298 lines
6.8 KiB
C
298 lines
6.8 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Copyright 2020 Linaro Limited
|
||
|
*
|
||
|
* Author: Daniel Lezcano <daniel.lezcano@linaro.org>
|
||
|
*
|
||
|
* The DTPM CPU is based on the energy model. It hooks the CPU in the
|
||
|
* DTPM tree which in turns update the power number by propagating the
|
||
|
* power number from the CPU energy model information to the parents.
|
||
|
*
|
||
|
* The association between the power and the performance state, allows
|
||
|
* to set the power of the CPU at the OPP granularity.
|
||
|
*
|
||
|
* The CPU hotplug is supported and the power numbers will be updated
|
||
|
* if a CPU is hot plugged / unplugged.
|
||
|
*/
|
||
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||
|
|
||
|
#include <linux/cpumask.h>
|
||
|
#include <linux/cpufreq.h>
|
||
|
#include <linux/cpuhotplug.h>
|
||
|
#include <linux/dtpm.h>
|
||
|
#include <linux/energy_model.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/pm_qos.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/units.h>
|
||
|
|
||
|
struct dtpm_cpu {
|
||
|
struct dtpm dtpm;
|
||
|
struct freq_qos_request qos_req;
|
||
|
int cpu;
|
||
|
};
|
||
|
|
||
|
static DEFINE_PER_CPU(struct dtpm_cpu *, dtpm_per_cpu);
|
||
|
|
||
|
static struct dtpm_cpu *to_dtpm_cpu(struct dtpm *dtpm)
|
||
|
{
|
||
|
return container_of(dtpm, struct dtpm_cpu, dtpm);
|
||
|
}
|
||
|
|
||
|
static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
|
||
|
{
|
||
|
struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
|
||
|
struct em_perf_domain *pd = em_cpu_get(dtpm_cpu->cpu);
|
||
|
struct cpumask cpus;
|
||
|
unsigned long freq;
|
||
|
u64 power;
|
||
|
int i, nr_cpus;
|
||
|
|
||
|
cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus));
|
||
|
nr_cpus = cpumask_weight(&cpus);
|
||
|
|
||
|
for (i = 0; i < pd->nr_perf_states; i++) {
|
||
|
|
||
|
power = pd->table[i].power * nr_cpus;
|
||
|
|
||
|
if (power > power_limit)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
freq = pd->table[i - 1].frequency;
|
||
|
|
||
|
freq_qos_update_request(&dtpm_cpu->qos_req, freq);
|
||
|
|
||
|
power_limit = pd->table[i - 1].power * nr_cpus;
|
||
|
|
||
|
return power_limit;
|
||
|
}
|
||
|
|
||
|
static u64 scale_pd_power_uw(struct cpumask *pd_mask, u64 power)
|
||
|
{
|
||
|
unsigned long max, sum_util = 0;
|
||
|
int cpu;
|
||
|
|
||
|
/*
|
||
|
* The capacity is the same for all CPUs belonging to
|
||
|
* the same perf domain.
|
||
|
*/
|
||
|
max = arch_scale_cpu_capacity(cpumask_first(pd_mask));
|
||
|
|
||
|
for_each_cpu_and(cpu, pd_mask, cpu_online_mask)
|
||
|
sum_util += sched_cpu_util(cpu);
|
||
|
|
||
|
return (power * ((sum_util << 10) / max)) >> 10;
|
||
|
}
|
||
|
|
||
|
static u64 get_pd_power_uw(struct dtpm *dtpm)
|
||
|
{
|
||
|
struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
|
||
|
struct em_perf_domain *pd;
|
||
|
struct cpumask *pd_mask;
|
||
|
unsigned long freq;
|
||
|
int i;
|
||
|
|
||
|
pd = em_cpu_get(dtpm_cpu->cpu);
|
||
|
|
||
|
pd_mask = em_span_cpus(pd);
|
||
|
|
||
|
freq = cpufreq_quick_get(dtpm_cpu->cpu);
|
||
|
|
||
|
for (i = 0; i < pd->nr_perf_states; i++) {
|
||
|
|
||
|
if (pd->table[i].frequency < freq)
|
||
|
continue;
|
||
|
|
||
|
return scale_pd_power_uw(pd_mask, pd->table[i].power *
|
||
|
MICROWATT_PER_MILLIWATT);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int update_pd_power_uw(struct dtpm *dtpm)
|
||
|
{
|
||
|
struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
|
||
|
struct em_perf_domain *em = em_cpu_get(dtpm_cpu->cpu);
|
||
|
struct cpumask cpus;
|
||
|
int nr_cpus;
|
||
|
|
||
|
cpumask_and(&cpus, cpu_online_mask, to_cpumask(em->cpus));
|
||
|
nr_cpus = cpumask_weight(&cpus);
|
||
|
|
||
|
dtpm->power_min = em->table[0].power;
|
||
|
dtpm->power_min *= MICROWATT_PER_MILLIWATT;
|
||
|
dtpm->power_min *= nr_cpus;
|
||
|
|
||
|
dtpm->power_max = em->table[em->nr_perf_states - 1].power;
|
||
|
dtpm->power_max *= MICROWATT_PER_MILLIWATT;
|
||
|
dtpm->power_max *= nr_cpus;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void pd_release(struct dtpm *dtpm)
|
||
|
{
|
||
|
struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
|
||
|
struct cpufreq_policy *policy;
|
||
|
|
||
|
if (freq_qos_request_active(&dtpm_cpu->qos_req))
|
||
|
freq_qos_remove_request(&dtpm_cpu->qos_req);
|
||
|
|
||
|
policy = cpufreq_cpu_get(dtpm_cpu->cpu);
|
||
|
if (policy) {
|
||
|
for_each_cpu(dtpm_cpu->cpu, policy->related_cpus)
|
||
|
per_cpu(dtpm_per_cpu, dtpm_cpu->cpu) = NULL;
|
||
|
}
|
||
|
|
||
|
kfree(dtpm_cpu);
|
||
|
}
|
||
|
|
||
|
static struct dtpm_ops dtpm_ops = {
|
||
|
.set_power_uw = set_pd_power_limit,
|
||
|
.get_power_uw = get_pd_power_uw,
|
||
|
.update_power_uw = update_pd_power_uw,
|
||
|
.release = pd_release,
|
||
|
};
|
||
|
|
||
|
static int cpuhp_dtpm_cpu_offline(unsigned int cpu)
|
||
|
{
|
||
|
struct dtpm_cpu *dtpm_cpu;
|
||
|
|
||
|
dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
|
||
|
if (dtpm_cpu)
|
||
|
dtpm_update_power(&dtpm_cpu->dtpm);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cpuhp_dtpm_cpu_online(unsigned int cpu)
|
||
|
{
|
||
|
struct dtpm_cpu *dtpm_cpu;
|
||
|
|
||
|
dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
|
||
|
if (dtpm_cpu)
|
||
|
return dtpm_update_power(&dtpm_cpu->dtpm);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int __dtpm_cpu_setup(int cpu, struct dtpm *parent)
|
||
|
{
|
||
|
struct dtpm_cpu *dtpm_cpu;
|
||
|
struct cpufreq_policy *policy;
|
||
|
struct em_perf_domain *pd;
|
||
|
char name[CPUFREQ_NAME_LEN];
|
||
|
int ret = -ENOMEM;
|
||
|
|
||
|
dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
|
||
|
if (dtpm_cpu)
|
||
|
return 0;
|
||
|
|
||
|
policy = cpufreq_cpu_get(cpu);
|
||
|
if (!policy)
|
||
|
return 0;
|
||
|
|
||
|
pd = em_cpu_get(cpu);
|
||
|
if (!pd || em_is_artificial(pd))
|
||
|
return -EINVAL;
|
||
|
|
||
|
dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL);
|
||
|
if (!dtpm_cpu)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
dtpm_init(&dtpm_cpu->dtpm, &dtpm_ops);
|
||
|
dtpm_cpu->cpu = cpu;
|
||
|
|
||
|
for_each_cpu(cpu, policy->related_cpus)
|
||
|
per_cpu(dtpm_per_cpu, cpu) = dtpm_cpu;
|
||
|
|
||
|
snprintf(name, sizeof(name), "cpu%d-cpufreq", dtpm_cpu->cpu);
|
||
|
|
||
|
ret = dtpm_register(name, &dtpm_cpu->dtpm, parent);
|
||
|
if (ret)
|
||
|
goto out_kfree_dtpm_cpu;
|
||
|
|
||
|
ret = freq_qos_add_request(&policy->constraints,
|
||
|
&dtpm_cpu->qos_req, FREQ_QOS_MAX,
|
||
|
pd->table[pd->nr_perf_states - 1].frequency);
|
||
|
if (ret)
|
||
|
goto out_dtpm_unregister;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
out_dtpm_unregister:
|
||
|
dtpm_unregister(&dtpm_cpu->dtpm);
|
||
|
dtpm_cpu = NULL;
|
||
|
|
||
|
out_kfree_dtpm_cpu:
|
||
|
for_each_cpu(cpu, policy->related_cpus)
|
||
|
per_cpu(dtpm_per_cpu, cpu) = NULL;
|
||
|
kfree(dtpm_cpu);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int dtpm_cpu_setup(struct dtpm *dtpm, struct device_node *np)
|
||
|
{
|
||
|
int cpu;
|
||
|
|
||
|
cpu = of_cpu_node_to_id(np);
|
||
|
if (cpu < 0)
|
||
|
return 0;
|
||
|
|
||
|
return __dtpm_cpu_setup(cpu, dtpm);
|
||
|
}
|
||
|
|
||
|
static int dtpm_cpu_init(void)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
/*
|
||
|
* The callbacks at CPU hotplug time are calling
|
||
|
* dtpm_update_power() which in turns calls update_pd_power().
|
||
|
*
|
||
|
* The function update_pd_power() uses the online mask to
|
||
|
* figure out the power consumption limits.
|
||
|
*
|
||
|
* At CPUHP_AP_ONLINE_DYN, the CPU is present in the CPU
|
||
|
* online mask when the cpuhp_dtpm_cpu_online function is
|
||
|
* called, but the CPU is still in the online mask for the
|
||
|
* tear down callback. So the power can not be updated when
|
||
|
* the CPU is unplugged.
|
||
|
*
|
||
|
* At CPUHP_AP_DTPM_CPU_DEAD, the situation is the opposite as
|
||
|
* above. The CPU online mask is not up to date when the CPU
|
||
|
* is plugged in.
|
||
|
*
|
||
|
* For this reason, we need to call the online and offline
|
||
|
* callbacks at different moments when the CPU online mask is
|
||
|
* consistent with the power numbers we want to update.
|
||
|
*/
|
||
|
ret = cpuhp_setup_state(CPUHP_AP_DTPM_CPU_DEAD, "dtpm_cpu:offline",
|
||
|
NULL, cpuhp_dtpm_cpu_offline);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "dtpm_cpu:online",
|
||
|
cpuhp_dtpm_cpu_online, NULL);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void dtpm_cpu_exit(void)
|
||
|
{
|
||
|
cpuhp_remove_state_nocalls(CPUHP_AP_ONLINE_DYN);
|
||
|
cpuhp_remove_state_nocalls(CPUHP_AP_DTPM_CPU_DEAD);
|
||
|
}
|
||
|
|
||
|
struct dtpm_subsys_ops dtpm_cpu_ops = {
|
||
|
.name = KBUILD_MODNAME,
|
||
|
.init = dtpm_cpu_init,
|
||
|
.exit = dtpm_cpu_exit,
|
||
|
.setup = dtpm_cpu_setup,
|
||
|
};
|