1537 lines
42 KiB
C
1537 lines
42 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* SPI driver for NVIDIA's Tegra114 SPI Controller.
|
||
|
*
|
||
|
* Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
|
||
|
*/
|
||
|
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/completion.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/dmaengine.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <linux/dmapool.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/kthread.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/pm_runtime.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/of_device.h>
|
||
|
#include <linux/reset.h>
|
||
|
#include <linux/spi/spi.h>
|
||
|
|
||
|
#define SPI_COMMAND1 0x000
|
||
|
#define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
|
||
|
#define SPI_PACKED (1 << 5)
|
||
|
#define SPI_TX_EN (1 << 11)
|
||
|
#define SPI_RX_EN (1 << 12)
|
||
|
#define SPI_BOTH_EN_BYTE (1 << 13)
|
||
|
#define SPI_BOTH_EN_BIT (1 << 14)
|
||
|
#define SPI_LSBYTE_FE (1 << 15)
|
||
|
#define SPI_LSBIT_FE (1 << 16)
|
||
|
#define SPI_BIDIROE (1 << 17)
|
||
|
#define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
|
||
|
#define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
|
||
|
#define SPI_IDLE_SDA_PULL_LOW (2 << 18)
|
||
|
#define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
|
||
|
#define SPI_IDLE_SDA_MASK (3 << 18)
|
||
|
#define SPI_CS_SW_VAL (1 << 20)
|
||
|
#define SPI_CS_SW_HW (1 << 21)
|
||
|
/* SPI_CS_POL_INACTIVE bits are default high */
|
||
|
/* n from 0 to 3 */
|
||
|
#define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
|
||
|
#define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
|
||
|
|
||
|
#define SPI_CS_SEL_0 (0 << 26)
|
||
|
#define SPI_CS_SEL_1 (1 << 26)
|
||
|
#define SPI_CS_SEL_2 (2 << 26)
|
||
|
#define SPI_CS_SEL_3 (3 << 26)
|
||
|
#define SPI_CS_SEL_MASK (3 << 26)
|
||
|
#define SPI_CS_SEL(x) (((x) & 0x3) << 26)
|
||
|
#define SPI_CONTROL_MODE_0 (0 << 28)
|
||
|
#define SPI_CONTROL_MODE_1 (1 << 28)
|
||
|
#define SPI_CONTROL_MODE_2 (2 << 28)
|
||
|
#define SPI_CONTROL_MODE_3 (3 << 28)
|
||
|
#define SPI_CONTROL_MODE_MASK (3 << 28)
|
||
|
#define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
|
||
|
#define SPI_M_S (1 << 30)
|
||
|
#define SPI_PIO (1 << 31)
|
||
|
|
||
|
#define SPI_COMMAND2 0x004
|
||
|
#define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
|
||
|
#define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
|
||
|
|
||
|
#define SPI_CS_TIMING1 0x008
|
||
|
#define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
|
||
|
#define SPI_CS_SETUP_HOLD(reg, cs, val) \
|
||
|
((((val) & 0xFFu) << ((cs) * 8)) | \
|
||
|
((reg) & ~(0xFFu << ((cs) * 8))))
|
||
|
|
||
|
#define SPI_CS_TIMING2 0x00C
|
||
|
#define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
|
||
|
#define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
|
||
|
#define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
|
||
|
#define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
|
||
|
#define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
|
||
|
#define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
|
||
|
#define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
|
||
|
#define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
|
||
|
#define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
|
||
|
(reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
|
||
|
((reg) & ~(1 << ((cs) * 8 + 5))))
|
||
|
#define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
|
||
|
(reg = (((val) & 0x1F) << ((cs) * 8)) | \
|
||
|
((reg) & ~(0x1F << ((cs) * 8))))
|
||
|
#define MAX_SETUP_HOLD_CYCLES 16
|
||
|
#define MAX_INACTIVE_CYCLES 32
|
||
|
|
||
|
#define SPI_TRANS_STATUS 0x010
|
||
|
#define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
|
||
|
#define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
|
||
|
#define SPI_RDY (1 << 30)
|
||
|
|
||
|
#define SPI_FIFO_STATUS 0x014
|
||
|
#define SPI_RX_FIFO_EMPTY (1 << 0)
|
||
|
#define SPI_RX_FIFO_FULL (1 << 1)
|
||
|
#define SPI_TX_FIFO_EMPTY (1 << 2)
|
||
|
#define SPI_TX_FIFO_FULL (1 << 3)
|
||
|
#define SPI_RX_FIFO_UNF (1 << 4)
|
||
|
#define SPI_RX_FIFO_OVF (1 << 5)
|
||
|
#define SPI_TX_FIFO_UNF (1 << 6)
|
||
|
#define SPI_TX_FIFO_OVF (1 << 7)
|
||
|
#define SPI_ERR (1 << 8)
|
||
|
#define SPI_TX_FIFO_FLUSH (1 << 14)
|
||
|
#define SPI_RX_FIFO_FLUSH (1 << 15)
|
||
|
#define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
|
||
|
#define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
|
||
|
#define SPI_FRAME_END (1 << 30)
|
||
|
#define SPI_CS_INACTIVE (1 << 31)
|
||
|
|
||
|
#define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
|
||
|
SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
|
||
|
#define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
|
||
|
|
||
|
#define SPI_TX_DATA 0x018
|
||
|
#define SPI_RX_DATA 0x01C
|
||
|
|
||
|
#define SPI_DMA_CTL 0x020
|
||
|
#define SPI_TX_TRIG_1 (0 << 15)
|
||
|
#define SPI_TX_TRIG_4 (1 << 15)
|
||
|
#define SPI_TX_TRIG_8 (2 << 15)
|
||
|
#define SPI_TX_TRIG_16 (3 << 15)
|
||
|
#define SPI_TX_TRIG_MASK (3 << 15)
|
||
|
#define SPI_RX_TRIG_1 (0 << 19)
|
||
|
#define SPI_RX_TRIG_4 (1 << 19)
|
||
|
#define SPI_RX_TRIG_8 (2 << 19)
|
||
|
#define SPI_RX_TRIG_16 (3 << 19)
|
||
|
#define SPI_RX_TRIG_MASK (3 << 19)
|
||
|
#define SPI_IE_TX (1 << 28)
|
||
|
#define SPI_IE_RX (1 << 29)
|
||
|
#define SPI_CONT (1 << 30)
|
||
|
#define SPI_DMA (1 << 31)
|
||
|
#define SPI_DMA_EN SPI_DMA
|
||
|
|
||
|
#define SPI_DMA_BLK 0x024
|
||
|
#define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
|
||
|
|
||
|
#define SPI_TX_FIFO 0x108
|
||
|
#define SPI_RX_FIFO 0x188
|
||
|
#define SPI_INTR_MASK 0x18c
|
||
|
#define SPI_INTR_ALL_MASK (0x1fUL << 25)
|
||
|
#define MAX_CHIP_SELECT 4
|
||
|
#define SPI_FIFO_DEPTH 64
|
||
|
#define DATA_DIR_TX (1 << 0)
|
||
|
#define DATA_DIR_RX (1 << 1)
|
||
|
|
||
|
#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
|
||
|
#define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
|
||
|
#define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
|
||
|
#define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
|
||
|
#define MAX_HOLD_CYCLES 16
|
||
|
#define SPI_DEFAULT_SPEED 25000000
|
||
|
|
||
|
struct tegra_spi_soc_data {
|
||
|
bool has_intr_mask_reg;
|
||
|
};
|
||
|
|
||
|
struct tegra_spi_client_data {
|
||
|
int tx_clk_tap_delay;
|
||
|
int rx_clk_tap_delay;
|
||
|
};
|
||
|
|
||
|
struct tegra_spi_data {
|
||
|
struct device *dev;
|
||
|
struct spi_master *master;
|
||
|
spinlock_t lock;
|
||
|
|
||
|
struct clk *clk;
|
||
|
struct reset_control *rst;
|
||
|
void __iomem *base;
|
||
|
phys_addr_t phys;
|
||
|
unsigned irq;
|
||
|
u32 cur_speed;
|
||
|
|
||
|
struct spi_device *cur_spi;
|
||
|
struct spi_device *cs_control;
|
||
|
unsigned cur_pos;
|
||
|
unsigned words_per_32bit;
|
||
|
unsigned bytes_per_word;
|
||
|
unsigned curr_dma_words;
|
||
|
unsigned cur_direction;
|
||
|
|
||
|
unsigned cur_rx_pos;
|
||
|
unsigned cur_tx_pos;
|
||
|
|
||
|
unsigned dma_buf_size;
|
||
|
unsigned max_buf_size;
|
||
|
bool is_curr_dma_xfer;
|
||
|
bool use_hw_based_cs;
|
||
|
|
||
|
struct completion rx_dma_complete;
|
||
|
struct completion tx_dma_complete;
|
||
|
|
||
|
u32 tx_status;
|
||
|
u32 rx_status;
|
||
|
u32 status_reg;
|
||
|
bool is_packed;
|
||
|
|
||
|
u32 command1_reg;
|
||
|
u32 dma_control_reg;
|
||
|
u32 def_command1_reg;
|
||
|
u32 def_command2_reg;
|
||
|
u32 spi_cs_timing1;
|
||
|
u32 spi_cs_timing2;
|
||
|
u8 last_used_cs;
|
||
|
|
||
|
struct completion xfer_completion;
|
||
|
struct spi_transfer *curr_xfer;
|
||
|
struct dma_chan *rx_dma_chan;
|
||
|
u32 *rx_dma_buf;
|
||
|
dma_addr_t rx_dma_phys;
|
||
|
struct dma_async_tx_descriptor *rx_dma_desc;
|
||
|
|
||
|
struct dma_chan *tx_dma_chan;
|
||
|
u32 *tx_dma_buf;
|
||
|
dma_addr_t tx_dma_phys;
|
||
|
struct dma_async_tx_descriptor *tx_dma_desc;
|
||
|
const struct tegra_spi_soc_data *soc_data;
|
||
|
};
|
||
|
|
||
|
static int tegra_spi_runtime_suspend(struct device *dev);
|
||
|
static int tegra_spi_runtime_resume(struct device *dev);
|
||
|
|
||
|
static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
|
||
|
unsigned long reg)
|
||
|
{
|
||
|
return readl(tspi->base + reg);
|
||
|
}
|
||
|
|
||
|
static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
|
||
|
u32 val, unsigned long reg)
|
||
|
{
|
||
|
writel(val, tspi->base + reg);
|
||
|
|
||
|
/* Read back register to make sure that register writes completed */
|
||
|
if (reg != SPI_TX_FIFO)
|
||
|
readl(tspi->base + SPI_COMMAND1);
|
||
|
}
|
||
|
|
||
|
static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
|
||
|
{
|
||
|
u32 val;
|
||
|
|
||
|
/* Write 1 to clear status register */
|
||
|
val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
|
||
|
tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
|
||
|
|
||
|
/* Clear fifo status error if any */
|
||
|
val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
|
||
|
if (val & SPI_ERR)
|
||
|
tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
|
||
|
SPI_FIFO_STATUS);
|
||
|
}
|
||
|
|
||
|
static unsigned tegra_spi_calculate_curr_xfer_param(
|
||
|
struct spi_device *spi, struct tegra_spi_data *tspi,
|
||
|
struct spi_transfer *t)
|
||
|
{
|
||
|
unsigned remain_len = t->len - tspi->cur_pos;
|
||
|
unsigned max_word;
|
||
|
unsigned bits_per_word = t->bits_per_word;
|
||
|
unsigned max_len;
|
||
|
unsigned total_fifo_words;
|
||
|
|
||
|
tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
|
||
|
|
||
|
if ((bits_per_word == 8 || bits_per_word == 16 ||
|
||
|
bits_per_word == 32) && t->len > 3) {
|
||
|
tspi->is_packed = true;
|
||
|
tspi->words_per_32bit = 32/bits_per_word;
|
||
|
} else {
|
||
|
tspi->is_packed = false;
|
||
|
tspi->words_per_32bit = 1;
|
||
|
}
|
||
|
|
||
|
if (tspi->is_packed) {
|
||
|
max_len = min(remain_len, tspi->max_buf_size);
|
||
|
tspi->curr_dma_words = max_len/tspi->bytes_per_word;
|
||
|
total_fifo_words = (max_len + 3) / 4;
|
||
|
} else {
|
||
|
max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
|
||
|
max_word = min(max_word, tspi->max_buf_size/4);
|
||
|
tspi->curr_dma_words = max_word;
|
||
|
total_fifo_words = max_word;
|
||
|
}
|
||
|
return total_fifo_words;
|
||
|
}
|
||
|
|
||
|
static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
|
||
|
struct tegra_spi_data *tspi, struct spi_transfer *t)
|
||
|
{
|
||
|
unsigned nbytes;
|
||
|
unsigned tx_empty_count;
|
||
|
u32 fifo_status;
|
||
|
unsigned max_n_32bit;
|
||
|
unsigned i, count;
|
||
|
unsigned int written_words;
|
||
|
unsigned fifo_words_left;
|
||
|
u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
|
||
|
|
||
|
fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
|
||
|
tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
|
||
|
|
||
|
if (tspi->is_packed) {
|
||
|
fifo_words_left = tx_empty_count * tspi->words_per_32bit;
|
||
|
written_words = min(fifo_words_left, tspi->curr_dma_words);
|
||
|
nbytes = written_words * tspi->bytes_per_word;
|
||
|
max_n_32bit = DIV_ROUND_UP(nbytes, 4);
|
||
|
for (count = 0; count < max_n_32bit; count++) {
|
||
|
u32 x = 0;
|
||
|
|
||
|
for (i = 0; (i < 4) && nbytes; i++, nbytes--)
|
||
|
x |= (u32)(*tx_buf++) << (i * 8);
|
||
|
tegra_spi_writel(tspi, x, SPI_TX_FIFO);
|
||
|
}
|
||
|
|
||
|
tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
|
||
|
} else {
|
||
|
unsigned int write_bytes;
|
||
|
max_n_32bit = min(tspi->curr_dma_words, tx_empty_count);
|
||
|
written_words = max_n_32bit;
|
||
|
nbytes = written_words * tspi->bytes_per_word;
|
||
|
if (nbytes > t->len - tspi->cur_pos)
|
||
|
nbytes = t->len - tspi->cur_pos;
|
||
|
write_bytes = nbytes;
|
||
|
for (count = 0; count < max_n_32bit; count++) {
|
||
|
u32 x = 0;
|
||
|
|
||
|
for (i = 0; nbytes && (i < tspi->bytes_per_word);
|
||
|
i++, nbytes--)
|
||
|
x |= (u32)(*tx_buf++) << (i * 8);
|
||
|
tegra_spi_writel(tspi, x, SPI_TX_FIFO);
|
||
|
}
|
||
|
|
||
|
tspi->cur_tx_pos += write_bytes;
|
||
|
}
|
||
|
|
||
|
return written_words;
|
||
|
}
|
||
|
|
||
|
static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
|
||
|
struct tegra_spi_data *tspi, struct spi_transfer *t)
|
||
|
{
|
||
|
unsigned rx_full_count;
|
||
|
u32 fifo_status;
|
||
|
unsigned i, count;
|
||
|
unsigned int read_words = 0;
|
||
|
unsigned len;
|
||
|
u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
|
||
|
|
||
|
fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
|
||
|
rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
|
||
|
if (tspi->is_packed) {
|
||
|
len = tspi->curr_dma_words * tspi->bytes_per_word;
|
||
|
for (count = 0; count < rx_full_count; count++) {
|
||
|
u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
|
||
|
|
||
|
for (i = 0; len && (i < 4); i++, len--)
|
||
|
*rx_buf++ = (x >> i*8) & 0xFF;
|
||
|
}
|
||
|
read_words += tspi->curr_dma_words;
|
||
|
tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
|
||
|
} else {
|
||
|
u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
|
||
|
u8 bytes_per_word = tspi->bytes_per_word;
|
||
|
unsigned int read_bytes;
|
||
|
|
||
|
len = rx_full_count * bytes_per_word;
|
||
|
if (len > t->len - tspi->cur_pos)
|
||
|
len = t->len - tspi->cur_pos;
|
||
|
read_bytes = len;
|
||
|
for (count = 0; count < rx_full_count; count++) {
|
||
|
u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
|
||
|
|
||
|
for (i = 0; len && (i < bytes_per_word); i++, len--)
|
||
|
*rx_buf++ = (x >> (i*8)) & 0xFF;
|
||
|
}
|
||
|
read_words += rx_full_count;
|
||
|
tspi->cur_rx_pos += read_bytes;
|
||
|
}
|
||
|
|
||
|
return read_words;
|
||
|
}
|
||
|
|
||
|
static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
|
||
|
struct tegra_spi_data *tspi, struct spi_transfer *t)
|
||
|
{
|
||
|
/* Make the dma buffer to read by cpu */
|
||
|
dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
|
||
|
tspi->dma_buf_size, DMA_TO_DEVICE);
|
||
|
|
||
|
if (tspi->is_packed) {
|
||
|
unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
|
||
|
|
||
|
memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
|
||
|
tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
|
||
|
} else {
|
||
|
unsigned int i;
|
||
|
unsigned int count;
|
||
|
u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
|
||
|
unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
|
||
|
unsigned int write_bytes;
|
||
|
|
||
|
if (consume > t->len - tspi->cur_pos)
|
||
|
consume = t->len - tspi->cur_pos;
|
||
|
write_bytes = consume;
|
||
|
for (count = 0; count < tspi->curr_dma_words; count++) {
|
||
|
u32 x = 0;
|
||
|
|
||
|
for (i = 0; consume && (i < tspi->bytes_per_word);
|
||
|
i++, consume--)
|
||
|
x |= (u32)(*tx_buf++) << (i * 8);
|
||
|
tspi->tx_dma_buf[count] = x;
|
||
|
}
|
||
|
|
||
|
tspi->cur_tx_pos += write_bytes;
|
||
|
}
|
||
|
|
||
|
/* Make the dma buffer to read by dma */
|
||
|
dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
|
||
|
tspi->dma_buf_size, DMA_TO_DEVICE);
|
||
|
}
|
||
|
|
||
|
static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
|
||
|
struct tegra_spi_data *tspi, struct spi_transfer *t)
|
||
|
{
|
||
|
/* Make the dma buffer to read by cpu */
|
||
|
dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
|
||
|
tspi->dma_buf_size, DMA_FROM_DEVICE);
|
||
|
|
||
|
if (tspi->is_packed) {
|
||
|
unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
|
||
|
|
||
|
memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
|
||
|
tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
|
||
|
} else {
|
||
|
unsigned int i;
|
||
|
unsigned int count;
|
||
|
unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
|
||
|
u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
|
||
|
unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
|
||
|
unsigned int read_bytes;
|
||
|
|
||
|
if (consume > t->len - tspi->cur_pos)
|
||
|
consume = t->len - tspi->cur_pos;
|
||
|
read_bytes = consume;
|
||
|
for (count = 0; count < tspi->curr_dma_words; count++) {
|
||
|
u32 x = tspi->rx_dma_buf[count] & rx_mask;
|
||
|
|
||
|
for (i = 0; consume && (i < tspi->bytes_per_word);
|
||
|
i++, consume--)
|
||
|
*rx_buf++ = (x >> (i*8)) & 0xFF;
|
||
|
}
|
||
|
|
||
|
tspi->cur_rx_pos += read_bytes;
|
||
|
}
|
||
|
|
||
|
/* Make the dma buffer to read by dma */
|
||
|
dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
|
||
|
tspi->dma_buf_size, DMA_FROM_DEVICE);
|
||
|
}
|
||
|
|
||
|
static void tegra_spi_dma_complete(void *args)
|
||
|
{
|
||
|
struct completion *dma_complete = args;
|
||
|
|
||
|
complete(dma_complete);
|
||
|
}
|
||
|
|
||
|
static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
|
||
|
{
|
||
|
reinit_completion(&tspi->tx_dma_complete);
|
||
|
tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
|
||
|
tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
|
||
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
||
|
if (!tspi->tx_dma_desc) {
|
||
|
dev_err(tspi->dev, "Not able to get desc for Tx\n");
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
|
||
|
tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
|
||
|
|
||
|
dmaengine_submit(tspi->tx_dma_desc);
|
||
|
dma_async_issue_pending(tspi->tx_dma_chan);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
|
||
|
{
|
||
|
reinit_completion(&tspi->rx_dma_complete);
|
||
|
tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
|
||
|
tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
|
||
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
||
|
if (!tspi->rx_dma_desc) {
|
||
|
dev_err(tspi->dev, "Not able to get desc for Rx\n");
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
|
||
|
tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
|
||
|
|
||
|
dmaengine_submit(tspi->rx_dma_desc);
|
||
|
dma_async_issue_pending(tspi->rx_dma_chan);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi)
|
||
|
{
|
||
|
unsigned long timeout = jiffies + HZ;
|
||
|
u32 status;
|
||
|
|
||
|
status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
|
||
|
if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
|
||
|
status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH;
|
||
|
tegra_spi_writel(tspi, status, SPI_FIFO_STATUS);
|
||
|
while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
|
||
|
status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
|
||
|
if (time_after(jiffies, timeout)) {
|
||
|
dev_err(tspi->dev,
|
||
|
"timeout waiting for fifo flush\n");
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
udelay(1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int tegra_spi_start_dma_based_transfer(
|
||
|
struct tegra_spi_data *tspi, struct spi_transfer *t)
|
||
|
{
|
||
|
u32 val;
|
||
|
unsigned int len;
|
||
|
int ret = 0;
|
||
|
u8 dma_burst;
|
||
|
struct dma_slave_config dma_sconfig = {0};
|
||
|
|
||
|
val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
|
||
|
tegra_spi_writel(tspi, val, SPI_DMA_BLK);
|
||
|
|
||
|
if (tspi->is_packed)
|
||
|
len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
|
||
|
4) * 4;
|
||
|
else
|
||
|
len = tspi->curr_dma_words * 4;
|
||
|
|
||
|
/* Set attention level based on length of transfer */
|
||
|
if (len & 0xF) {
|
||
|
val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
|
||
|
dma_burst = 1;
|
||
|
} else if (((len) >> 4) & 0x1) {
|
||
|
val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
|
||
|
dma_burst = 4;
|
||
|
} else {
|
||
|
val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
|
||
|
dma_burst = 8;
|
||
|
}
|
||
|
|
||
|
if (!tspi->soc_data->has_intr_mask_reg) {
|
||
|
if (tspi->cur_direction & DATA_DIR_TX)
|
||
|
val |= SPI_IE_TX;
|
||
|
|
||
|
if (tspi->cur_direction & DATA_DIR_RX)
|
||
|
val |= SPI_IE_RX;
|
||
|
}
|
||
|
|
||
|
tegra_spi_writel(tspi, val, SPI_DMA_CTL);
|
||
|
tspi->dma_control_reg = val;
|
||
|
|
||
|
dma_sconfig.device_fc = true;
|
||
|
if (tspi->cur_direction & DATA_DIR_TX) {
|
||
|
dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
|
||
|
dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
||
|
dma_sconfig.dst_maxburst = dma_burst;
|
||
|
ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig);
|
||
|
if (ret < 0) {
|
||
|
dev_err(tspi->dev,
|
||
|
"DMA slave config failed: %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
|
||
|
ret = tegra_spi_start_tx_dma(tspi, len);
|
||
|
if (ret < 0) {
|
||
|
dev_err(tspi->dev,
|
||
|
"Starting tx dma failed, err %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (tspi->cur_direction & DATA_DIR_RX) {
|
||
|
dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
|
||
|
dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
||
|
dma_sconfig.src_maxburst = dma_burst;
|
||
|
ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig);
|
||
|
if (ret < 0) {
|
||
|
dev_err(tspi->dev,
|
||
|
"DMA slave config failed: %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Make the dma buffer to read by dma */
|
||
|
dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
|
||
|
tspi->dma_buf_size, DMA_FROM_DEVICE);
|
||
|
|
||
|
ret = tegra_spi_start_rx_dma(tspi, len);
|
||
|
if (ret < 0) {
|
||
|
dev_err(tspi->dev,
|
||
|
"Starting rx dma failed, err %d\n", ret);
|
||
|
if (tspi->cur_direction & DATA_DIR_TX)
|
||
|
dmaengine_terminate_all(tspi->tx_dma_chan);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
tspi->is_curr_dma_xfer = true;
|
||
|
tspi->dma_control_reg = val;
|
||
|
|
||
|
val |= SPI_DMA_EN;
|
||
|
tegra_spi_writel(tspi, val, SPI_DMA_CTL);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int tegra_spi_start_cpu_based_transfer(
|
||
|
struct tegra_spi_data *tspi, struct spi_transfer *t)
|
||
|
{
|
||
|
u32 val;
|
||
|
unsigned cur_words;
|
||
|
|
||
|
if (tspi->cur_direction & DATA_DIR_TX)
|
||
|
cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
|
||
|
else
|
||
|
cur_words = tspi->curr_dma_words;
|
||
|
|
||
|
val = SPI_DMA_BLK_SET(cur_words - 1);
|
||
|
tegra_spi_writel(tspi, val, SPI_DMA_BLK);
|
||
|
|
||
|
val = 0;
|
||
|
if (tspi->cur_direction & DATA_DIR_TX)
|
||
|
val |= SPI_IE_TX;
|
||
|
|
||
|
if (tspi->cur_direction & DATA_DIR_RX)
|
||
|
val |= SPI_IE_RX;
|
||
|
|
||
|
tegra_spi_writel(tspi, val, SPI_DMA_CTL);
|
||
|
tspi->dma_control_reg = val;
|
||
|
|
||
|
tspi->is_curr_dma_xfer = false;
|
||
|
|
||
|
val = tspi->command1_reg;
|
||
|
val |= SPI_PIO;
|
||
|
tegra_spi_writel(tspi, val, SPI_COMMAND1);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
|
||
|
bool dma_to_memory)
|
||
|
{
|
||
|
struct dma_chan *dma_chan;
|
||
|
u32 *dma_buf;
|
||
|
dma_addr_t dma_phys;
|
||
|
|
||
|
dma_chan = dma_request_chan(tspi->dev, dma_to_memory ? "rx" : "tx");
|
||
|
if (IS_ERR(dma_chan))
|
||
|
return dev_err_probe(tspi->dev, PTR_ERR(dma_chan),
|
||
|
"Dma channel is not available\n");
|
||
|
|
||
|
dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
|
||
|
&dma_phys, GFP_KERNEL);
|
||
|
if (!dma_buf) {
|
||
|
dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
|
||
|
dma_release_channel(dma_chan);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
if (dma_to_memory) {
|
||
|
tspi->rx_dma_chan = dma_chan;
|
||
|
tspi->rx_dma_buf = dma_buf;
|
||
|
tspi->rx_dma_phys = dma_phys;
|
||
|
} else {
|
||
|
tspi->tx_dma_chan = dma_chan;
|
||
|
tspi->tx_dma_buf = dma_buf;
|
||
|
tspi->tx_dma_phys = dma_phys;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
|
||
|
bool dma_to_memory)
|
||
|
{
|
||
|
u32 *dma_buf;
|
||
|
dma_addr_t dma_phys;
|
||
|
struct dma_chan *dma_chan;
|
||
|
|
||
|
if (dma_to_memory) {
|
||
|
dma_buf = tspi->rx_dma_buf;
|
||
|
dma_chan = tspi->rx_dma_chan;
|
||
|
dma_phys = tspi->rx_dma_phys;
|
||
|
tspi->rx_dma_chan = NULL;
|
||
|
tspi->rx_dma_buf = NULL;
|
||
|
} else {
|
||
|
dma_buf = tspi->tx_dma_buf;
|
||
|
dma_chan = tspi->tx_dma_chan;
|
||
|
dma_phys = tspi->tx_dma_phys;
|
||
|
tspi->tx_dma_buf = NULL;
|
||
|
tspi->tx_dma_chan = NULL;
|
||
|
}
|
||
|
if (!dma_chan)
|
||
|
return;
|
||
|
|
||
|
dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
|
||
|
dma_release_channel(dma_chan);
|
||
|
}
|
||
|
|
||
|
static int tegra_spi_set_hw_cs_timing(struct spi_device *spi)
|
||
|
{
|
||
|
struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
|
||
|
struct spi_delay *setup = &spi->cs_setup;
|
||
|
struct spi_delay *hold = &spi->cs_hold;
|
||
|
struct spi_delay *inactive = &spi->cs_inactive;
|
||
|
u8 setup_dly, hold_dly, inactive_dly;
|
||
|
u32 setup_hold;
|
||
|
u32 spi_cs_timing;
|
||
|
u32 inactive_cycles;
|
||
|
u8 cs_state;
|
||
|
|
||
|
if ((setup && setup->unit != SPI_DELAY_UNIT_SCK) ||
|
||
|
(hold && hold->unit != SPI_DELAY_UNIT_SCK) ||
|
||
|
(inactive && inactive->unit != SPI_DELAY_UNIT_SCK)) {
|
||
|
dev_err(&spi->dev,
|
||
|
"Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n",
|
||
|
SPI_DELAY_UNIT_SCK);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
setup_dly = setup ? setup->value : 0;
|
||
|
hold_dly = hold ? hold->value : 0;
|
||
|
inactive_dly = inactive ? inactive->value : 0;
|
||
|
|
||
|
setup_dly = min_t(u8, setup_dly, MAX_SETUP_HOLD_CYCLES);
|
||
|
hold_dly = min_t(u8, hold_dly, MAX_SETUP_HOLD_CYCLES);
|
||
|
if (setup_dly && hold_dly) {
|
||
|
setup_hold = SPI_SETUP_HOLD(setup_dly - 1, hold_dly - 1);
|
||
|
spi_cs_timing = SPI_CS_SETUP_HOLD(tspi->spi_cs_timing1,
|
||
|
spi->chip_select,
|
||
|
setup_hold);
|
||
|
if (tspi->spi_cs_timing1 != spi_cs_timing) {
|
||
|
tspi->spi_cs_timing1 = spi_cs_timing;
|
||
|
tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inactive_cycles = min_t(u8, inactive_dly, MAX_INACTIVE_CYCLES);
|
||
|
if (inactive_cycles)
|
||
|
inactive_cycles--;
|
||
|
cs_state = inactive_cycles ? 0 : 1;
|
||
|
spi_cs_timing = tspi->spi_cs_timing2;
|
||
|
SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing, spi->chip_select,
|
||
|
cs_state);
|
||
|
SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing, spi->chip_select,
|
||
|
inactive_cycles);
|
||
|
if (tspi->spi_cs_timing2 != spi_cs_timing) {
|
||
|
tspi->spi_cs_timing2 = spi_cs_timing;
|
||
|
tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING2);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
|
||
|
struct spi_transfer *t,
|
||
|
bool is_first_of_msg,
|
||
|
bool is_single_xfer)
|
||
|
{
|
||
|
struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
|
||
|
struct tegra_spi_client_data *cdata = spi->controller_data;
|
||
|
u32 speed = t->speed_hz;
|
||
|
u8 bits_per_word = t->bits_per_word;
|
||
|
u32 command1, command2;
|
||
|
int req_mode;
|
||
|
u32 tx_tap = 0, rx_tap = 0;
|
||
|
|
||
|
if (speed != tspi->cur_speed) {
|
||
|
clk_set_rate(tspi->clk, speed);
|
||
|
tspi->cur_speed = speed;
|
||
|
}
|
||
|
|
||
|
tspi->cur_spi = spi;
|
||
|
tspi->cur_pos = 0;
|
||
|
tspi->cur_rx_pos = 0;
|
||
|
tspi->cur_tx_pos = 0;
|
||
|
tspi->curr_xfer = t;
|
||
|
|
||
|
if (is_first_of_msg) {
|
||
|
tegra_spi_clear_status(tspi);
|
||
|
|
||
|
command1 = tspi->def_command1_reg;
|
||
|
command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
|
||
|
|
||
|
command1 &= ~SPI_CONTROL_MODE_MASK;
|
||
|
req_mode = spi->mode & 0x3;
|
||
|
if (req_mode == SPI_MODE_0)
|
||
|
command1 |= SPI_CONTROL_MODE_0;
|
||
|
else if (req_mode == SPI_MODE_1)
|
||
|
command1 |= SPI_CONTROL_MODE_1;
|
||
|
else if (req_mode == SPI_MODE_2)
|
||
|
command1 |= SPI_CONTROL_MODE_2;
|
||
|
else if (req_mode == SPI_MODE_3)
|
||
|
command1 |= SPI_CONTROL_MODE_3;
|
||
|
|
||
|
if (spi->mode & SPI_LSB_FIRST)
|
||
|
command1 |= SPI_LSBIT_FE;
|
||
|
else
|
||
|
command1 &= ~SPI_LSBIT_FE;
|
||
|
|
||
|
if (spi->mode & SPI_3WIRE)
|
||
|
command1 |= SPI_BIDIROE;
|
||
|
else
|
||
|
command1 &= ~SPI_BIDIROE;
|
||
|
|
||
|
if (tspi->cs_control) {
|
||
|
if (tspi->cs_control != spi)
|
||
|
tegra_spi_writel(tspi, command1, SPI_COMMAND1);
|
||
|
tspi->cs_control = NULL;
|
||
|
} else
|
||
|
tegra_spi_writel(tspi, command1, SPI_COMMAND1);
|
||
|
|
||
|
/* GPIO based chip select control */
|
||
|
if (spi->cs_gpiod)
|
||
|
gpiod_set_value(spi->cs_gpiod, 1);
|
||
|
|
||
|
if (is_single_xfer && !(t->cs_change)) {
|
||
|
tspi->use_hw_based_cs = true;
|
||
|
command1 &= ~(SPI_CS_SW_HW | SPI_CS_SW_VAL);
|
||
|
} else {
|
||
|
tspi->use_hw_based_cs = false;
|
||
|
command1 |= SPI_CS_SW_HW;
|
||
|
if (spi->mode & SPI_CS_HIGH)
|
||
|
command1 |= SPI_CS_SW_VAL;
|
||
|
else
|
||
|
command1 &= ~SPI_CS_SW_VAL;
|
||
|
}
|
||
|
|
||
|
if (tspi->last_used_cs != spi->chip_select) {
|
||
|
if (cdata && cdata->tx_clk_tap_delay)
|
||
|
tx_tap = cdata->tx_clk_tap_delay;
|
||
|
if (cdata && cdata->rx_clk_tap_delay)
|
||
|
rx_tap = cdata->rx_clk_tap_delay;
|
||
|
command2 = SPI_TX_TAP_DELAY(tx_tap) |
|
||
|
SPI_RX_TAP_DELAY(rx_tap);
|
||
|
if (command2 != tspi->def_command2_reg)
|
||
|
tegra_spi_writel(tspi, command2, SPI_COMMAND2);
|
||
|
tspi->last_used_cs = spi->chip_select;
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
command1 = tspi->command1_reg;
|
||
|
command1 &= ~SPI_BIT_LENGTH(~0);
|
||
|
command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
|
||
|
}
|
||
|
|
||
|
return command1;
|
||
|
}
|
||
|
|
||
|
static int tegra_spi_start_transfer_one(struct spi_device *spi,
|
||
|
struct spi_transfer *t, u32 command1)
|
||
|
{
|
||
|
struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
|
||
|
unsigned total_fifo_words;
|
||
|
int ret;
|
||
|
|
||
|
total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
|
||
|
|
||
|
if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL)
|
||
|
command1 |= SPI_BOTH_EN_BIT;
|
||
|
else
|
||
|
command1 &= ~SPI_BOTH_EN_BIT;
|
||
|
|
||
|
if (tspi->is_packed)
|
||
|
command1 |= SPI_PACKED;
|
||
|
else
|
||
|
command1 &= ~SPI_PACKED;
|
||
|
|
||
|
command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
|
||
|
tspi->cur_direction = 0;
|
||
|
if (t->rx_buf) {
|
||
|
command1 |= SPI_RX_EN;
|
||
|
tspi->cur_direction |= DATA_DIR_RX;
|
||
|
}
|
||
|
if (t->tx_buf) {
|
||
|
command1 |= SPI_TX_EN;
|
||
|
tspi->cur_direction |= DATA_DIR_TX;
|
||
|
}
|
||
|
command1 |= SPI_CS_SEL(spi->chip_select);
|
||
|
tegra_spi_writel(tspi, command1, SPI_COMMAND1);
|
||
|
tspi->command1_reg = command1;
|
||
|
|
||
|
dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
|
||
|
tspi->def_command1_reg, (unsigned)command1);
|
||
|
|
||
|
ret = tegra_spi_flush_fifos(tspi);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
if (total_fifo_words > SPI_FIFO_DEPTH)
|
||
|
ret = tegra_spi_start_dma_based_transfer(tspi, t);
|
||
|
else
|
||
|
ret = tegra_spi_start_cpu_based_transfer(tspi, t);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static struct tegra_spi_client_data
|
||
|
*tegra_spi_parse_cdata_dt(struct spi_device *spi)
|
||
|
{
|
||
|
struct tegra_spi_client_data *cdata;
|
||
|
struct device_node *slave_np;
|
||
|
|
||
|
slave_np = spi->dev.of_node;
|
||
|
if (!slave_np) {
|
||
|
dev_dbg(&spi->dev, "device node not found\n");
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
cdata = kzalloc(sizeof(*cdata), GFP_KERNEL);
|
||
|
if (!cdata)
|
||
|
return NULL;
|
||
|
|
||
|
of_property_read_u32(slave_np, "nvidia,tx-clk-tap-delay",
|
||
|
&cdata->tx_clk_tap_delay);
|
||
|
of_property_read_u32(slave_np, "nvidia,rx-clk-tap-delay",
|
||
|
&cdata->rx_clk_tap_delay);
|
||
|
return cdata;
|
||
|
}
|
||
|
|
||
|
static void tegra_spi_cleanup(struct spi_device *spi)
|
||
|
{
|
||
|
struct tegra_spi_client_data *cdata = spi->controller_data;
|
||
|
|
||
|
spi->controller_data = NULL;
|
||
|
if (spi->dev.of_node)
|
||
|
kfree(cdata);
|
||
|
}
|
||
|
|
||
|
static int tegra_spi_setup(struct spi_device *spi)
|
||
|
{
|
||
|
struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
|
||
|
struct tegra_spi_client_data *cdata = spi->controller_data;
|
||
|
u32 val;
|
||
|
unsigned long flags;
|
||
|
int ret;
|
||
|
|
||
|
dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
|
||
|
spi->bits_per_word,
|
||
|
spi->mode & SPI_CPOL ? "" : "~",
|
||
|
spi->mode & SPI_CPHA ? "" : "~",
|
||
|
spi->max_speed_hz);
|
||
|
|
||
|
if (!cdata) {
|
||
|
cdata = tegra_spi_parse_cdata_dt(spi);
|
||
|
spi->controller_data = cdata;
|
||
|
}
|
||
|
|
||
|
ret = pm_runtime_resume_and_get(tspi->dev);
|
||
|
if (ret < 0) {
|
||
|
dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
|
||
|
if (cdata)
|
||
|
tegra_spi_cleanup(spi);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
if (tspi->soc_data->has_intr_mask_reg) {
|
||
|
val = tegra_spi_readl(tspi, SPI_INTR_MASK);
|
||
|
val &= ~SPI_INTR_ALL_MASK;
|
||
|
tegra_spi_writel(tspi, val, SPI_INTR_MASK);
|
||
|
}
|
||
|
|
||
|
spin_lock_irqsave(&tspi->lock, flags);
|
||
|
/* GPIO based chip select control */
|
||
|
if (spi->cs_gpiod)
|
||
|
gpiod_set_value(spi->cs_gpiod, 0);
|
||
|
|
||
|
val = tspi->def_command1_reg;
|
||
|
if (spi->mode & SPI_CS_HIGH)
|
||
|
val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
|
||
|
else
|
||
|
val |= SPI_CS_POL_INACTIVE(spi->chip_select);
|
||
|
tspi->def_command1_reg = val;
|
||
|
tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
|
||
|
spin_unlock_irqrestore(&tspi->lock, flags);
|
||
|
|
||
|
pm_runtime_put(tspi->dev);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void tegra_spi_transfer_end(struct spi_device *spi)
|
||
|
{
|
||
|
struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
|
||
|
int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
|
||
|
|
||
|
/* GPIO based chip select control */
|
||
|
if (spi->cs_gpiod)
|
||
|
gpiod_set_value(spi->cs_gpiod, 0);
|
||
|
|
||
|
if (!tspi->use_hw_based_cs) {
|
||
|
if (cs_val)
|
||
|
tspi->command1_reg |= SPI_CS_SW_VAL;
|
||
|
else
|
||
|
tspi->command1_reg &= ~SPI_CS_SW_VAL;
|
||
|
tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
|
||
|
}
|
||
|
|
||
|
tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
|
||
|
}
|
||
|
|
||
|
static void tegra_spi_dump_regs(struct tegra_spi_data *tspi)
|
||
|
{
|
||
|
dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n");
|
||
|
dev_dbg(tspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n",
|
||
|
tegra_spi_readl(tspi, SPI_COMMAND1),
|
||
|
tegra_spi_readl(tspi, SPI_COMMAND2));
|
||
|
dev_dbg(tspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n",
|
||
|
tegra_spi_readl(tspi, SPI_DMA_CTL),
|
||
|
tegra_spi_readl(tspi, SPI_DMA_BLK));
|
||
|
dev_dbg(tspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n",
|
||
|
tegra_spi_readl(tspi, SPI_TRANS_STATUS),
|
||
|
tegra_spi_readl(tspi, SPI_FIFO_STATUS));
|
||
|
}
|
||
|
|
||
|
static int tegra_spi_transfer_one_message(struct spi_master *master,
|
||
|
struct spi_message *msg)
|
||
|
{
|
||
|
bool is_first_msg = true;
|
||
|
struct tegra_spi_data *tspi = spi_master_get_devdata(master);
|
||
|
struct spi_transfer *xfer;
|
||
|
struct spi_device *spi = msg->spi;
|
||
|
int ret;
|
||
|
bool skip = false;
|
||
|
int single_xfer;
|
||
|
|
||
|
msg->status = 0;
|
||
|
msg->actual_length = 0;
|
||
|
|
||
|
single_xfer = list_is_singular(&msg->transfers);
|
||
|
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
|
||
|
u32 cmd1;
|
||
|
|
||
|
reinit_completion(&tspi->xfer_completion);
|
||
|
|
||
|
cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg,
|
||
|
single_xfer);
|
||
|
|
||
|
if (!xfer->len) {
|
||
|
ret = 0;
|
||
|
skip = true;
|
||
|
goto complete_xfer;
|
||
|
}
|
||
|
|
||
|
ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
|
||
|
if (ret < 0) {
|
||
|
dev_err(tspi->dev,
|
||
|
"spi can not start transfer, err %d\n", ret);
|
||
|
goto complete_xfer;
|
||
|
}
|
||
|
|
||
|
is_first_msg = false;
|
||
|
ret = wait_for_completion_timeout(&tspi->xfer_completion,
|
||
|
SPI_DMA_TIMEOUT);
|
||
|
if (WARN_ON(ret == 0)) {
|
||
|
dev_err(tspi->dev, "spi transfer timeout\n");
|
||
|
if (tspi->is_curr_dma_xfer &&
|
||
|
(tspi->cur_direction & DATA_DIR_TX))
|
||
|
dmaengine_terminate_all(tspi->tx_dma_chan);
|
||
|
if (tspi->is_curr_dma_xfer &&
|
||
|
(tspi->cur_direction & DATA_DIR_RX))
|
||
|
dmaengine_terminate_all(tspi->rx_dma_chan);
|
||
|
ret = -EIO;
|
||
|
tegra_spi_dump_regs(tspi);
|
||
|
tegra_spi_flush_fifos(tspi);
|
||
|
reset_control_assert(tspi->rst);
|
||
|
udelay(2);
|
||
|
reset_control_deassert(tspi->rst);
|
||
|
tspi->last_used_cs = master->num_chipselect + 1;
|
||
|
goto complete_xfer;
|
||
|
}
|
||
|
|
||
|
if (tspi->tx_status || tspi->rx_status) {
|
||
|
dev_err(tspi->dev, "Error in Transfer\n");
|
||
|
ret = -EIO;
|
||
|
tegra_spi_dump_regs(tspi);
|
||
|
goto complete_xfer;
|
||
|
}
|
||
|
msg->actual_length += xfer->len;
|
||
|
|
||
|
complete_xfer:
|
||
|
if (ret < 0 || skip) {
|
||
|
tegra_spi_transfer_end(spi);
|
||
|
spi_transfer_delay_exec(xfer);
|
||
|
goto exit;
|
||
|
} else if (list_is_last(&xfer->transfer_list,
|
||
|
&msg->transfers)) {
|
||
|
if (xfer->cs_change)
|
||
|
tspi->cs_control = spi;
|
||
|
else {
|
||
|
tegra_spi_transfer_end(spi);
|
||
|
spi_transfer_delay_exec(xfer);
|
||
|
}
|
||
|
} else if (xfer->cs_change) {
|
||
|
tegra_spi_transfer_end(spi);
|
||
|
spi_transfer_delay_exec(xfer);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
ret = 0;
|
||
|
exit:
|
||
|
msg->status = ret;
|
||
|
spi_finalize_current_message(master);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
|
||
|
{
|
||
|
struct spi_transfer *t = tspi->curr_xfer;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&tspi->lock, flags);
|
||
|
if (tspi->tx_status || tspi->rx_status) {
|
||
|
dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
|
||
|
tspi->status_reg);
|
||
|
dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
|
||
|
tspi->command1_reg, tspi->dma_control_reg);
|
||
|
tegra_spi_dump_regs(tspi);
|
||
|
tegra_spi_flush_fifos(tspi);
|
||
|
complete(&tspi->xfer_completion);
|
||
|
spin_unlock_irqrestore(&tspi->lock, flags);
|
||
|
reset_control_assert(tspi->rst);
|
||
|
udelay(2);
|
||
|
reset_control_deassert(tspi->rst);
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
if (tspi->cur_direction & DATA_DIR_RX)
|
||
|
tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
|
||
|
|
||
|
if (tspi->cur_direction & DATA_DIR_TX)
|
||
|
tspi->cur_pos = tspi->cur_tx_pos;
|
||
|
else
|
||
|
tspi->cur_pos = tspi->cur_rx_pos;
|
||
|
|
||
|
if (tspi->cur_pos == t->len) {
|
||
|
complete(&tspi->xfer_completion);
|
||
|
goto exit;
|
||
|
}
|
||
|
|
||
|
tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
|
||
|
tegra_spi_start_cpu_based_transfer(tspi, t);
|
||
|
exit:
|
||
|
spin_unlock_irqrestore(&tspi->lock, flags);
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
|
||
|
{
|
||
|
struct spi_transfer *t = tspi->curr_xfer;
|
||
|
long wait_status;
|
||
|
int err = 0;
|
||
|
unsigned total_fifo_words;
|
||
|
unsigned long flags;
|
||
|
|
||
|
/* Abort dmas if any error */
|
||
|
if (tspi->cur_direction & DATA_DIR_TX) {
|
||
|
if (tspi->tx_status) {
|
||
|
dmaengine_terminate_all(tspi->tx_dma_chan);
|
||
|
err += 1;
|
||
|
} else {
|
||
|
wait_status = wait_for_completion_interruptible_timeout(
|
||
|
&tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
|
||
|
if (wait_status <= 0) {
|
||
|
dmaengine_terminate_all(tspi->tx_dma_chan);
|
||
|
dev_err(tspi->dev, "TxDma Xfer failed\n");
|
||
|
err += 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (tspi->cur_direction & DATA_DIR_RX) {
|
||
|
if (tspi->rx_status) {
|
||
|
dmaengine_terminate_all(tspi->rx_dma_chan);
|
||
|
err += 2;
|
||
|
} else {
|
||
|
wait_status = wait_for_completion_interruptible_timeout(
|
||
|
&tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
|
||
|
if (wait_status <= 0) {
|
||
|
dmaengine_terminate_all(tspi->rx_dma_chan);
|
||
|
dev_err(tspi->dev, "RxDma Xfer failed\n");
|
||
|
err += 2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
spin_lock_irqsave(&tspi->lock, flags);
|
||
|
if (err) {
|
||
|
dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
|
||
|
tspi->status_reg);
|
||
|
dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
|
||
|
tspi->command1_reg, tspi->dma_control_reg);
|
||
|
tegra_spi_dump_regs(tspi);
|
||
|
tegra_spi_flush_fifos(tspi);
|
||
|
complete(&tspi->xfer_completion);
|
||
|
spin_unlock_irqrestore(&tspi->lock, flags);
|
||
|
reset_control_assert(tspi->rst);
|
||
|
udelay(2);
|
||
|
reset_control_deassert(tspi->rst);
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
if (tspi->cur_direction & DATA_DIR_RX)
|
||
|
tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
|
||
|
|
||
|
if (tspi->cur_direction & DATA_DIR_TX)
|
||
|
tspi->cur_pos = tspi->cur_tx_pos;
|
||
|
else
|
||
|
tspi->cur_pos = tspi->cur_rx_pos;
|
||
|
|
||
|
if (tspi->cur_pos == t->len) {
|
||
|
complete(&tspi->xfer_completion);
|
||
|
goto exit;
|
||
|
}
|
||
|
|
||
|
/* Continue transfer in current message */
|
||
|
total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
|
||
|
tspi, t);
|
||
|
if (total_fifo_words > SPI_FIFO_DEPTH)
|
||
|
err = tegra_spi_start_dma_based_transfer(tspi, t);
|
||
|
else
|
||
|
err = tegra_spi_start_cpu_based_transfer(tspi, t);
|
||
|
|
||
|
exit:
|
||
|
spin_unlock_irqrestore(&tspi->lock, flags);
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
|
||
|
{
|
||
|
struct tegra_spi_data *tspi = context_data;
|
||
|
|
||
|
if (!tspi->is_curr_dma_xfer)
|
||
|
return handle_cpu_based_xfer(tspi);
|
||
|
return handle_dma_based_xfer(tspi);
|
||
|
}
|
||
|
|
||
|
static irqreturn_t tegra_spi_isr(int irq, void *context_data)
|
||
|
{
|
||
|
struct tegra_spi_data *tspi = context_data;
|
||
|
|
||
|
tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
|
||
|
if (tspi->cur_direction & DATA_DIR_TX)
|
||
|
tspi->tx_status = tspi->status_reg &
|
||
|
(SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
|
||
|
|
||
|
if (tspi->cur_direction & DATA_DIR_RX)
|
||
|
tspi->rx_status = tspi->status_reg &
|
||
|
(SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
|
||
|
tegra_spi_clear_status(tspi);
|
||
|
|
||
|
return IRQ_WAKE_THREAD;
|
||
|
}
|
||
|
|
||
|
static struct tegra_spi_soc_data tegra114_spi_soc_data = {
|
||
|
.has_intr_mask_reg = false,
|
||
|
};
|
||
|
|
||
|
static struct tegra_spi_soc_data tegra124_spi_soc_data = {
|
||
|
.has_intr_mask_reg = false,
|
||
|
};
|
||
|
|
||
|
static struct tegra_spi_soc_data tegra210_spi_soc_data = {
|
||
|
.has_intr_mask_reg = true,
|
||
|
};
|
||
|
|
||
|
static const struct of_device_id tegra_spi_of_match[] = {
|
||
|
{
|
||
|
.compatible = "nvidia,tegra114-spi",
|
||
|
.data = &tegra114_spi_soc_data,
|
||
|
}, {
|
||
|
.compatible = "nvidia,tegra124-spi",
|
||
|
.data = &tegra124_spi_soc_data,
|
||
|
}, {
|
||
|
.compatible = "nvidia,tegra210-spi",
|
||
|
.data = &tegra210_spi_soc_data,
|
||
|
},
|
||
|
{}
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
|
||
|
|
||
|
static int tegra_spi_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
struct spi_master *master;
|
||
|
struct tegra_spi_data *tspi;
|
||
|
struct resource *r;
|
||
|
int ret, spi_irq;
|
||
|
int bus_num;
|
||
|
|
||
|
master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
|
||
|
if (!master) {
|
||
|
dev_err(&pdev->dev, "master allocation failed\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
platform_set_drvdata(pdev, master);
|
||
|
tspi = spi_master_get_devdata(master);
|
||
|
|
||
|
if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
|
||
|
&master->max_speed_hz))
|
||
|
master->max_speed_hz = 25000000; /* 25MHz */
|
||
|
|
||
|
/* the spi->mode bits understood by this driver: */
|
||
|
master->use_gpio_descriptors = true;
|
||
|
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
|
||
|
SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE;
|
||
|
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
|
||
|
master->setup = tegra_spi_setup;
|
||
|
master->cleanup = tegra_spi_cleanup;
|
||
|
master->transfer_one_message = tegra_spi_transfer_one_message;
|
||
|
master->set_cs_timing = tegra_spi_set_hw_cs_timing;
|
||
|
master->num_chipselect = MAX_CHIP_SELECT;
|
||
|
master->auto_runtime_pm = true;
|
||
|
bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
|
||
|
if (bus_num >= 0)
|
||
|
master->bus_num = bus_num;
|
||
|
|
||
|
tspi->master = master;
|
||
|
tspi->dev = &pdev->dev;
|
||
|
spin_lock_init(&tspi->lock);
|
||
|
|
||
|
tspi->soc_data = of_device_get_match_data(&pdev->dev);
|
||
|
if (!tspi->soc_data) {
|
||
|
dev_err(&pdev->dev, "unsupported tegra\n");
|
||
|
ret = -ENODEV;
|
||
|
goto exit_free_master;
|
||
|
}
|
||
|
|
||
|
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
||
|
tspi->base = devm_ioremap_resource(&pdev->dev, r);
|
||
|
if (IS_ERR(tspi->base)) {
|
||
|
ret = PTR_ERR(tspi->base);
|
||
|
goto exit_free_master;
|
||
|
}
|
||
|
tspi->phys = r->start;
|
||
|
|
||
|
spi_irq = platform_get_irq(pdev, 0);
|
||
|
if (spi_irq < 0) {
|
||
|
ret = spi_irq;
|
||
|
goto exit_free_master;
|
||
|
}
|
||
|
tspi->irq = spi_irq;
|
||
|
|
||
|
tspi->clk = devm_clk_get(&pdev->dev, "spi");
|
||
|
if (IS_ERR(tspi->clk)) {
|
||
|
dev_err(&pdev->dev, "can not get clock\n");
|
||
|
ret = PTR_ERR(tspi->clk);
|
||
|
goto exit_free_master;
|
||
|
}
|
||
|
|
||
|
tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi");
|
||
|
if (IS_ERR(tspi->rst)) {
|
||
|
dev_err(&pdev->dev, "can not get reset\n");
|
||
|
ret = PTR_ERR(tspi->rst);
|
||
|
goto exit_free_master;
|
||
|
}
|
||
|
|
||
|
tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
|
||
|
tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
|
||
|
|
||
|
ret = tegra_spi_init_dma_param(tspi, true);
|
||
|
if (ret < 0)
|
||
|
goto exit_free_master;
|
||
|
ret = tegra_spi_init_dma_param(tspi, false);
|
||
|
if (ret < 0)
|
||
|
goto exit_rx_dma_free;
|
||
|
tspi->max_buf_size = tspi->dma_buf_size;
|
||
|
init_completion(&tspi->tx_dma_complete);
|
||
|
init_completion(&tspi->rx_dma_complete);
|
||
|
|
||
|
init_completion(&tspi->xfer_completion);
|
||
|
|
||
|
pm_runtime_enable(&pdev->dev);
|
||
|
if (!pm_runtime_enabled(&pdev->dev)) {
|
||
|
ret = tegra_spi_runtime_resume(&pdev->dev);
|
||
|
if (ret)
|
||
|
goto exit_pm_disable;
|
||
|
}
|
||
|
|
||
|
ret = pm_runtime_resume_and_get(&pdev->dev);
|
||
|
if (ret < 0) {
|
||
|
dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
|
||
|
goto exit_pm_disable;
|
||
|
}
|
||
|
|
||
|
reset_control_assert(tspi->rst);
|
||
|
udelay(2);
|
||
|
reset_control_deassert(tspi->rst);
|
||
|
tspi->def_command1_reg = SPI_M_S;
|
||
|
tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
|
||
|
tspi->spi_cs_timing1 = tegra_spi_readl(tspi, SPI_CS_TIMING1);
|
||
|
tspi->spi_cs_timing2 = tegra_spi_readl(tspi, SPI_CS_TIMING2);
|
||
|
tspi->def_command2_reg = tegra_spi_readl(tspi, SPI_COMMAND2);
|
||
|
tspi->last_used_cs = master->num_chipselect + 1;
|
||
|
pm_runtime_put(&pdev->dev);
|
||
|
ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
|
||
|
tegra_spi_isr_thread, IRQF_ONESHOT,
|
||
|
dev_name(&pdev->dev), tspi);
|
||
|
if (ret < 0) {
|
||
|
dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
|
||
|
tspi->irq);
|
||
|
goto exit_pm_disable;
|
||
|
}
|
||
|
|
||
|
master->dev.of_node = pdev->dev.of_node;
|
||
|
ret = devm_spi_register_master(&pdev->dev, master);
|
||
|
if (ret < 0) {
|
||
|
dev_err(&pdev->dev, "can not register to master err %d\n", ret);
|
||
|
goto exit_free_irq;
|
||
|
}
|
||
|
return ret;
|
||
|
|
||
|
exit_free_irq:
|
||
|
free_irq(spi_irq, tspi);
|
||
|
exit_pm_disable:
|
||
|
pm_runtime_disable(&pdev->dev);
|
||
|
if (!pm_runtime_status_suspended(&pdev->dev))
|
||
|
tegra_spi_runtime_suspend(&pdev->dev);
|
||
|
tegra_spi_deinit_dma_param(tspi, false);
|
||
|
exit_rx_dma_free:
|
||
|
tegra_spi_deinit_dma_param(tspi, true);
|
||
|
exit_free_master:
|
||
|
spi_master_put(master);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int tegra_spi_remove(struct platform_device *pdev)
|
||
|
{
|
||
|
struct spi_master *master = platform_get_drvdata(pdev);
|
||
|
struct tegra_spi_data *tspi = spi_master_get_devdata(master);
|
||
|
|
||
|
free_irq(tspi->irq, tspi);
|
||
|
|
||
|
if (tspi->tx_dma_chan)
|
||
|
tegra_spi_deinit_dma_param(tspi, false);
|
||
|
|
||
|
if (tspi->rx_dma_chan)
|
||
|
tegra_spi_deinit_dma_param(tspi, true);
|
||
|
|
||
|
pm_runtime_disable(&pdev->dev);
|
||
|
if (!pm_runtime_status_suspended(&pdev->dev))
|
||
|
tegra_spi_runtime_suspend(&pdev->dev);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PM_SLEEP
|
||
|
static int tegra_spi_suspend(struct device *dev)
|
||
|
{
|
||
|
struct spi_master *master = dev_get_drvdata(dev);
|
||
|
|
||
|
return spi_master_suspend(master);
|
||
|
}
|
||
|
|
||
|
static int tegra_spi_resume(struct device *dev)
|
||
|
{
|
||
|
struct spi_master *master = dev_get_drvdata(dev);
|
||
|
struct tegra_spi_data *tspi = spi_master_get_devdata(master);
|
||
|
int ret;
|
||
|
|
||
|
ret = pm_runtime_resume_and_get(dev);
|
||
|
if (ret < 0) {
|
||
|
dev_err(dev, "pm runtime failed, e = %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
|
||
|
tegra_spi_writel(tspi, tspi->def_command2_reg, SPI_COMMAND2);
|
||
|
tspi->last_used_cs = master->num_chipselect + 1;
|
||
|
pm_runtime_put(dev);
|
||
|
|
||
|
return spi_master_resume(master);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static int tegra_spi_runtime_suspend(struct device *dev)
|
||
|
{
|
||
|
struct spi_master *master = dev_get_drvdata(dev);
|
||
|
struct tegra_spi_data *tspi = spi_master_get_devdata(master);
|
||
|
|
||
|
/* Flush all write which are in PPSB queue by reading back */
|
||
|
tegra_spi_readl(tspi, SPI_COMMAND1);
|
||
|
|
||
|
clk_disable_unprepare(tspi->clk);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int tegra_spi_runtime_resume(struct device *dev)
|
||
|
{
|
||
|
struct spi_master *master = dev_get_drvdata(dev);
|
||
|
struct tegra_spi_data *tspi = spi_master_get_devdata(master);
|
||
|
int ret;
|
||
|
|
||
|
ret = clk_prepare_enable(tspi->clk);
|
||
|
if (ret < 0) {
|
||
|
dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct dev_pm_ops tegra_spi_pm_ops = {
|
||
|
SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
|
||
|
tegra_spi_runtime_resume, NULL)
|
||
|
SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
|
||
|
};
|
||
|
static struct platform_driver tegra_spi_driver = {
|
||
|
.driver = {
|
||
|
.name = "spi-tegra114",
|
||
|
.pm = &tegra_spi_pm_ops,
|
||
|
.of_match_table = tegra_spi_of_match,
|
||
|
},
|
||
|
.probe = tegra_spi_probe,
|
||
|
.remove = tegra_spi_remove,
|
||
|
};
|
||
|
module_platform_driver(tegra_spi_driver);
|
||
|
|
||
|
MODULE_ALIAS("platform:spi-tegra114");
|
||
|
MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
|
||
|
MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
|
||
|
MODULE_LICENSE("GPL v2");
|