457 lines
12 KiB
C
457 lines
12 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
/*
|
||
|
* Adaptec AAC series RAID controller driver
|
||
|
* (c) Copyright 2001 Red Hat Inc.
|
||
|
*
|
||
|
* based on the old aacraid driver that is..
|
||
|
* Adaptec aacraid device driver for Linux.
|
||
|
*
|
||
|
* Copyright (c) 2000-2010 Adaptec, Inc.
|
||
|
* 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
|
||
|
* 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
|
||
|
*
|
||
|
* Module Name:
|
||
|
* dpcsup.c
|
||
|
*
|
||
|
* Abstract: All DPC processing routines for the cyclone board occur here.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/completion.h>
|
||
|
#include <linux/blkdev.h>
|
||
|
|
||
|
#include "aacraid.h"
|
||
|
|
||
|
/**
|
||
|
* aac_response_normal - Handle command replies
|
||
|
* @q: Queue to read from
|
||
|
*
|
||
|
* This DPC routine will be run when the adapter interrupts us to let us
|
||
|
* know there is a response on our normal priority queue. We will pull off
|
||
|
* all QE there are and wake up all the waiters before exiting. We will
|
||
|
* take a spinlock out on the queue before operating on it.
|
||
|
*/
|
||
|
|
||
|
unsigned int aac_response_normal(struct aac_queue * q)
|
||
|
{
|
||
|
struct aac_dev * dev = q->dev;
|
||
|
struct aac_entry *entry;
|
||
|
struct hw_fib * hwfib;
|
||
|
struct fib * fib;
|
||
|
int consumed = 0;
|
||
|
unsigned long flags, mflags;
|
||
|
|
||
|
spin_lock_irqsave(q->lock, flags);
|
||
|
/*
|
||
|
* Keep pulling response QEs off the response queue and waking
|
||
|
* up the waiters until there are no more QEs. We then return
|
||
|
* back to the system. If no response was requested we just
|
||
|
* deallocate the Fib here and continue.
|
||
|
*/
|
||
|
while(aac_consumer_get(dev, q, &entry))
|
||
|
{
|
||
|
int fast;
|
||
|
u32 index = le32_to_cpu(entry->addr);
|
||
|
fast = index & 0x01;
|
||
|
fib = &dev->fibs[index >> 2];
|
||
|
hwfib = fib->hw_fib_va;
|
||
|
|
||
|
aac_consumer_free(dev, q, HostNormRespQueue);
|
||
|
/*
|
||
|
* Remove this fib from the Outstanding I/O queue.
|
||
|
* But only if it has not already been timed out.
|
||
|
*
|
||
|
* If the fib has been timed out already, then just
|
||
|
* continue. The caller has already been notified that
|
||
|
* the fib timed out.
|
||
|
*/
|
||
|
atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
|
||
|
|
||
|
if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
|
||
|
spin_unlock_irqrestore(q->lock, flags);
|
||
|
aac_fib_complete(fib);
|
||
|
aac_fib_free(fib);
|
||
|
spin_lock_irqsave(q->lock, flags);
|
||
|
continue;
|
||
|
}
|
||
|
spin_unlock_irqrestore(q->lock, flags);
|
||
|
|
||
|
if (fast) {
|
||
|
/*
|
||
|
* Doctor the fib
|
||
|
*/
|
||
|
*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
|
||
|
hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
|
||
|
fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
|
||
|
}
|
||
|
|
||
|
FIB_COUNTER_INCREMENT(aac_config.FibRecved);
|
||
|
|
||
|
if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
|
||
|
{
|
||
|
__le32 *pstatus = (__le32 *)hwfib->data;
|
||
|
if (*pstatus & cpu_to_le32(0xffff0000))
|
||
|
*pstatus = cpu_to_le32(ST_OK);
|
||
|
}
|
||
|
if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
|
||
|
{
|
||
|
if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) {
|
||
|
FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
|
||
|
} else {
|
||
|
FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
|
||
|
}
|
||
|
/*
|
||
|
* NOTE: we cannot touch the fib after this
|
||
|
* call, because it may have been deallocated.
|
||
|
*/
|
||
|
fib->callback(fib->callback_data, fib);
|
||
|
} else {
|
||
|
unsigned long flagv;
|
||
|
spin_lock_irqsave(&fib->event_lock, flagv);
|
||
|
if (!fib->done) {
|
||
|
fib->done = 1;
|
||
|
complete(&fib->event_wait);
|
||
|
}
|
||
|
spin_unlock_irqrestore(&fib->event_lock, flagv);
|
||
|
|
||
|
spin_lock_irqsave(&dev->manage_lock, mflags);
|
||
|
dev->management_fib_count--;
|
||
|
spin_unlock_irqrestore(&dev->manage_lock, mflags);
|
||
|
|
||
|
FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
|
||
|
if (fib->done == 2) {
|
||
|
spin_lock_irqsave(&fib->event_lock, flagv);
|
||
|
fib->done = 0;
|
||
|
spin_unlock_irqrestore(&fib->event_lock, flagv);
|
||
|
aac_fib_complete(fib);
|
||
|
aac_fib_free(fib);
|
||
|
}
|
||
|
}
|
||
|
consumed++;
|
||
|
spin_lock_irqsave(q->lock, flags);
|
||
|
}
|
||
|
|
||
|
if (consumed > aac_config.peak_fibs)
|
||
|
aac_config.peak_fibs = consumed;
|
||
|
if (consumed == 0)
|
||
|
aac_config.zero_fibs++;
|
||
|
|
||
|
spin_unlock_irqrestore(q->lock, flags);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* aac_command_normal - handle commands
|
||
|
* @q: queue to process
|
||
|
*
|
||
|
* This DPC routine will be queued when the adapter interrupts us to
|
||
|
* let us know there is a command on our normal priority queue. We will
|
||
|
* pull off all QE there are and wake up all the waiters before exiting.
|
||
|
* We will take a spinlock out on the queue before operating on it.
|
||
|
*/
|
||
|
|
||
|
unsigned int aac_command_normal(struct aac_queue *q)
|
||
|
{
|
||
|
struct aac_dev * dev = q->dev;
|
||
|
struct aac_entry *entry;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(q->lock, flags);
|
||
|
|
||
|
/*
|
||
|
* Keep pulling response QEs off the response queue and waking
|
||
|
* up the waiters until there are no more QEs. We then return
|
||
|
* back to the system.
|
||
|
*/
|
||
|
while(aac_consumer_get(dev, q, &entry))
|
||
|
{
|
||
|
struct fib fibctx;
|
||
|
struct hw_fib * hw_fib;
|
||
|
u32 index;
|
||
|
struct fib *fib = &fibctx;
|
||
|
|
||
|
index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
|
||
|
hw_fib = &dev->aif_base_va[index];
|
||
|
|
||
|
/*
|
||
|
* Allocate a FIB at all costs. For non queued stuff
|
||
|
* we can just use the stack so we are happy. We need
|
||
|
* a fib object in order to manage the linked lists
|
||
|
*/
|
||
|
if (dev->aif_thread)
|
||
|
if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
|
||
|
fib = &fibctx;
|
||
|
|
||
|
memset(fib, 0, sizeof(struct fib));
|
||
|
INIT_LIST_HEAD(&fib->fiblink);
|
||
|
fib->type = FSAFS_NTC_FIB_CONTEXT;
|
||
|
fib->size = sizeof(struct fib);
|
||
|
fib->hw_fib_va = hw_fib;
|
||
|
fib->data = hw_fib->data;
|
||
|
fib->dev = dev;
|
||
|
|
||
|
|
||
|
if (dev->aif_thread && fib != &fibctx) {
|
||
|
list_add_tail(&fib->fiblink, &q->cmdq);
|
||
|
aac_consumer_free(dev, q, HostNormCmdQueue);
|
||
|
wake_up_interruptible(&q->cmdready);
|
||
|
} else {
|
||
|
aac_consumer_free(dev, q, HostNormCmdQueue);
|
||
|
spin_unlock_irqrestore(q->lock, flags);
|
||
|
/*
|
||
|
* Set the status of this FIB
|
||
|
*/
|
||
|
*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
|
||
|
aac_fib_adapter_complete(fib, sizeof(u32));
|
||
|
spin_lock_irqsave(q->lock, flags);
|
||
|
}
|
||
|
}
|
||
|
spin_unlock_irqrestore(q->lock, flags);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
*
|
||
|
* aac_aif_callback
|
||
|
* @context: the context set in the fib - here it is scsi cmd
|
||
|
* @fibptr: pointer to the fib
|
||
|
*
|
||
|
* Handles the AIFs - new method (SRC)
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
static void aac_aif_callback(void *context, struct fib * fibptr)
|
||
|
{
|
||
|
struct fib *fibctx;
|
||
|
struct aac_dev *dev;
|
||
|
struct aac_aifcmd *cmd;
|
||
|
|
||
|
fibctx = (struct fib *)context;
|
||
|
BUG_ON(fibptr == NULL);
|
||
|
dev = fibptr->dev;
|
||
|
|
||
|
if ((fibptr->hw_fib_va->header.XferState &
|
||
|
cpu_to_le32(NoMoreAifDataAvailable)) ||
|
||
|
dev->sa_firmware) {
|
||
|
aac_fib_complete(fibptr);
|
||
|
aac_fib_free(fibptr);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va);
|
||
|
|
||
|
aac_fib_init(fibctx);
|
||
|
cmd = (struct aac_aifcmd *) fib_data(fibctx);
|
||
|
cmd->command = cpu_to_le32(AifReqEvent);
|
||
|
|
||
|
aac_fib_send(AifRequest,
|
||
|
fibctx,
|
||
|
sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
|
||
|
FsaNormal,
|
||
|
0, 1,
|
||
|
(fib_callback)aac_aif_callback, fibctx);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* aac_intr_normal - Handle command replies
|
||
|
* @dev: Device
|
||
|
* @index: completion reference
|
||
|
*
|
||
|
* This DPC routine will be run when the adapter interrupts us to let us
|
||
|
* know there is a response on our normal priority queue. We will pull off
|
||
|
* all QE there are and wake up all the waiters before exiting.
|
||
|
*/
|
||
|
unsigned int aac_intr_normal(struct aac_dev *dev, u32 index, int isAif,
|
||
|
int isFastResponse, struct hw_fib *aif_fib)
|
||
|
{
|
||
|
unsigned long mflags;
|
||
|
dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index));
|
||
|
if (isAif == 1) { /* AIF - common */
|
||
|
struct hw_fib * hw_fib;
|
||
|
struct fib * fib;
|
||
|
struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
|
||
|
unsigned long flags;
|
||
|
|
||
|
/*
|
||
|
* Allocate a FIB. For non queued stuff we can just use
|
||
|
* the stack so we are happy. We need a fib object in order to
|
||
|
* manage the linked lists.
|
||
|
*/
|
||
|
if ((!dev->aif_thread)
|
||
|
|| (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC))))
|
||
|
return 1;
|
||
|
if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
|
||
|
kfree (fib);
|
||
|
return 1;
|
||
|
}
|
||
|
if (dev->sa_firmware) {
|
||
|
fib->hbacmd_size = index; /* store event type */
|
||
|
} else if (aif_fib != NULL) {
|
||
|
memcpy(hw_fib, aif_fib, sizeof(struct hw_fib));
|
||
|
} else {
|
||
|
memcpy(hw_fib, (struct hw_fib *)
|
||
|
(((uintptr_t)(dev->regs.sa)) + index),
|
||
|
sizeof(struct hw_fib));
|
||
|
}
|
||
|
INIT_LIST_HEAD(&fib->fiblink);
|
||
|
fib->type = FSAFS_NTC_FIB_CONTEXT;
|
||
|
fib->size = sizeof(struct fib);
|
||
|
fib->hw_fib_va = hw_fib;
|
||
|
fib->data = hw_fib->data;
|
||
|
fib->dev = dev;
|
||
|
|
||
|
spin_lock_irqsave(q->lock, flags);
|
||
|
list_add_tail(&fib->fiblink, &q->cmdq);
|
||
|
wake_up_interruptible(&q->cmdready);
|
||
|
spin_unlock_irqrestore(q->lock, flags);
|
||
|
return 1;
|
||
|
} else if (isAif == 2) { /* AIF - new (SRC) */
|
||
|
struct fib *fibctx;
|
||
|
struct aac_aifcmd *cmd;
|
||
|
|
||
|
fibctx = aac_fib_alloc(dev);
|
||
|
if (!fibctx)
|
||
|
return 1;
|
||
|
aac_fib_init(fibctx);
|
||
|
|
||
|
cmd = (struct aac_aifcmd *) fib_data(fibctx);
|
||
|
cmd->command = cpu_to_le32(AifReqEvent);
|
||
|
|
||
|
return aac_fib_send(AifRequest,
|
||
|
fibctx,
|
||
|
sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
|
||
|
FsaNormal,
|
||
|
0, 1,
|
||
|
(fib_callback)aac_aif_callback, fibctx);
|
||
|
} else {
|
||
|
struct fib *fib = &dev->fibs[index];
|
||
|
int start_callback = 0;
|
||
|
|
||
|
/*
|
||
|
* Remove this fib from the Outstanding I/O queue.
|
||
|
* But only if it has not already been timed out.
|
||
|
*
|
||
|
* If the fib has been timed out already, then just
|
||
|
* continue. The caller has already been notified that
|
||
|
* the fib timed out.
|
||
|
*/
|
||
|
atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
|
||
|
|
||
|
if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
|
||
|
aac_fib_complete(fib);
|
||
|
aac_fib_free(fib);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
FIB_COUNTER_INCREMENT(aac_config.FibRecved);
|
||
|
|
||
|
if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
|
||
|
|
||
|
if (isFastResponse)
|
||
|
fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
|
||
|
|
||
|
if (fib->callback) {
|
||
|
start_callback = 1;
|
||
|
} else {
|
||
|
unsigned long flagv;
|
||
|
int completed = 0;
|
||
|
|
||
|
dprintk((KERN_INFO "event_wait up\n"));
|
||
|
spin_lock_irqsave(&fib->event_lock, flagv);
|
||
|
if (fib->done == 2) {
|
||
|
fib->done = 1;
|
||
|
completed = 1;
|
||
|
} else {
|
||
|
fib->done = 1;
|
||
|
complete(&fib->event_wait);
|
||
|
}
|
||
|
spin_unlock_irqrestore(&fib->event_lock, flagv);
|
||
|
|
||
|
spin_lock_irqsave(&dev->manage_lock, mflags);
|
||
|
dev->management_fib_count--;
|
||
|
spin_unlock_irqrestore(&dev->manage_lock,
|
||
|
mflags);
|
||
|
|
||
|
FIB_COUNTER_INCREMENT(aac_config.NativeRecved);
|
||
|
if (completed)
|
||
|
aac_fib_complete(fib);
|
||
|
}
|
||
|
} else {
|
||
|
struct hw_fib *hwfib = fib->hw_fib_va;
|
||
|
|
||
|
if (isFastResponse) {
|
||
|
/* Doctor the fib */
|
||
|
*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
|
||
|
hwfib->header.XferState |=
|
||
|
cpu_to_le32(AdapterProcessed);
|
||
|
fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
|
||
|
}
|
||
|
|
||
|
if (hwfib->header.Command ==
|
||
|
cpu_to_le16(NuFileSystem)) {
|
||
|
__le32 *pstatus = (__le32 *)hwfib->data;
|
||
|
|
||
|
if (*pstatus & cpu_to_le32(0xffff0000))
|
||
|
*pstatus = cpu_to_le32(ST_OK);
|
||
|
}
|
||
|
if (hwfib->header.XferState &
|
||
|
cpu_to_le32(NoResponseExpected | Async)) {
|
||
|
if (hwfib->header.XferState & cpu_to_le32(
|
||
|
NoResponseExpected)) {
|
||
|
FIB_COUNTER_INCREMENT(
|
||
|
aac_config.NoResponseRecved);
|
||
|
} else {
|
||
|
FIB_COUNTER_INCREMENT(
|
||
|
aac_config.AsyncRecved);
|
||
|
}
|
||
|
start_callback = 1;
|
||
|
} else {
|
||
|
unsigned long flagv;
|
||
|
int completed = 0;
|
||
|
|
||
|
dprintk((KERN_INFO "event_wait up\n"));
|
||
|
spin_lock_irqsave(&fib->event_lock, flagv);
|
||
|
if (fib->done == 2) {
|
||
|
fib->done = 1;
|
||
|
completed = 1;
|
||
|
} else {
|
||
|
fib->done = 1;
|
||
|
complete(&fib->event_wait);
|
||
|
}
|
||
|
spin_unlock_irqrestore(&fib->event_lock, flagv);
|
||
|
|
||
|
spin_lock_irqsave(&dev->manage_lock, mflags);
|
||
|
dev->management_fib_count--;
|
||
|
spin_unlock_irqrestore(&dev->manage_lock,
|
||
|
mflags);
|
||
|
|
||
|
FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
|
||
|
if (completed)
|
||
|
aac_fib_complete(fib);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
if (start_callback) {
|
||
|
/*
|
||
|
* NOTE: we cannot touch the fib after this
|
||
|
* call, because it may have been deallocated.
|
||
|
*/
|
||
|
if (likely(fib->callback && fib->callback_data)) {
|
||
|
fib->callback(fib->callback_data, fib);
|
||
|
} else {
|
||
|
aac_fib_complete(fib);
|
||
|
aac_fib_free(fib);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
}
|