|
/*
|
||
|
* Continuing the previous data, we must
|
||
|
* either be in the middle or at the end
|
||
|
*/
|
||
|
if (bytes_to_transfer <= 188)
|
||
|
/* End of payload */
|
||
|
usbc_hcsplt.s.xactpos = 1;
|
||
|
else
|
||
|
/* Middle of payload */
|
||
|
usbc_hcsplt.s.xactpos = 0;
|
||
|
}
|
||
|
/*
|
||
|
* Again, the transfer size is limited to 188
|
||
|
* bytes
|
||
|
*/
|
||
|
if (bytes_to_transfer > 188)
|
||
|
bytes_to_transfer = 188;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Make sure the transfer never exceeds the byte limit of the
|
||
|
* hardware. Further bytes will be sent as continued
|
||
|
* transactions
|
||
|
*/
|
||
|
if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
|
||
|
/*
|
||
|
* Round MAX_TRANSFER_BYTES to a multiple of out packet
|
||
|
* size
|
||
|
*/
|
||
|
bytes_to_transfer = MAX_TRANSFER_BYTES /
|
||
|
pipe->max_packet;
|
||
|
bytes_to_transfer *= pipe->max_packet;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Calculate the number of packets to transfer. If the length is
|
||
|
* zero we still need to transfer one packet
|
||
|
*/
|
||
|
packets_to_transfer =
|
||
|
DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet);
|
||
|
if (packets_to_transfer == 0) {
|
||
|
packets_to_transfer = 1;
|
||
|
} else if ((packets_to_transfer > 1) &&
|
||
|
(usb->init_flags &
|
||
|
CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
|
||
|
/*
|
||
|
* Limit to one packet when not using DMA. Channels must
|
||
|
* be restarted between every packet for IN
|
||
|
* transactions, so there is no reason to do multiple
|
||
|
* packets in a row
|
||
|
*/
|
||
|
packets_to_transfer = 1;
|
||
|
bytes_to_transfer = packets_to_transfer *
|
||
|
pipe->max_packet;
|
||
|
} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
|
||
|
/*
|
||
|
* Limit the number of packet and data transferred to
|
||
|
* what the hardware can handle
|
||
|
*/
|
||
|
packets_to_transfer = MAX_TRANSFER_PACKETS;
|
||
|
bytes_to_transfer = packets_to_transfer *
|
||
|
pipe->max_packet;
|
||
|
}
|
||
|
|
||
|
usbc_hctsiz.s.xfersize = bytes_to_transfer;
|
||
|
usbc_hctsiz.s.pktcnt = packets_to_transfer;
|
||
|
|
||
|
/* Update the DATA0/DATA1 toggle */
|
||
|
usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
|
||
|
/*
|
||
|
* High speed pipes may need a hardware ping before they start
|
||
|
*/
|
||
|
if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING)
|
||
|
usbc_hctsiz.s.dopng = 1;
|
||
|
|
||
|
cvmx_usb_write_csr32(usb,
|
||
|
CVMX_USBCX_HCSPLTX(channel, usb->index),
|
||
|
usbc_hcsplt.u32);
|
||
|
cvmx_usb_write_csr32(usb,
|
||
|
CVMX_USBCX_HCTSIZX(channel, usb->index),
|
||
|
usbc_hctsiz.u32);
|
||
|
}
|
||
|
|
||
|
/* Setup the Host Channel Characteristics Register */
|
||
|
{
|
||
|
union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
|
||
|
|
||
|
/*
|
||
|
* Set the startframe odd/even properly. This is only used for
|
||
|
* periodic
|
||
|
*/
|
||
|
usbc_hcchar.s.oddfrm = usb->frame_number & 1;
|
||
|
|
||
|
/*
|
||
|
* Set the number of back to back packets allowed by this
|
||
|
* endpoint. Split transactions interpret "ec" as the number of
|
||
|
* immediate retries of failure. These retries happen too
|
||
|
* quickly, so we disable these entirely for splits
|
||
|
*/
|
||
|
if (cvmx_usb_pipe_needs_split(usb, pipe))
|
||
|
usbc_hcchar.s.ec = 1;
|
||
|
else if (pipe->multi_count < 1)
|
||
|
usbc_hcchar.s.ec = 1;
|
||
|
else if (pipe->multi_count > 3)
|
||
|
usbc_hcchar.s.ec = 3;
|
||
|
else
|
||
|
usbc_hcchar.s.ec = pipe->multi_count;
|
||
|
|
||
|
/* Set the rest of the endpoint specific settings */
|
||
|
usbc_hcchar.s.devaddr = pipe->device_addr;
|
||
|
usbc_hcchar.s.eptype = transaction->type;
|
||
|
usbc_hcchar.s.lspddev =
|
||
|
(pipe->device_speed == CVMX_USB_SPEED_LOW);
|
||
|
usbc_hcchar.s.epdir = pipe->transfer_dir;
|
||
|
usbc_hcchar.s.epnum = pipe->endpoint_num;
|
||
|
usbc_hcchar.s.mps = pipe->max_packet;
|
||
|
cvmx_usb_write_csr32(usb,
|
||
|
CVMX_USBCX_HCCHARX(channel, usb->index),
|
||
|
usbc_hcchar.u32);
|
||
|
}
|
||
|
|
||
|
/* Do transaction type specific fixups as needed */
|
||
|
switch (transaction->type) {
|
||
|
case CVMX_USB_TRANSFER_CONTROL:
|
||
|
cvmx_usb_start_channel_control(usb, channel, pipe);
|
||
|
break;
|
||
|
case CVMX_USB_TRANSFER_BULK:
|
||
|
case CVMX_USB_TRANSFER_INTERRUPT:
|
||
|
break;
|
||
|
case CVMX_USB_TRANSFER_ISOCHRONOUS:
|
||
|
if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
|
||
|
/*
|
||
|
* ISO transactions require different PIDs depending on
|
||
|
* direction and how many packets are needed
|
||
|
*/
|
||
|
if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
|
||
|
if (pipe->multi_count < 2) /* Need DATA0 */
|
||
|
USB_SET_FIELD32(
|
||
|
CVMX_USBCX_HCTSIZX(channel,
|
||
|
usb->index),
|
||
|
cvmx_usbcx_hctsizx, pid, 0);
|
||
|
else /* Need MDATA */
|
||
|
USB_SET_FIELD32(
|
||
|
CVMX_USBCX_HCTSIZX(channel,
|
||
|
usb->index),
|
||
|
cvmx_usbcx_hctsizx, pid, 3);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
{
|
||
|
union cvmx_usbcx_hctsizx usbc_hctsiz = { .u32 =
|
||
|
cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HCTSIZX(channel,
|
||
|
usb->index))
|
||
|
};
|
||
|
transaction->xfersize = usbc_hctsiz.s.xfersize;
|
||
|
transaction->pktcnt = usbc_hctsiz.s.pktcnt;
|
||
|
}
|
||
|
/* Remember when we start a split transaction */
|
||
|
if (cvmx_usb_pipe_needs_split(usb, pipe))
|
||
|
usb->active_split = transaction;
|
||
|
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
|
||
|
cvmx_usbcx_hccharx, chena, 1);
|
||
|
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
|
||
|
cvmx_usb_fill_tx_fifo(usb, channel);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Find a pipe that is ready to be scheduled to hardware.
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @xfer_type: Transfer type
|
||
|
*
|
||
|
* Returns: Pipe or NULL if none are ready
|
||
|
*/
|
||
|
static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(struct octeon_hcd *usb,
|
||
|
enum cvmx_usb_transfer xfer_type)
|
||
|
{
|
||
|
struct list_head *list = usb->active_pipes + xfer_type;
|
||
|
u64 current_frame = usb->frame_number;
|
||
|
struct cvmx_usb_pipe *pipe;
|
||
|
|
||
|
list_for_each_entry(pipe, list, node) {
|
||
|
struct cvmx_usb_transaction *t =
|
||
|
list_first_entry(&pipe->transactions, typeof(*t),
|
||
|
node);
|
||
|
if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
|
||
|
(pipe->next_tx_frame <= current_frame) &&
|
||
|
((pipe->split_sc_frame == -1) ||
|
||
|
((((int)current_frame - pipe->split_sc_frame) & 0x7f) <
|
||
|
0x40)) &&
|
||
|
(!usb->active_split || (usb->active_split == t))) {
|
||
|
prefetch(t);
|
||
|
return pipe;
|
||
|
}
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static struct cvmx_usb_pipe *cvmx_usb_next_pipe(struct octeon_hcd *usb,
|
||
|
int is_sof)
|
||
|
{
|
||
|
struct cvmx_usb_pipe *pipe;
|
||
|
|
||
|
/* Find a pipe needing service. */
|
||
|
if (is_sof) {
|
||
|
/*
|
||
|
* Only process periodic pipes on SOF interrupts. This way we
|
||
|
* are sure that the periodic data is sent in the beginning of
|
||
|
* the frame.
|
||
|
*/
|
||
|
pipe = cvmx_usb_find_ready_pipe(usb,
|
||
|
CVMX_USB_TRANSFER_ISOCHRONOUS);
|
||
|
if (pipe)
|
||
|
return pipe;
|
||
|
pipe = cvmx_usb_find_ready_pipe(usb,
|
||
|
CVMX_USB_TRANSFER_INTERRUPT);
|
||
|
if (pipe)
|
||
|
return pipe;
|
||
|
}
|
||
|
pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_CONTROL);
|
||
|
if (pipe)
|
||
|
return pipe;
|
||
|
return cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_BULK);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called whenever a pipe might need to be scheduled to the
|
||
|
* hardware.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @is_sof: True if this schedule was called on a SOF interrupt.
|
||
|
*/
|
||
|
static void cvmx_usb_schedule(struct octeon_hcd *usb, int is_sof)
|
||
|
{
|
||
|
int channel;
|
||
|
struct cvmx_usb_pipe *pipe;
|
||
|
int need_sof;
|
||
|
enum cvmx_usb_transfer ttype;
|
||
|
|
||
|
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
|
||
|
/*
|
||
|
* Without DMA we need to be careful to not schedule something
|
||
|
* at the end of a frame and cause an overrun.
|
||
|
*/
|
||
|
union cvmx_usbcx_hfnum hfnum = {
|
||
|
.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HFNUM(usb->index))
|
||
|
};
|
||
|
|
||
|
union cvmx_usbcx_hfir hfir = {
|
||
|
.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HFIR(usb->index))
|
||
|
};
|
||
|
|
||
|
if (hfnum.s.frrem < hfir.s.frint / 4)
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
while (usb->idle_hardware_channels) {
|
||
|
/* Find an idle channel */
|
||
|
channel = __fls(usb->idle_hardware_channels);
|
||
|
if (unlikely(channel > 7))
|
||
|
break;
|
||
|
|
||
|
pipe = cvmx_usb_next_pipe(usb, is_sof);
|
||
|
if (!pipe)
|
||
|
break;
|
||
|
|
||
|
cvmx_usb_start_channel(usb, channel, pipe);
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
/*
|
||
|
* Only enable SOF interrupts when we have transactions pending in the
|
||
|
* future that might need to be scheduled
|
||
|
*/
|
||
|
need_sof = 0;
|
||
|
for (ttype = CVMX_USB_TRANSFER_CONTROL;
|
||
|
ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
|
||
|
list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
|
||
|
if (pipe->next_tx_frame > usb->frame_number) {
|
||
|
need_sof = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
|
||
|
cvmx_usbcx_gintmsk, sofmsk, need_sof);
|
||
|
}
|
||
|
|
||
|
static void octeon_usb_urb_complete_callback(struct octeon_hcd *usb,
|
||
|
enum cvmx_usb_status status,
|
||
|
struct cvmx_usb_pipe *pipe,
|
||
|
struct cvmx_usb_transaction
|
||
|
*transaction,
|
||
|
int bytes_transferred,
|
||
|
struct urb *urb)
|
||
|
{
|
||
|
struct usb_hcd *hcd = octeon_to_hcd(usb);
|
||
|
struct device *dev = hcd->self.controller;
|
||
|
|
||
|
if (likely(status == CVMX_USB_STATUS_OK))
|
||
|
urb->actual_length = bytes_transferred;
|
||
|
else
|
||
|
urb->actual_length = 0;
|
||
|
|
||
|
urb->hcpriv = NULL;
|
||
|
|
||
|
/* For Isochronous transactions we need to update the URB packet status
|
||
|
* list from data in our private copy
|
||
|
*/
|
||
|
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
||
|
int i;
|
||
|
/*
|
||
|
* The pointer to the private list is stored in the setup_packet
|
||
|
* field.
|
||
|
*/
|
||
|
struct cvmx_usb_iso_packet *iso_packet =
|
||
|
(struct cvmx_usb_iso_packet *)urb->setup_packet;
|
||
|
/* Recalculate the transfer size by adding up each packet */
|
||
|
urb->actual_length = 0;
|
||
|
for (i = 0; i < urb->number_of_packets; i++) {
|
||
|
if (iso_packet[i].status == CVMX_USB_STATUS_OK) {
|
||
|
urb->iso_frame_desc[i].status = 0;
|
||
|
urb->iso_frame_desc[i].actual_length =
|
||
|
iso_packet[i].length;
|
||
|
urb->actual_length +=
|
||
|
urb->iso_frame_desc[i].actual_length;
|
||
|
} else {
|
||
|
dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
|
||
|
i, urb->number_of_packets,
|
||
|
iso_packet[i].status, pipe,
|
||
|
transaction, iso_packet[i].length);
|
||
|
urb->iso_frame_desc[i].status = -EREMOTEIO;
|
||
|
}
|
||
|
}
|
||
|
/* Free the private list now that we don't need it anymore */
|
||
|
kfree(iso_packet);
|
||
|
urb->setup_packet = NULL;
|
||
|
}
|
||
|
|
||
|
switch (status) {
|
||
|
case CVMX_USB_STATUS_OK:
|
||
|
urb->status = 0;
|
||
|
break;
|
||
|
case CVMX_USB_STATUS_CANCEL:
|
||
|
if (urb->status == 0)
|
||
|
urb->status = -ENOENT;
|
||
|
break;
|
||
|
case CVMX_USB_STATUS_STALL:
|
||
|
dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
|
||
|
pipe, transaction, bytes_transferred);
|
||
|
urb->status = -EPIPE;
|
||
|
break;
|
||
|
case CVMX_USB_STATUS_BABBLEERR:
|
||
|
dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
|
||
|
pipe, transaction, bytes_transferred);
|
||
|
urb->status = -EPIPE;
|
||
|
break;
|
||
|
case CVMX_USB_STATUS_SHORT:
|
||
|
dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
|
||
|
pipe, transaction, bytes_transferred);
|
||
|
urb->status = -EREMOTEIO;
|
||
|
break;
|
||
|
case CVMX_USB_STATUS_ERROR:
|
||
|
case CVMX_USB_STATUS_XACTERR:
|
||
|
case CVMX_USB_STATUS_DATATGLERR:
|
||
|
case CVMX_USB_STATUS_FRAMEERR:
|
||
|
dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
|
||
|
status, pipe, transaction, bytes_transferred);
|
||
|
urb->status = -EPROTO;
|
||
|
break;
|
||
|
}
|
||
|
usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb), urb);
|
||
|
spin_unlock(&usb->lock);
|
||
|
usb_hcd_giveback_urb(octeon_to_hcd(usb), urb, urb->status);
|
||
|
spin_lock(&usb->lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Signal the completion of a transaction and free it. The
|
||
|
* transaction will be removed from the pipe transaction list.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @pipe: Pipe the transaction is on
|
||
|
* @transaction:
|
||
|
* Transaction that completed
|
||
|
* @complete_code:
|
||
|
* Completion code
|
||
|
*/
|
||
|
static void cvmx_usb_complete(struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_pipe *pipe,
|
||
|
struct cvmx_usb_transaction *transaction,
|
||
|
enum cvmx_usb_status complete_code)
|
||
|
{
|
||
|
/* If this was a split then clear our split in progress marker */
|
||
|
if (usb->active_split == transaction)
|
||
|
usb->active_split = NULL;
|
||
|
|
||
|
/*
|
||
|
* Isochronous transactions need extra processing as they might not be
|
||
|
* done after a single data transfer
|
||
|
*/
|
||
|
if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
|
||
|
/* Update the number of bytes transferred in this ISO packet */
|
||
|
transaction->iso_packets[0].length = transaction->actual_bytes;
|
||
|
transaction->iso_packets[0].status = complete_code;
|
||
|
|
||
|
/*
|
||
|
* If there are more ISOs pending and we succeeded, schedule the
|
||
|
* next one
|
||
|
*/
|
||
|
if ((transaction->iso_number_packets > 1) &&
|
||
|
(complete_code == CVMX_USB_STATUS_OK)) {
|
||
|
/* No bytes transferred for this packet as of yet */
|
||
|
transaction->actual_bytes = 0;
|
||
|
/* One less ISO waiting to transfer */
|
||
|
transaction->iso_number_packets--;
|
||
|
/* Increment to the next location in our packet array */
|
||
|
transaction->iso_packets++;
|
||
|
transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Remove the transaction from the pipe list */
|
||
|
list_del(&transaction->node);
|
||
|
if (list_empty(&pipe->transactions))
|
||
|
list_move_tail(&pipe->node, &usb->idle_pipes);
|
||
|
octeon_usb_urb_complete_callback(usb, complete_code, pipe,
|
||
|
transaction,
|
||
|
transaction->actual_bytes,
|
||
|
transaction->urb);
|
||
|
kfree(transaction);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Submit a usb transaction to a pipe. Called for all types
|
||
|
* of transactions.
|
||
|
*
|
||
|
* @usb:
|
||
|
* @pipe: Which pipe to submit to.
|
||
|
* @type: Transaction type
|
||
|
* @buffer: User buffer for the transaction
|
||
|
* @buffer_length:
|
||
|
* User buffer's length in bytes
|
||
|
* @control_header:
|
||
|
* For control transactions, the 8 byte standard header
|
||
|
* @iso_start_frame:
|
||
|
* For ISO transactions, the start frame
|
||
|
* @iso_number_packets:
|
||
|
* For ISO, the number of packet in the transaction.
|
||
|
* @iso_packets:
|
||
|
* A description of each ISO packet
|
||
|
* @urb: URB for the callback
|
||
|
*
|
||
|
* Returns: Transaction or NULL on failure.
|
||
|
*/
|
||
|
static struct cvmx_usb_transaction *cvmx_usb_submit_transaction(
|
||
|
struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_pipe *pipe,
|
||
|
enum cvmx_usb_transfer type,
|
||
|
u64 buffer,
|
||
|
int buffer_length,
|
||
|
u64 control_header,
|
||
|
int iso_start_frame,
|
||
|
int iso_number_packets,
|
||
|
struct cvmx_usb_iso_packet *iso_packets,
|
||
|
struct urb *urb)
|
||
|
{
|
||
|
struct cvmx_usb_transaction *transaction;
|
||
|
|
||
|
if (unlikely(pipe->transfer_type != type))
|
||
|
return NULL;
|
||
|
|
||
|
transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
|
||
|
if (unlikely(!transaction))
|
||
|
return NULL;
|
||
|
|
||
|
transaction->type = type;
|
||
|
transaction->buffer = buffer;
|
||
|
transaction->buffer_length = buffer_length;
|
||
|
transaction->control_header = control_header;
|
||
|
/* FIXME: This is not used, implement it. */
|
||
|
transaction->iso_start_frame = iso_start_frame;
|
||
|
transaction->iso_number_packets = iso_number_packets;
|
||
|
transaction->iso_packets = iso_packets;
|
||
|
transaction->urb = urb;
|
||
|
if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
|
||
|
transaction->stage = CVMX_USB_STAGE_SETUP;
|
||
|
else
|
||
|
transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
|
||
|
|
||
|
if (!list_empty(&pipe->transactions)) {
|
||
|
list_add_tail(&transaction->node, &pipe->transactions);
|
||
|
} else {
|
||
|
list_add_tail(&transaction->node, &pipe->transactions);
|
||
|
list_move_tail(&pipe->node,
|
||
|
&usb->active_pipes[pipe->transfer_type]);
|
||
|
|
||
|
/*
|
||
|
* We may need to schedule the pipe if this was the head of the
|
||
|
* pipe.
|
||
|
*/
|
||
|
cvmx_usb_schedule(usb, 0);
|
||
|
}
|
||
|
|
||
|
return transaction;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Call to submit a USB Bulk transfer to a pipe.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @pipe: Handle to the pipe for the transfer.
|
||
|
* @urb: URB.
|
||
|
*
|
||
|
* Returns: A submitted transaction or NULL on failure.
|
||
|
*/
|
||
|
static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(
|
||
|
struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_pipe *pipe,
|
||
|
struct urb *urb)
|
||
|
{
|
||
|
return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
|
||
|
urb->transfer_dma,
|
||
|
urb->transfer_buffer_length,
|
||
|
0, /* control_header */
|
||
|
0, /* iso_start_frame */
|
||
|
0, /* iso_number_packets */
|
||
|
NULL, /* iso_packets */
|
||
|
urb);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Call to submit a USB Interrupt transfer to a pipe.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @pipe: Handle to the pipe for the transfer.
|
||
|
* @urb: URB returned when the callback is called.
|
||
|
*
|
||
|
* Returns: A submitted transaction or NULL on failure.
|
||
|
*/
|
||
|
static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(
|
||
|
struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_pipe *pipe,
|
||
|
struct urb *urb)
|
||
|
{
|
||
|
return cvmx_usb_submit_transaction(usb, pipe,
|
||
|
CVMX_USB_TRANSFER_INTERRUPT,
|
||
|
urb->transfer_dma,
|
||
|
urb->transfer_buffer_length,
|
||
|
0, /* control_header */
|
||
|
0, /* iso_start_frame */
|
||
|
0, /* iso_number_packets */
|
||
|
NULL, /* iso_packets */
|
||
|
urb);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Call to submit a USB Control transfer to a pipe.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @pipe: Handle to the pipe for the transfer.
|
||
|
* @urb: URB.
|
||
|
*
|
||
|
* Returns: A submitted transaction or NULL on failure.
|
||
|
*/
|
||
|
static struct cvmx_usb_transaction *cvmx_usb_submit_control(
|
||
|
struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_pipe *pipe,
|
||
|
struct urb *urb)
|
||
|
{
|
||
|
int buffer_length = urb->transfer_buffer_length;
|
||
|
u64 control_header = urb->setup_dma;
|
||
|
struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header);
|
||
|
|
||
|
if ((header->bRequestType & USB_DIR_IN) == 0)
|
||
|
buffer_length = le16_to_cpu(header->wLength);
|
||
|
|
||
|
return cvmx_usb_submit_transaction(usb, pipe,
|
||
|
CVMX_USB_TRANSFER_CONTROL,
|
||
|
urb->transfer_dma, buffer_length,
|
||
|
control_header,
|
||
|
0, /* iso_start_frame */
|
||
|
0, /* iso_number_packets */
|
||
|
NULL, /* iso_packets */
|
||
|
urb);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Call to submit a USB Isochronous transfer to a pipe.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @pipe: Handle to the pipe for the transfer.
|
||
|
* @urb: URB returned when the callback is called.
|
||
|
*
|
||
|
* Returns: A submitted transaction or NULL on failure.
|
||
|
*/
|
||
|
static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(
|
||
|
struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_pipe *pipe,
|
||
|
struct urb *urb)
|
||
|
{
|
||
|
struct cvmx_usb_iso_packet *packets;
|
||
|
|
||
|
packets = (struct cvmx_usb_iso_packet *)urb->setup_packet;
|
||
|
return cvmx_usb_submit_transaction(usb, pipe,
|
||
|
CVMX_USB_TRANSFER_ISOCHRONOUS,
|
||
|
urb->transfer_dma,
|
||
|
urb->transfer_buffer_length,
|
||
|
0, /* control_header */
|
||
|
urb->start_frame,
|
||
|
urb->number_of_packets,
|
||
|
packets, urb);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Cancel one outstanding request in a pipe. Canceling a request
|
||
|
* can fail if the transaction has already completed before cancel
|
||
|
* is called. Even after a successful cancel call, it may take
|
||
|
* a frame or two for the cvmx_usb_poll() function to call the
|
||
|
* associated callback.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @pipe: Pipe to cancel requests in.
|
||
|
* @transaction: Transaction to cancel, returned by the submit function.
|
||
|
*
|
||
|
* Returns: 0 or a negative error code.
|
||
|
*/
|
||
|
static int cvmx_usb_cancel(struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_pipe *pipe,
|
||
|
struct cvmx_usb_transaction *transaction)
|
||
|
{
|
||
|
/*
|
||
|
* If the transaction is the HEAD of the queue and scheduled. We need to
|
||
|
* treat it special
|
||
|
*/
|
||
|
if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
|
||
|
transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
|
||
|
union cvmx_usbcx_hccharx usbc_hcchar;
|
||
|
|
||
|
usb->pipe_for_channel[pipe->channel] = NULL;
|
||
|
pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
|
||
|
|
||
|
CVMX_SYNCW;
|
||
|
|
||
|
usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HCCHARX(pipe->channel,
|
||
|
usb->index));
|
||
|
/*
|
||
|
* If the channel isn't enabled then the transaction already
|
||
|
* completed.
|
||
|
*/
|
||
|
if (usbc_hcchar.s.chena) {
|
||
|
usbc_hcchar.s.chdis = 1;
|
||
|
cvmx_usb_write_csr32(usb,
|
||
|
CVMX_USBCX_HCCHARX(pipe->channel,
|
||
|
usb->index),
|
||
|
usbc_hcchar.u32);
|
||
|
}
|
||
|
}
|
||
|
cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_CANCEL);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Cancel all outstanding requests in a pipe. Logically all this
|
||
|
* does is call cvmx_usb_cancel() in a loop.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @pipe: Pipe to cancel requests in.
|
||
|
*
|
||
|
* Returns: 0 or a negative error code.
|
||
|
*/
|
||
|
static int cvmx_usb_cancel_all(struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_pipe *pipe)
|
||
|
{
|
||
|
struct cvmx_usb_transaction *transaction, *next;
|
||
|
|
||
|
/* Simply loop through and attempt to cancel each transaction */
|
||
|
list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
|
||
|
int result = cvmx_usb_cancel(usb, pipe, transaction);
|
||
|
|
||
|
if (unlikely(result != 0))
|
||
|
return result;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Close a pipe created with cvmx_usb_open_pipe().
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
* @pipe: Pipe to close.
|
||
|
*
|
||
|
* Returns: 0 or a negative error code. EBUSY is returned if the pipe has
|
||
|
* outstanding transfers.
|
||
|
*/
|
||
|
static int cvmx_usb_close_pipe(struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_pipe *pipe)
|
||
|
{
|
||
|
/* Fail if the pipe has pending transactions */
|
||
|
if (!list_empty(&pipe->transactions))
|
||
|
return -EBUSY;
|
||
|
|
||
|
list_del(&pipe->node);
|
||
|
kfree(pipe);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Get the current USB protocol level frame number. The frame
|
||
|
* number is always in the range of 0-0x7ff.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
*
|
||
|
* Returns: USB frame number
|
||
|
*/
|
||
|
static int cvmx_usb_get_frame_number(struct octeon_hcd *usb)
|
||
|
{
|
||
|
union cvmx_usbcx_hfnum usbc_hfnum;
|
||
|
|
||
|
usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
|
||
|
|
||
|
return usbc_hfnum.s.frnum;
|
||
|
}
|
||
|
|
||
|
static void cvmx_usb_transfer_control(struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_pipe *pipe,
|
||
|
struct cvmx_usb_transaction *transaction,
|
||
|
union cvmx_usbcx_hccharx usbc_hcchar,
|
||
|
int buffer_space_left,
|
||
|
int bytes_in_last_packet)
|
||
|
{
|
||
|
switch (transaction->stage) {
|
||
|
case CVMX_USB_STAGE_NON_CONTROL:
|
||
|
case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
|
||
|
/* This should be impossible */
|
||
|
cvmx_usb_complete(usb, pipe, transaction,
|
||
|
CVMX_USB_STATUS_ERROR);
|
||
|
break;
|
||
|
case CVMX_USB_STAGE_SETUP:
|
||
|
pipe->pid_toggle = 1;
|
||
|
if (cvmx_usb_pipe_needs_split(usb, pipe)) {
|
||
|
transaction->stage =
|
||
|
CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
|
||
|
} else {
|
||
|
struct usb_ctrlrequest *header =
|
||
|
cvmx_phys_to_ptr(transaction->control_header);
|
||
|
if (header->wLength)
|
||
|
transaction->stage = CVMX_USB_STAGE_DATA;
|
||
|
else
|
||
|
transaction->stage = CVMX_USB_STAGE_STATUS;
|
||
|
}
|
||
|
break;
|
||
|
case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
|
||
|
{
|
||
|
struct usb_ctrlrequest *header =
|
||
|
cvmx_phys_to_ptr(transaction->control_header);
|
||
|
if (header->wLength)
|
||
|
transaction->stage = CVMX_USB_STAGE_DATA;
|
||
|
else
|
||
|
transaction->stage = CVMX_USB_STAGE_STATUS;
|
||
|
}
|
||
|
break;
|
||
|
case CVMX_USB_STAGE_DATA:
|
||
|
if (cvmx_usb_pipe_needs_split(usb, pipe)) {
|
||
|
transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
|
||
|
/*
|
||
|
* For setup OUT data that are splits,
|
||
|
* the hardware doesn't appear to count
|
||
|
* transferred data. Here we manually
|
||
|
* update the data transferred
|
||
|
*/
|
||
|
if (!usbc_hcchar.s.epdir) {
|
||
|
if (buffer_space_left < pipe->max_packet)
|
||
|
transaction->actual_bytes +=
|
||
|
buffer_space_left;
|
||
|
else
|
||
|
transaction->actual_bytes +=
|
||
|
pipe->max_packet;
|
||
|
}
|
||
|
} else if ((buffer_space_left == 0) ||
|
||
|
(bytes_in_last_packet < pipe->max_packet)) {
|
||
|
pipe->pid_toggle = 1;
|
||
|
transaction->stage = CVMX_USB_STAGE_STATUS;
|
||
|
}
|
||
|
break;
|
||
|
case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
|
||
|
if ((buffer_space_left == 0) ||
|
||
|
(bytes_in_last_packet < pipe->max_packet)) {
|
||
|
pipe->pid_toggle = 1;
|
||
|
transaction->stage = CVMX_USB_STAGE_STATUS;
|
||
|
} else {
|
||
|
transaction->stage = CVMX_USB_STAGE_DATA;
|
||
|
}
|
||
|
break;
|
||
|
case CVMX_USB_STAGE_STATUS:
|
||
|
if (cvmx_usb_pipe_needs_split(usb, pipe))
|
||
|
transaction->stage =
|
||
|
CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
|
||
|
else
|
||
|
cvmx_usb_complete(usb, pipe, transaction,
|
||
|
CVMX_USB_STATUS_OK);
|
||
|
break;
|
||
|
case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
|
||
|
cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void cvmx_usb_transfer_bulk(struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_pipe *pipe,
|
||
|
struct cvmx_usb_transaction *transaction,
|
||
|
union cvmx_usbcx_hcintx usbc_hcint,
|
||
|
int buffer_space_left,
|
||
|
int bytes_in_last_packet)
|
||
|
{
|
||
|
/*
|
||
|
* The only time a bulk transfer isn't complete when it finishes with
|
||
|
* an ACK is during a split transaction. For splits we need to continue
|
||
|
* the transfer if more data is needed.
|
||
|
*/
|
||
|
if (cvmx_usb_pipe_needs_split(usb, pipe)) {
|
||
|
if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL)
|
||
|
transaction->stage =
|
||
|
CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
|
||
|
else if (buffer_space_left &&
|
||
|
(bytes_in_last_packet == pipe->max_packet))
|
||
|
transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
|
||
|
else
|
||
|
cvmx_usb_complete(usb, pipe, transaction,
|
||
|
CVMX_USB_STATUS_OK);
|
||
|
} else {
|
||
|
if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
|
||
|
(pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
|
||
|
(usbc_hcint.s.nak))
|
||
|
pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
|
||
|
if (!buffer_space_left ||
|
||
|
(bytes_in_last_packet < pipe->max_packet))
|
||
|
cvmx_usb_complete(usb, pipe, transaction,
|
||
|
CVMX_USB_STATUS_OK);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void cvmx_usb_transfer_intr(struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_pipe *pipe,
|
||
|
struct cvmx_usb_transaction *transaction,
|
||
|
int buffer_space_left,
|
||
|
int bytes_in_last_packet)
|
||
|
{
|
||
|
if (cvmx_usb_pipe_needs_split(usb, pipe)) {
|
||
|
if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) {
|
||
|
transaction->stage =
|
||
|
CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
|
||
|
} else if (buffer_space_left &&
|
||
|
(bytes_in_last_packet == pipe->max_packet)) {
|
||
|
transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
|
||
|
} else {
|
||
|
pipe->next_tx_frame += pipe->interval;
|
||
|
cvmx_usb_complete(usb, pipe, transaction,
|
||
|
CVMX_USB_STATUS_OK);
|
||
|
}
|
||
|
} else if (!buffer_space_left ||
|
||
|
(bytes_in_last_packet < pipe->max_packet)) {
|
||
|
pipe->next_tx_frame += pipe->interval;
|
||
|
cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void cvmx_usb_transfer_isoc(struct octeon_hcd *usb,
|
||
|
struct cvmx_usb_pipe *pipe,
|
||
|
struct cvmx_usb_transaction *transaction,
|
||
|
int buffer_space_left,
|
||
|
int bytes_in_last_packet,
|
||
|
int bytes_this_transfer)
|
||
|
{
|
||
|
if (cvmx_usb_pipe_needs_split(usb, pipe)) {
|
||
|
/*
|
||
|
* ISOCHRONOUS OUT splits don't require a complete split stage.
|
||
|
* Instead they use a sequence of begin OUT splits to transfer
|
||
|
* the data 188 bytes at a time. Once the transfer is complete,
|
||
|
* the pipe sleeps until the next schedule interval.
|
||
|
*/
|
||
|
if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
|
||
|
/*
|
||
|
* If no space left or this wasn't a max size packet
|
||
|
* then this transfer is complete. Otherwise start it
|
||
|
* again to send the next 188 bytes
|
||
|
*/
|
||
|
if (!buffer_space_left || (bytes_this_transfer < 188)) {
|
||
|
pipe->next_tx_frame += pipe->interval;
|
||
|
cvmx_usb_complete(usb, pipe, transaction,
|
||
|
CVMX_USB_STATUS_OK);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
if (transaction->stage ==
|
||
|
CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
|
||
|
/*
|
||
|
* We are in the incoming data phase. Keep getting data
|
||
|
* until we run out of space or get a small packet
|
||
|
*/
|
||
|
if ((buffer_space_left == 0) ||
|
||
|
(bytes_in_last_packet < pipe->max_packet)) {
|
||
|
pipe->next_tx_frame += pipe->interval;
|
||
|
cvmx_usb_complete(usb, pipe, transaction,
|
||
|
CVMX_USB_STATUS_OK);
|
||
|
}
|
||
|
} else {
|
||
|
transaction->stage =
|
||
|
CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
|
||
|
}
|
||
|
} else {
|
||
|
pipe->next_tx_frame += pipe->interval;
|
||
|
cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Poll a channel for status
|
||
|
*
|
||
|
* @usb: USB device
|
||
|
* @channel: Channel to poll
|
||
|
*
|
||
|
* Returns: Zero on success
|
||
|
*/
|
||
|
static int cvmx_usb_poll_channel(struct octeon_hcd *usb, int channel)
|
||
|
{
|
||
|
struct usb_hcd *hcd = octeon_to_hcd(usb);
|
||
|
struct device *dev = hcd->self.controller;
|
||
|
union cvmx_usbcx_hcintx usbc_hcint;
|
||
|
union cvmx_usbcx_hctsizx usbc_hctsiz;
|
||
|
union cvmx_usbcx_hccharx usbc_hcchar;
|
||
|
struct cvmx_usb_pipe *pipe;
|
||
|
struct cvmx_usb_transaction *transaction;
|
||
|
int bytes_this_transfer;
|
||
|
int bytes_in_last_packet;
|
||
|
int packets_processed;
|
||
|
int buffer_space_left;
|
||
|
|
||
|
/* Read the interrupt status bits for the channel */
|
||
|
usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HCINTX(channel, usb->index));
|
||
|
|
||
|
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
|
||
|
usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HCCHARX(channel,
|
||
|
usb->index));
|
||
|
|
||
|
if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
|
||
|
/*
|
||
|
* There seems to be a bug in CN31XX which can cause
|
||
|
* interrupt IN transfers to get stuck until we do a
|
||
|
* write of HCCHARX without changing things
|
||
|
*/
|
||
|
cvmx_usb_write_csr32(usb,
|
||
|
CVMX_USBCX_HCCHARX(channel,
|
||
|
usb->index),
|
||
|
usbc_hcchar.u32);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* In non DMA mode the channels don't halt themselves. We need
|
||
|
* to manually disable channels that are left running
|
||
|
*/
|
||
|
if (!usbc_hcint.s.chhltd) {
|
||
|
if (usbc_hcchar.s.chena) {
|
||
|
union cvmx_usbcx_hcintmskx hcintmsk;
|
||
|
/* Disable all interrupts except CHHLTD */
|
||
|
hcintmsk.u32 = 0;
|
||
|
hcintmsk.s.chhltdmsk = 1;
|
||
|
cvmx_usb_write_csr32(usb,
|
||
|
CVMX_USBCX_HCINTMSKX(channel, usb->index),
|
||
|
hcintmsk.u32);
|
||
|
usbc_hcchar.s.chdis = 1;
|
||
|
cvmx_usb_write_csr32(usb,
|
||
|
CVMX_USBCX_HCCHARX(channel, usb->index),
|
||
|
usbc_hcchar.u32);
|
||
|
return 0;
|
||
|
} else if (usbc_hcint.s.xfercompl) {
|
||
|
/*
|
||
|
* Successful IN/OUT with transfer complete.
|
||
|
* Channel halt isn't needed.
|
||
|
*/
|
||
|
} else {
|
||
|
dev_err(dev, "USB%d: Channel %d interrupt without halt\n",
|
||
|
usb->index, channel);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* There is are no interrupts that we need to process when the
|
||
|
* channel is still running
|
||
|
*/
|
||
|
if (!usbc_hcint.s.chhltd)
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Disable the channel interrupts now that it is done */
|
||
|
cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
|
||
|
usb->idle_hardware_channels |= (1 << channel);
|
||
|
|
||
|
/* Make sure this channel is tied to a valid pipe */
|
||
|
pipe = usb->pipe_for_channel[channel];
|
||
|
prefetch(pipe);
|
||
|
if (!pipe)
|
||
|
return 0;
|
||
|
transaction = list_first_entry(&pipe->transactions,
|
||
|
typeof(*transaction),
|
||
|
node);
|
||
|
prefetch(transaction);
|
||
|
|
||
|
/*
|
||
|
* Disconnect this pipe from the HW channel. Later the schedule
|
||
|
* function will figure out which pipe needs to go
|
||
|
*/
|
||
|
usb->pipe_for_channel[channel] = NULL;
|
||
|
pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
|
||
|
|
||
|
/*
|
||
|
* Read the channel config info so we can figure out how much data
|
||
|
* transferred
|
||
|
*/
|
||
|
usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HCCHARX(channel, usb->index));
|
||
|
usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HCTSIZX(channel, usb->index));
|
||
|
|
||
|
/*
|
||
|
* Calculating the number of bytes successfully transferred is dependent
|
||
|
* on the transfer direction
|
||
|
*/
|
||
|
packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
|
||
|
if (usbc_hcchar.s.epdir) {
|
||
|
/*
|
||
|
* IN transactions are easy. For every byte received the
|
||
|
* hardware decrements xfersize. All we need to do is subtract
|
||
|
* the current value of xfersize from its starting value and we
|
||
|
* know how many bytes were written to the buffer
|
||
|
*/
|
||
|
bytes_this_transfer = transaction->xfersize -
|
||
|
usbc_hctsiz.s.xfersize;
|
||
|
} else {
|
||
|
/*
|
||
|
* OUT transaction don't decrement xfersize. Instead pktcnt is
|
||
|
* decremented on every successful packet send. The hardware
|
||
|
* does this when it receives an ACK, or NYET. If it doesn't
|
||
|
* receive one of these responses pktcnt doesn't change
|
||
|
*/
|
||
|
bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
|
||
|
/*
|
||
|
* The last packet may not be a full transfer if we didn't have
|
||
|
* enough data
|
||
|
*/
|
||
|
if (bytes_this_transfer > transaction->xfersize)
|
||
|
bytes_this_transfer = transaction->xfersize;
|
||
|
}
|
||
|
/* Figure out how many bytes were in the last packet of the transfer */
|
||
|
if (packets_processed)
|
||
|
bytes_in_last_packet = bytes_this_transfer -
|
||
|
(packets_processed - 1) * usbc_hcchar.s.mps;
|
||
|
else
|
||
|
bytes_in_last_packet = bytes_this_transfer;
|
||
|
|
||
|
/*
|
||
|
* As a special case, setup transactions output the setup header, not
|
||
|
* the user's data. For this reason we don't count setup data as bytes
|
||
|
* transferred
|
||
|
*/
|
||
|
if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
|
||
|
(transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
|
||
|
bytes_this_transfer = 0;
|
||
|
|
||
|
/*
|
||
|
* Add the bytes transferred to the running total. It is important that
|
||
|
* bytes_this_transfer doesn't count any data that needs to be
|
||
|
* retransmitted
|
||
|
*/
|
||
|
transaction->actual_bytes += bytes_this_transfer;
|
||
|
if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
|
||
|
buffer_space_left = transaction->iso_packets[0].length -
|
||
|
transaction->actual_bytes;
|
||
|
else
|
||
|
buffer_space_left = transaction->buffer_length -
|
||
|
transaction->actual_bytes;
|
||
|
|
||
|
/*
|
||
|
* We need to remember the PID toggle state for the next transaction.
|
||
|
* The hardware already updated it for the next transaction
|
||
|
*/
|
||
|
pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
|
||
|
|
||
|
/*
|
||
|
* For high speed bulk out, assume the next transaction will need to do
|
||
|
* a ping before proceeding. If this isn't true the ACK processing below
|
||
|
* will clear this flag
|
||
|
*/
|
||
|
if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
|
||
|
(pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
|
||
|
(pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
|
||
|
pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
|
||
|
|
||
|
if (WARN_ON_ONCE(bytes_this_transfer < 0)) {
|
||
|
/*
|
||
|
* In some rare cases the DMA engine seems to get stuck and
|
||
|
* keeps substracting same byte count over and over again. In
|
||
|
* such case we just need to fail every transaction.
|
||
|
*/
|
||
|
cvmx_usb_complete(usb, pipe, transaction,
|
||
|
CVMX_USB_STATUS_ERROR);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (usbc_hcint.s.stall) {
|
||
|
/*
|
||
|
* STALL as a response means this transaction cannot be
|
||
|
* completed because the device can't process transactions. Tell
|
||
|
* the user. Any data that was transferred will be counted on
|
||
|
* the actual bytes transferred
|
||
|
*/
|
||
|
pipe->pid_toggle = 0;
|
||
|
cvmx_usb_complete(usb, pipe, transaction,
|
||
|
CVMX_USB_STATUS_STALL);
|
||
|
} else if (usbc_hcint.s.xacterr) {
|
||
|
/*
|
||
|
* XactErr as a response means the device signaled
|
||
|
* something wrong with the transfer. For example, PID
|
||
|
* toggle errors cause these.
|
||
|
*/
|
||
|
cvmx_usb_complete(usb, pipe, transaction,
|
||
|
CVMX_USB_STATUS_XACTERR);
|
||
|
} else if (usbc_hcint.s.bblerr) {
|
||
|
/* Babble Error (BblErr) */
|
||
|
cvmx_usb_complete(usb, pipe, transaction,
|
||
|
CVMX_USB_STATUS_BABBLEERR);
|
||
|
} else if (usbc_hcint.s.datatglerr) {
|
||
|
/* Data toggle error */
|
||
|
cvmx_usb_complete(usb, pipe, transaction,
|
||
|
CVMX_USB_STATUS_DATATGLERR);
|
||
|
} else if (usbc_hcint.s.nyet) {
|
||
|
/*
|
||
|
* NYET as a response is only allowed in three cases: as a
|
||
|
* response to a ping, as a response to a split transaction, and
|
||
|
* as a response to a bulk out. The ping case is handled by
|
||
|
* hardware, so we only have splits and bulk out
|
||
|
*/
|
||
|
if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
|
||
|
transaction->retries = 0;
|
||
|
/*
|
||
|
* If there is more data to go then we need to try
|
||
|
* again. Otherwise this transaction is complete
|
||
|
*/
|
||
|
if ((buffer_space_left == 0) ||
|
||
|
(bytes_in_last_packet < pipe->max_packet))
|
||
|
cvmx_usb_complete(usb, pipe,
|
||
|
transaction,
|
||
|
CVMX_USB_STATUS_OK);
|
||
|
} else {
|
||
|
/*
|
||
|
* Split transactions retry the split complete 4 times
|
||
|
* then rewind to the start split and do the entire
|
||
|
* transactions again
|
||
|
*/
|
||
|
transaction->retries++;
|
||
|
if ((transaction->retries & 0x3) == 0) {
|
||
|
/*
|
||
|
* Rewind to the beginning of the transaction by
|
||
|
* anding off the split complete bit
|
||
|
*/
|
||
|
transaction->stage &= ~1;
|
||
|
pipe->split_sc_frame = -1;
|
||
|
}
|
||
|
}
|
||
|
} else if (usbc_hcint.s.ack) {
|
||
|
transaction->retries = 0;
|
||
|
/*
|
||
|
* The ACK bit can only be checked after the other error bits.
|
||
|
* This is because a multi packet transfer may succeed in a
|
||
|
* number of packets and then get a different response on the
|
||
|
* last packet. In this case both ACK and the last response bit
|
||
|
* will be set. If none of the other response bits is set, then
|
||
|
* the last packet must have been an ACK
|
||
|
*
|
||
|
* Since we got an ACK, we know we don't need to do a ping on
|
||
|
* this pipe
|
||
|
*/
|
||
|
pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING;
|
||
|
|
||
|
switch (transaction->type) {
|
||
|
case CVMX_USB_TRANSFER_CONTROL:
|
||
|
cvmx_usb_transfer_control(usb, pipe, transaction,
|
||
|
usbc_hcchar,
|
||
|
buffer_space_left,
|
||
|
bytes_in_last_packet);
|
||
|
break;
|
||
|
case CVMX_USB_TRANSFER_BULK:
|
||
|
cvmx_usb_transfer_bulk(usb, pipe, transaction,
|
||
|
usbc_hcint, buffer_space_left,
|
||
|
bytes_in_last_packet);
|
||
|
break;
|
||
|
case CVMX_USB_TRANSFER_INTERRUPT:
|
||
|
cvmx_usb_transfer_intr(usb, pipe, transaction,
|
||
|
buffer_space_left,
|
||
|
bytes_in_last_packet);
|
||
|
break;
|
||
|
case CVMX_USB_TRANSFER_ISOCHRONOUS:
|
||
|
cvmx_usb_transfer_isoc(usb, pipe, transaction,
|
||
|
buffer_space_left,
|
||
|
bytes_in_last_packet,
|
||
|
bytes_this_transfer);
|
||
|
break;
|
||
|
}
|
||
|
} else if (usbc_hcint.s.nak) {
|
||
|
/*
|
||
|
* If this was a split then clear our split in progress marker.
|
||
|
*/
|
||
|
if (usb->active_split == transaction)
|
||
|
usb->active_split = NULL;
|
||
|
/*
|
||
|
* NAK as a response means the device couldn't accept the
|
||
|
* transaction, but it should be retried in the future. Rewind
|
||
|
* to the beginning of the transaction by anding off the split
|
||
|
* complete bit. Retry in the next interval
|
||
|
*/
|
||
|
transaction->retries = 0;
|
||
|
transaction->stage &= ~1;
|
||
|
pipe->next_tx_frame += pipe->interval;
|
||
|
if (pipe->next_tx_frame < usb->frame_number)
|
||
|
pipe->next_tx_frame = usb->frame_number +
|
||
|
pipe->interval -
|
||
|
(usb->frame_number - pipe->next_tx_frame) %
|
||
|
pipe->interval;
|
||
|
} else {
|
||
|
struct cvmx_usb_port_status port;
|
||
|
|
||
|
port = cvmx_usb_get_status(usb);
|
||
|
if (port.port_enabled) {
|
||
|
/* We'll retry the exact same transaction again */
|
||
|
transaction->retries++;
|
||
|
} else {
|
||
|
/*
|
||
|
* We get channel halted interrupts with no result bits
|
||
|
* sets when the cable is unplugged
|
||
|
*/
|
||
|
cvmx_usb_complete(usb, pipe, transaction,
|
||
|
CVMX_USB_STATUS_ERROR);
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void octeon_usb_port_callback(struct octeon_hcd *usb)
|
||
|
{
|
||
|
spin_unlock(&usb->lock);
|
||
|
usb_hcd_poll_rh_status(octeon_to_hcd(usb));
|
||
|
spin_lock(&usb->lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Poll the USB block for status and call all needed callback
|
||
|
* handlers. This function is meant to be called in the interrupt
|
||
|
* handler for the USB controller. It can also be called
|
||
|
* periodically in a loop for non-interrupt based operation.
|
||
|
*
|
||
|
* @usb: USB device state populated by cvmx_usb_initialize().
|
||
|
*
|
||
|
* Returns: 0 or a negative error code.
|
||
|
*/
|
||
|
static int cvmx_usb_poll(struct octeon_hcd *usb)
|
||
|
{
|
||
|
union cvmx_usbcx_hfnum usbc_hfnum;
|
||
|
union cvmx_usbcx_gintsts usbc_gintsts;
|
||
|
|
||
|
prefetch_range(usb, sizeof(*usb));
|
||
|
|
||
|
/* Update the frame counter */
|
||
|
usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
|
||
|
if ((usb->frame_number & 0x3fff) > usbc_hfnum.s.frnum)
|
||
|
usb->frame_number += 0x4000;
|
||
|
usb->frame_number &= ~0x3fffull;
|
||
|
usb->frame_number |= usbc_hfnum.s.frnum;
|
||
|
|
||
|
/* Read the pending interrupts */
|
||
|
usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_GINTSTS(usb->index));
|
||
|
|
||
|
/* Clear the interrupts now that we know about them */
|
||
|
cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
|
||
|
usbc_gintsts.u32);
|
||
|
|
||
|
if (usbc_gintsts.s.rxflvl) {
|
||
|
/*
|
||
|
* RxFIFO Non-Empty (RxFLvl)
|
||
|
* Indicates that there is at least one packet pending to be
|
||
|
* read from the RxFIFO.
|
||
|
*
|
||
|
* In DMA mode this is handled by hardware
|
||
|
*/
|
||
|
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
|
||
|
cvmx_usb_poll_rx_fifo(usb);
|
||
|
}
|
||
|
if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
|
||
|
/* Fill the Tx FIFOs when not in DMA mode */
|
||
|
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
|
||
|
cvmx_usb_poll_tx_fifo(usb);
|
||
|
}
|
||
|
if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
|
||
|
union cvmx_usbcx_hprt usbc_hprt;
|
||
|
/*
|
||
|
* Disconnect Detected Interrupt (DisconnInt)
|
||
|
* Asserted when a device disconnect is detected.
|
||
|
*
|
||
|
* Host Port Interrupt (PrtInt)
|
||
|
* The core sets this bit to indicate a change in port status of
|
||
|
* one of the O2P USB core ports in Host mode. The application
|
||
|
* must read the Host Port Control and Status (HPRT) register to
|
||
|
* determine the exact event that caused this interrupt. The
|
||
|
* application must clear the appropriate status bit in the Host
|
||
|
* Port Control and Status register to clear this bit.
|
||
|
*
|
||
|
* Call the user's port callback
|
||
|
*/
|
||
|
octeon_usb_port_callback(usb);
|
||
|
/* Clear the port change bits */
|
||
|
usbc_hprt.u32 =
|
||
|
cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
|
||
|
usbc_hprt.s.prtena = 0;
|
||
|
cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index),
|
||
|
usbc_hprt.u32);
|
||
|
}
|
||
|
if (usbc_gintsts.s.hchint) {
|
||
|
/*
|
||
|
* Host Channels Interrupt (HChInt)
|
||
|
* The core sets this bit to indicate that an interrupt is
|
||
|
* pending on one of the channels of the core (in Host mode).
|
||
|
* The application must read the Host All Channels Interrupt
|
||
|
* (HAINT) register to determine the exact number of the channel
|
||
|
* on which the interrupt occurred, and then read the
|
||
|
* corresponding Host Channel-n Interrupt (HCINTn) register to
|
||
|
* determine the exact cause of the interrupt. The application
|
||
|
* must clear the appropriate status bit in the HCINTn register
|
||
|
* to clear this bit.
|
||
|
*/
|
||
|
union cvmx_usbcx_haint usbc_haint;
|
||
|
|
||
|
usbc_haint.u32 = cvmx_usb_read_csr32(usb,
|
||
|
CVMX_USBCX_HAINT(usb->index));
|
||
|
while (usbc_haint.u32) {
|
||
|
int channel;
|
||
|
|
||
|
channel = __fls(usbc_haint.u32);
|
||
|
cvmx_usb_poll_channel(usb, channel);
|
||
|
usbc_haint.u32 ^= 1 << channel;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* convert between an HCD pointer and the corresponding struct octeon_hcd */
|
||
|
static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
|
||
|
{
|
||
|
return (struct octeon_hcd *)(hcd->hcd_priv);
|
||
|
}
|
||
|
|
||
|
static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
|
||
|
{
|
||
|
struct octeon_hcd *usb = hcd_to_octeon(hcd);
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&usb->lock, flags);
|
||
|
cvmx_usb_poll(usb);
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static int octeon_usb_start(struct usb_hcd *hcd)
|
||
|
{
|
||
|
hcd->state = HC_STATE_RUNNING;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void octeon_usb_stop(struct usb_hcd *hcd)
|
||
|
{
|
||
|
hcd->state = HC_STATE_HALT;
|
||
|
}
|
||
|
|
||
|
static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
|
||
|
{
|
||
|
struct octeon_hcd *usb = hcd_to_octeon(hcd);
|
||
|
|
||
|
return cvmx_usb_get_frame_number(usb);
|
||
|
}
|
||
|
|
||
|
static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
|
||
|
struct urb *urb,
|
||
|
gfp_t mem_flags)
|
||
|
{
|
||
|
struct octeon_hcd *usb = hcd_to_octeon(hcd);
|
||
|
struct device *dev = hcd->self.controller;
|
||
|
struct cvmx_usb_transaction *transaction = NULL;
|
||
|
struct cvmx_usb_pipe *pipe;
|
||
|
unsigned long flags;
|
||
|
struct cvmx_usb_iso_packet *iso_packet;
|
||
|
struct usb_host_endpoint *ep = urb->ep;
|
||
|
int rc;
|
||
|
|
||
|
urb->status = 0;
|
||
|
spin_lock_irqsave(&usb->lock, flags);
|
||
|
|
||
|
rc = usb_hcd_link_urb_to_ep(hcd, urb);
|
||
|
if (rc) {
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
if (!ep->hcpriv) {
|
||
|
enum cvmx_usb_transfer transfer_type;
|
||
|
enum cvmx_usb_speed speed;
|
||
|
int split_device = 0;
|
||
|
int split_port = 0;
|
||
|
|
||
|
switch (usb_pipetype(urb->pipe)) {
|
||
|
case PIPE_ISOCHRONOUS:
|
||
|
transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
|
||
|
break;
|
||
|
case PIPE_INTERRUPT:
|
||
|
transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
|
||
|
break;
|
||
|
case PIPE_CONTROL:
|
||
|
transfer_type = CVMX_USB_TRANSFER_CONTROL;
|
||
|
break;
|
||
|
default:
|
||
|
transfer_type = CVMX_USB_TRANSFER_BULK;
|
||
|
break;
|
||
|
}
|
||
|
switch (urb->dev->speed) {
|
||
|
case USB_SPEED_LOW:
|
||
|
speed = CVMX_USB_SPEED_LOW;
|
||
|
break;
|
||
|
case USB_SPEED_FULL:
|
||
|
speed = CVMX_USB_SPEED_FULL;
|
||
|
break;
|
||
|
default:
|
||
|
speed = CVMX_USB_SPEED_HIGH;
|
||
|
break;
|
||
|
}
|
||
|
/*
|
||
|
* For slow devices on high speed ports we need to find the hub
|
||
|
* that does the speed translation so we know where to send the
|
||
|
* split transactions.
|
||
|
*/
|
||
|
if (speed != CVMX_USB_SPEED_HIGH) {
|
||
|
/*
|
||
|
* Start at this device and work our way up the usb
|
||
|
* tree.
|
||
|
*/
|
||
|
struct usb_device *dev = urb->dev;
|
||
|
|
||
|
while (dev->parent) {
|
||
|
/*
|
||
|
* If our parent is high speed then he'll
|
||
|
* receive the splits.
|
||
|
*/
|
||
|
if (dev->parent->speed == USB_SPEED_HIGH) {
|
||
|
split_device = dev->parent->devnum;
|
||
|
split_port = dev->portnum;
|
||
|
break;
|
||
|
}
|
||
|
/*
|
||
|
* Move up the tree one level. If we make it all
|
||
|
* the way up the tree, then the port must not
|
||
|
* be in high speed mode and we don't need a
|
||
|
* split.
|
||
|
*/
|
||
|
dev = dev->parent;
|
||
|
}
|
||
|
}
|
||
|
pipe = cvmx_usb_open_pipe(usb, usb_pipedevice(urb->pipe),
|
||
|
usb_pipeendpoint(urb->pipe), speed,
|
||
|
le16_to_cpu(ep->desc.wMaxPacketSize)
|
||
|
& 0x7ff,
|
||
|
transfer_type,
|
||
|
usb_pipein(urb->pipe) ?
|
||
|
CVMX_USB_DIRECTION_IN :
|
||
|
CVMX_USB_DIRECTION_OUT,
|
||
|
urb->interval,
|
||
|
(le16_to_cpu(ep->desc.wMaxPacketSize)
|
||
|
>> 11) & 0x3,
|
||
|
split_device, split_port);
|
||
|
if (!pipe) {
|
||
|
usb_hcd_unlink_urb_from_ep(hcd, urb);
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
dev_dbg(dev, "Failed to create pipe\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
ep->hcpriv = pipe;
|
||
|
} else {
|
||
|
pipe = ep->hcpriv;
|
||
|
}
|
||
|
|
||
|
switch (usb_pipetype(urb->pipe)) {
|
||
|
case PIPE_ISOCHRONOUS:
|
||
|
dev_dbg(dev, "Submit isochronous to %d.%d\n",
|
||
|
usb_pipedevice(urb->pipe),
|
||
|
usb_pipeendpoint(urb->pipe));
|
||
|
/*
|
||
|
* Allocate a structure to use for our private list of
|
||
|
* isochronous packets.
|
||
|
*/
|
||
|
iso_packet = kmalloc_array(urb->number_of_packets,
|
||
|
sizeof(struct cvmx_usb_iso_packet),
|
||
|
GFP_ATOMIC);
|
||
|
if (iso_packet) {
|
||
|
int i;
|
||
|
/* Fill the list with the data from the URB */
|
||
|
for (i = 0; i < urb->number_of_packets; i++) {
|
||
|
iso_packet[i].offset =
|
||
|
urb->iso_frame_desc[i].offset;
|
||
|
iso_packet[i].length =
|
||
|
urb->iso_frame_desc[i].length;
|
||
|
iso_packet[i].status = CVMX_USB_STATUS_ERROR;
|
||
|
}
|
||
|
/*
|
||
|
* Store a pointer to the list in the URB setup_packet
|
||
|
* field. We know this currently isn't being used and
|
||
|
* this saves us a bunch of logic.
|
||
|
*/
|
||
|
urb->setup_packet = (char *)iso_packet;
|
||
|
transaction = cvmx_usb_submit_isochronous(usb,
|
||
|
pipe, urb);
|
||
|
/*
|
||
|
* If submit failed we need to free our private packet
|
||
|
* list.
|
||
|
*/
|
||
|
if (!transaction) {
|
||
|
urb->setup_packet = NULL;
|
||
|
kfree(iso_packet);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case PIPE_INTERRUPT:
|
||
|
dev_dbg(dev, "Submit interrupt to %d.%d\n",
|
||
|
usb_pipedevice(urb->pipe),
|
||
|
usb_pipeendpoint(urb->pipe));
|
||
|
transaction = cvmx_usb_submit_interrupt(usb, pipe, urb);
|
||
|
break;
|
||
|
case PIPE_CONTROL:
|
||
|
dev_dbg(dev, "Submit control to %d.%d\n",
|
||
|
usb_pipedevice(urb->pipe),
|
||
|
usb_pipeendpoint(urb->pipe));
|
||
|
transaction = cvmx_usb_submit_control(usb, pipe, urb);
|
||
|
break;
|
||
|
case PIPE_BULK:
|
||
|
dev_dbg(dev, "Submit bulk to %d.%d\n",
|
||
|
usb_pipedevice(urb->pipe),
|
||
|
usb_pipeendpoint(urb->pipe));
|
||
|
transaction = cvmx_usb_submit_bulk(usb, pipe, urb);
|
||
|
break;
|
||
|
}
|
||
|
if (!transaction) {
|
||
|
usb_hcd_unlink_urb_from_ep(hcd, urb);
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
dev_dbg(dev, "Failed to submit\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
urb->hcpriv = transaction;
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int octeon_usb_urb_dequeue(struct usb_hcd *hcd,
|
||
|
struct urb *urb,
|
||
|
int status)
|
||
|
{
|
||
|
struct octeon_hcd *usb = hcd_to_octeon(hcd);
|
||
|
unsigned long flags;
|
||
|
int rc;
|
||
|
|
||
|
if (!urb->dev)
|
||
|
return -EINVAL;
|
||
|
|
||
|
spin_lock_irqsave(&usb->lock, flags);
|
||
|
|
||
|
rc = usb_hcd_check_unlink_urb(hcd, urb, status);
|
||
|
if (rc)
|
||
|
goto out;
|
||
|
|
||
|
urb->status = status;
|
||
|
cvmx_usb_cancel(usb, urb->ep->hcpriv, urb->hcpriv);
|
||
|
|
||
|
out:
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void octeon_usb_endpoint_disable(struct usb_hcd *hcd,
|
||
|
struct usb_host_endpoint *ep)
|
||
|
{
|
||
|
struct device *dev = hcd->self.controller;
|
||
|
|
||
|
if (ep->hcpriv) {
|
||
|
struct octeon_hcd *usb = hcd_to_octeon(hcd);
|
||
|
struct cvmx_usb_pipe *pipe = ep->hcpriv;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&usb->lock, flags);
|
||
|
cvmx_usb_cancel_all(usb, pipe);
|
||
|
if (cvmx_usb_close_pipe(usb, pipe))
|
||
|
dev_dbg(dev, "Closing pipe %p failed\n", pipe);
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
ep->hcpriv = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
|
||
|
{
|
||
|
struct octeon_hcd *usb = hcd_to_octeon(hcd);
|
||
|
struct cvmx_usb_port_status port_status;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&usb->lock, flags);
|
||
|
port_status = cvmx_usb_get_status(usb);
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
buf[0] = port_status.connect_change << 1;
|
||
|
|
||
|
return buf[0] != 0;
|
||
|
}
|
||
|
|
||
|
static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
|
||
|
u16 wIndex, char *buf, u16 wLength)
|
||
|
{
|
||
|
struct octeon_hcd *usb = hcd_to_octeon(hcd);
|
||
|
struct device *dev = hcd->self.controller;
|
||
|
struct cvmx_usb_port_status usb_port_status;
|
||
|
int port_status;
|
||
|
struct usb_hub_descriptor *desc;
|
||
|
unsigned long flags;
|
||
|
|
||
|
switch (typeReq) {
|
||
|
case ClearHubFeature:
|
||
|
dev_dbg(dev, "ClearHubFeature\n");
|
||
|
switch (wValue) {
|
||
|
case C_HUB_LOCAL_POWER:
|
||
|
case C_HUB_OVER_CURRENT:
|
||
|
/* Nothing required here */
|
||
|
break;
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
break;
|
||
|
case ClearPortFeature:
|
||
|
dev_dbg(dev, "ClearPortFeature\n");
|
||
|
if (wIndex != 1) {
|
||
|
dev_dbg(dev, " INVALID\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
switch (wValue) {
|
||
|
case USB_PORT_FEAT_ENABLE:
|
||
|
dev_dbg(dev, " ENABLE\n");
|
||
|
spin_lock_irqsave(&usb->lock, flags);
|
||
|
cvmx_usb_disable(usb);
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
break;
|
||
|
case USB_PORT_FEAT_SUSPEND:
|
||
|
dev_dbg(dev, " SUSPEND\n");
|
||
|
/* Not supported on Octeon */
|
||
|
break;
|
||
|
case USB_PORT_FEAT_POWER:
|
||
|
dev_dbg(dev, " POWER\n");
|
||
|
/* Not supported on Octeon */
|
||
|
break;
|
||
|
case USB_PORT_FEAT_INDICATOR:
|
||
|
dev_dbg(dev, " INDICATOR\n");
|
||
|
/* Port inidicator not supported */
|
||
|
break;
|
||
|
case USB_PORT_FEAT_C_CONNECTION:
|
||
|
dev_dbg(dev, " C_CONNECTION\n");
|
||
|
/* Clears drivers internal connect status change flag */
|
||
|
spin_lock_irqsave(&usb->lock, flags);
|
||
|
usb->port_status = cvmx_usb_get_status(usb);
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
break;
|
||
|
case USB_PORT_FEAT_C_RESET:
|
||
|
dev_dbg(dev, " C_RESET\n");
|
||
|
/*
|
||
|
* Clears the driver's internal Port Reset Change flag.
|
||
|
*/
|
||
|
spin_lock_irqsave(&usb->lock, flags);
|
||
|
usb->port_status = cvmx_usb_get_status(usb);
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
break;
|
||
|
case USB_PORT_FEAT_C_ENABLE:
|
||
|
dev_dbg(dev, " C_ENABLE\n");
|
||
|
/*
|
||
|
* Clears the driver's internal Port Enable/Disable
|
||
|
* Change flag.
|
||
|
*/
|
||
|
spin_lock_irqsave(&usb->lock, flags);
|
||
|
usb->port_status = cvmx_usb_get_status(usb);
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
break;
|
||
|
case USB_PORT_FEAT_C_SUSPEND:
|
||
|
dev_dbg(dev, " C_SUSPEND\n");
|
||
|
/*
|
||
|
* Clears the driver's internal Port Suspend Change
|
||
|
* flag, which is set when resume signaling on the host
|
||
|
* port is complete.
|
||
|
*/
|
||
|
break;
|
||
|
case USB_PORT_FEAT_C_OVER_CURRENT:
|
||
|
dev_dbg(dev, " C_OVER_CURRENT\n");
|
||
|
/* Clears the driver's overcurrent Change flag */
|
||
|
spin_lock_irqsave(&usb->lock, flags);
|
||
|
usb->port_status = cvmx_usb_get_status(usb);
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
break;
|
||
|
default:
|
||
|
dev_dbg(dev, " UNKNOWN\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
break;
|
||
|
case GetHubDescriptor:
|
||
|
dev_dbg(dev, "GetHubDescriptor\n");
|
||
|
desc = (struct usb_hub_descriptor *)buf;
|
||
|
desc->bDescLength = 9;
|
||
|
desc->bDescriptorType = 0x29;
|
||
|
desc->bNbrPorts = 1;
|
||
|
desc->wHubCharacteristics = cpu_to_le16(0x08);
|
||
|
desc->bPwrOn2PwrGood = 1;
|
||
|
desc->bHubContrCurrent = 0;
|
||
|
desc->u.hs.DeviceRemovable[0] = 0;
|
||
|
desc->u.hs.DeviceRemovable[1] = 0xff;
|
||
|
break;
|
||
|
case GetHubStatus:
|
||
|
dev_dbg(dev, "GetHubStatus\n");
|
||
|
*(__le32 *)buf = 0;
|
||
|
break;
|
||
|
case GetPortStatus:
|
||
|
dev_dbg(dev, "GetPortStatus\n");
|
||
|
if (wIndex != 1) {
|
||
|
dev_dbg(dev, " INVALID\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
spin_lock_irqsave(&usb->lock, flags);
|
||
|
usb_port_status = cvmx_usb_get_status(usb);
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
port_status = 0;
|
||
|
|
||
|
if (usb_port_status.connect_change) {
|
||
|
port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
|
||
|
dev_dbg(dev, " C_CONNECTION\n");
|
||
|
}
|
||
|
|
||
|
if (usb_port_status.port_enabled) {
|
||
|
port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
|
||
|
dev_dbg(dev, " C_ENABLE\n");
|
||
|
}
|
||
|
|
||
|
if (usb_port_status.connected) {
|
||
|
port_status |= (1 << USB_PORT_FEAT_CONNECTION);
|
||
|
dev_dbg(dev, " CONNECTION\n");
|
||
|
}
|
||
|
|
||
|
if (usb_port_status.port_enabled) {
|
||
|
port_status |= (1 << USB_PORT_FEAT_ENABLE);
|
||
|
dev_dbg(dev, " ENABLE\n");
|
||
|
}
|
||
|
|
||
|
if (usb_port_status.port_over_current) {
|
||
|
port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
|
||
|
dev_dbg(dev, " OVER_CURRENT\n");
|
||
|
}
|
||
|
|
||
|
if (usb_port_status.port_powered) {
|
||
|
port_status |= (1 << USB_PORT_FEAT_POWER);
|
||
|
dev_dbg(dev, " POWER\n");
|
||
|
}
|
||
|
|
||
|
if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
|
||
|
port_status |= USB_PORT_STAT_HIGH_SPEED;
|
||
|
dev_dbg(dev, " HIGHSPEED\n");
|
||
|
} else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
|
||
|
port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
|
||
|
dev_dbg(dev, " LOWSPEED\n");
|
||
|
}
|
||
|
|
||
|
*((__le32 *)buf) = cpu_to_le32(port_status);
|
||
|
break;
|
||
|
case SetHubFeature:
|
||
|
dev_dbg(dev, "SetHubFeature\n");
|
||
|
/* No HUB features supported */
|
||
|
break;
|
||
|
case SetPortFeature:
|
||
|
dev_dbg(dev, "SetPortFeature\n");
|
||
|
if (wIndex != 1) {
|
||
|
dev_dbg(dev, " INVALID\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
switch (wValue) {
|
||
|
case USB_PORT_FEAT_SUSPEND:
|
||
|
dev_dbg(dev, " SUSPEND\n");
|
||
|
return -EINVAL;
|
||
|
case USB_PORT_FEAT_POWER:
|
||
|
dev_dbg(dev, " POWER\n");
|
||
|
/*
|
||
|
* Program the port power bit to drive VBUS on the USB.
|
||
|
*/
|
||
|
spin_lock_irqsave(&usb->lock, flags);
|
||
|
USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index),
|
||
|
cvmx_usbcx_hprt, prtpwr, 1);
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
return 0;
|
||
|
case USB_PORT_FEAT_RESET:
|
||
|
dev_dbg(dev, " RESET\n");
|
||
|
spin_lock_irqsave(&usb->lock, flags);
|
||
|
cvmx_usb_reset_port(usb);
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
return 0;
|
||
|
case USB_PORT_FEAT_INDICATOR:
|
||
|
dev_dbg(dev, " INDICATOR\n");
|
||
|
/* Not supported */
|
||
|
break;
|
||
|
default:
|
||
|
dev_dbg(dev, " UNKNOWN\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
dev_dbg(dev, "Unknown root hub request\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct hc_driver octeon_hc_driver = {
|
||
|
.description = "Octeon USB",
|
||
|
.product_desc = "Octeon Host Controller",
|
||
|
.hcd_priv_size = sizeof(struct octeon_hcd),
|
||
|
.irq = octeon_usb_irq,
|
||
|
.flags = HCD_MEMORY | HCD_DMA | HCD_USB2,
|
||
|
.start = octeon_usb_start,
|
||
|
.stop = octeon_usb_stop,
|
||
|
.urb_enqueue = octeon_usb_urb_enqueue,
|
||
|
.urb_dequeue = octeon_usb_urb_dequeue,
|
||
|
.endpoint_disable = octeon_usb_endpoint_disable,
|
||
|
.get_frame_number = octeon_usb_get_frame_number,
|
||
|
.hub_status_data = octeon_usb_hub_status_data,
|
||
|
.hub_control = octeon_usb_hub_control,
|
||
|
.map_urb_for_dma = octeon_map_urb_for_dma,
|
||
|
.unmap_urb_for_dma = octeon_unmap_urb_for_dma,
|
||
|
};
|
||
|
|
||
|
static int octeon_usb_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
int status;
|
||
|
int initialize_flags;
|
||
|
int usb_num;
|
||
|
struct resource *res_mem;
|
||
|
struct device_node *usbn_node;
|
||
|
int irq = platform_get_irq(pdev, 0);
|
||
|
struct device *dev = &pdev->dev;
|
||
|
struct octeon_hcd *usb;
|
||
|
struct usb_hcd *hcd;
|
||
|
u32 clock_rate = 48000000;
|
||
|
bool is_crystal_clock = false;
|
||
|
const char *clock_type;
|
||
|
int i;
|
||
|
|
||
|
if (!dev->of_node) {
|
||
|
dev_err(dev, "Error: empty of_node\n");
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
usbn_node = dev->of_node->parent;
|
||
|
|
||
|
i = of_property_read_u32(usbn_node,
|
||
|
"clock-frequency", &clock_rate);
|
||
|
if (i)
|
||
|
i = of_property_read_u32(usbn_node,
|
||
|
"refclk-frequency", &clock_rate);
|
||
|
if (i) {
|
||
|
dev_err(dev, "No USBN \"clock-frequency\"\n");
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
switch (clock_rate) {
|
||
|
case 12000000:
|
||
|
initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
|
||
|
break;
|
||
|
case 24000000:
|
||
|
initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
|
||
|
break;
|
||
|
case 48000000:
|
||
|
initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
|
||
|
break;
|
||
|
default:
|
||
|
dev_err(dev, "Illegal USBN \"clock-frequency\" %u\n",
|
||
|
clock_rate);
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
|
||
|
i = of_property_read_string(usbn_node,
|
||
|
"cavium,refclk-type", &clock_type);
|
||
|
if (i)
|
||
|
i = of_property_read_string(usbn_node,
|
||
|
"refclk-type", &clock_type);
|
||
|
|
||
|
if (!i && strcmp("crystal", clock_type) == 0)
|
||
|
is_crystal_clock = true;
|
||
|
|
||
|
if (is_crystal_clock)
|
||
|
initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
|
||
|
else
|
||
|
initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
|
||
|
|
||
|
res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
||
|
if (!res_mem) {
|
||
|
dev_err(dev, "found no memory resource\n");
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
usb_num = (res_mem->start >> 44) & 1;
|
||
|
|
||
|
if (irq < 0) {
|
||
|
/* Defective device tree, but we know how to fix it. */
|
||
|
irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
|
||
|
|
||
|
irq = irq_create_mapping(NULL, hwirq);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set the DMA mask to 64bits so we get buffers already translated for
|
||
|
* DMA.
|
||
|
*/
|
||
|
i = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(64));
|
||
|
if (i)
|
||
|
return i;
|
||
|
|
||
|
/*
|
||
|
* Only cn52XX and cn56XX have DWC_OTG USB hardware and the
|
||
|
* IOB priority registers. Under heavy network load USB
|
||
|
* hardware can be starved by the IOB causing a crash. Give
|
||
|
* it a priority boost if it has been waiting more than 400
|
||
|
* cycles to avoid this situation.
|
||
|
*
|
||
|
* Testing indicates that a cnt_val of 8192 is not sufficient,
|
||
|
* but no failures are seen with 4096. We choose a value of
|
||
|
* 400 to give a safety factor of 10.
|
||
|
*/
|
||
|
if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
|
||
|
union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
|
||
|
|
||
|
pri_cnt.u64 = 0;
|
||
|
pri_cnt.s.cnt_enb = 1;
|
||
|
pri_cnt.s.cnt_val = 400;
|
||
|
cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
|
||
|
}
|
||
|
|
||
|
hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
|
||
|
if (!hcd) {
|
||
|
dev_dbg(dev, "Failed to allocate memory for HCD\n");
|
||
|
return -1;
|
||
|
}
|
||
|
hcd->uses_new_polling = 1;
|
||
|
usb = (struct octeon_hcd *)hcd->hcd_priv;
|
||
|
|
||
|
spin_lock_init(&usb->lock);
|
||
|
|
||
|
usb->init_flags = initialize_flags;
|
||
|
|
||
|
/* Initialize the USB state structure */
|
||
|
usb->index = usb_num;
|
||
|
INIT_LIST_HEAD(&usb->idle_pipes);
|
||
|
for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++)
|
||
|
INIT_LIST_HEAD(&usb->active_pipes[i]);
|
||
|
|
||
|
/* Due to an errata, CN31XX doesn't support DMA */
|
||
|
if (OCTEON_IS_MODEL(OCTEON_CN31XX)) {
|
||
|
usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
|
||
|
/* Only use one channel with non DMA */
|
||
|
usb->idle_hardware_channels = 0x1;
|
||
|
} else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
|
||
|
/* CN5XXX have an errata with channel 3 */
|
||
|
usb->idle_hardware_channels = 0xf7;
|
||
|
} else {
|
||
|
usb->idle_hardware_channels = 0xff;
|
||
|
}
|
||
|
|
||
|
status = cvmx_usb_initialize(dev, usb);
|
||
|
if (status) {
|
||
|
dev_dbg(dev, "USB initialization failed with %d\n", status);
|
||
|
usb_put_hcd(hcd);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
status = usb_add_hcd(hcd, irq, 0);
|
||
|
if (status) {
|
||
|
dev_dbg(dev, "USB add HCD failed with %d\n", status);
|
||
|
usb_put_hcd(hcd);
|
||
|
return -1;
|
||
|
}
|
||
|
device_wakeup_enable(hcd->self.controller);
|
||
|
|
||
|
dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int octeon_usb_remove(struct platform_device *pdev)
|
||
|
{
|
||
|
int status;
|
||
|
struct device *dev = &pdev->dev;
|
||
|
struct usb_hcd *hcd = dev_get_drvdata(dev);
|
||
|
struct octeon_hcd *usb = hcd_to_octeon(hcd);
|
||
|
unsigned long flags;
|
||
|
|
||
|
usb_remove_hcd(hcd);
|
||
|
spin_lock_irqsave(&usb->lock, flags);
|
||
|
status = cvmx_usb_shutdown(usb);
|
||
|
spin_unlock_irqrestore(&usb->lock, flags);
|
||
|
if (status)
|
||
|
dev_dbg(dev, "USB shutdown failed with %d\n", status);
|
||
|
|
||
|
usb_put_hcd(hcd);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct of_device_id octeon_usb_match[] = {
|
||
|
{
|
||
|
.compatible = "cavium,octeon-5750-usbc",
|
||
|
},
|
||
|
{},
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(of, octeon_usb_match);
|
||
|
|
||
|
static struct platform_driver octeon_usb_driver = {
|
||
|
.driver = {
|
||
|
.name = "octeon-hcd",
|
||
|
.of_match_table = octeon_usb_match,
|
||
|
},
|
||
|
.probe = octeon_usb_probe,
|
||
|
.remove = octeon_usb_remove,
|
||
|
};
|
||
|
|
||
|
static int __init octeon_usb_driver_init(void)
|
||
|
{
|
||
|
if (usb_disabled())
|
||
|
return 0;
|
||
|
|
||
|
return platform_driver_register(&octeon_usb_driver);
|
||
|
}
|
||
|
module_init(octeon_usb_driver_init);
|
||
|
|
||
|
static void __exit octeon_usb_driver_exit(void)
|
||
|
{
|
||
|
if (usb_disabled())
|
||
|
return;
|
||
|
|
||
|
platform_driver_unregister(&octeon_usb_driver);
|
||
|
}
|
||
|
module_exit(octeon_usb_driver_exit);
|
||
|
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
|
||
|
MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");
|