linuxdebug/drivers/net/ethernet/intel/ice/ice_xsk.c

1074 lines
27 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include <linux/bpf_trace.h>
#include <net/xdp_sock_drv.h>
#include <net/xdp.h>
#include "ice.h"
#include "ice_base.h"
#include "ice_type.h"
#include "ice_xsk.h"
#include "ice_txrx.h"
#include "ice_txrx_lib.h"
#include "ice_lib.h"
static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
{
return &rx_ring->xdp_buf[idx];
}
/**
* ice_qp_reset_stats - Resets all stats for rings of given index
* @vsi: VSI that contains rings of interest
* @q_idx: ring index in array
*/
static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
{
memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
sizeof(vsi->rx_rings[q_idx]->rx_stats));
memset(&vsi->tx_rings[q_idx]->stats, 0,
sizeof(vsi->tx_rings[q_idx]->stats));
if (ice_is_xdp_ena_vsi(vsi))
memset(&vsi->xdp_rings[q_idx]->stats, 0,
sizeof(vsi->xdp_rings[q_idx]->stats));
}
/**
* ice_qp_clean_rings - Cleans all the rings of a given index
* @vsi: VSI that contains rings of interest
* @q_idx: ring index in array
*/
static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
{
ice_clean_tx_ring(vsi->tx_rings[q_idx]);
if (ice_is_xdp_ena_vsi(vsi)) {
synchronize_rcu();
ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
}
ice_clean_rx_ring(vsi->rx_rings[q_idx]);
}
/**
* ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
* @vsi: VSI that has netdev
* @q_vector: q_vector that has NAPI context
* @enable: true for enable, false for disable
*/
static void
ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
bool enable)
{
if (!vsi->netdev || !q_vector)
return;
if (enable)
napi_enable(&q_vector->napi);
else
napi_disable(&q_vector->napi);
}
/**
* ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
* @vsi: the VSI that contains queue vector being un-configured
* @rx_ring: Rx ring that will have its IRQ disabled
* @q_vector: queue vector
*/
static void
ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
struct ice_q_vector *q_vector)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
int base = vsi->base_vector;
u16 reg;
u32 val;
/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
* here only QINT_RQCTL
*/
reg = rx_ring->reg_idx;
val = rd32(hw, QINT_RQCTL(reg));
val &= ~QINT_RQCTL_CAUSE_ENA_M;
wr32(hw, QINT_RQCTL(reg), val);
if (q_vector) {
u16 v_idx = q_vector->v_idx;
wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
ice_flush(hw);
synchronize_irq(pf->msix_entries[v_idx + base].vector);
}
}
/**
* ice_qvec_cfg_msix - Enable IRQ for given queue vector
* @vsi: the VSI that contains queue vector
* @q_vector: queue vector
*/
static void
ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
{
u16 reg_idx = q_vector->reg_idx;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
struct ice_tx_ring *tx_ring;
struct ice_rx_ring *rx_ring;
ice_cfg_itr(hw, q_vector);
ice_for_each_tx_ring(tx_ring, q_vector->tx)
ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
q_vector->tx.itr_idx);
ice_for_each_rx_ring(rx_ring, q_vector->rx)
ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
q_vector->rx.itr_idx);
ice_flush(hw);
}
/**
* ice_qvec_ena_irq - Enable IRQ for given queue vector
* @vsi: the VSI that contains queue vector
* @q_vector: queue vector
*/
static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
ice_irq_dynamic_ena(hw, vsi, q_vector);
ice_flush(hw);
}
/**
* ice_qp_dis - Disables a queue pair
* @vsi: VSI of interest
* @q_idx: ring index in array
*
* Returns 0 on success, negative on failure.
*/
static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
{
struct ice_txq_meta txq_meta = { };
struct ice_q_vector *q_vector;
struct ice_tx_ring *tx_ring;
struct ice_rx_ring *rx_ring;
int timeout = 50;
int err;
if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
return -EINVAL;
tx_ring = vsi->tx_rings[q_idx];
rx_ring = vsi->rx_rings[q_idx];
q_vector = rx_ring->q_vector;
while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
timeout--;
if (!timeout)
return -EBUSY;
usleep_range(1000, 2000);
}
netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
if (err)
return err;
if (ice_is_xdp_ena_vsi(vsi)) {
struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
memset(&txq_meta, 0, sizeof(txq_meta));
ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
&txq_meta);
if (err)
return err;
}
ice_qvec_dis_irq(vsi, rx_ring, q_vector);
err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
if (err)
return err;
ice_qvec_toggle_napi(vsi, q_vector, false);
ice_qp_clean_rings(vsi, q_idx);
ice_qp_reset_stats(vsi, q_idx);
return 0;
}
/**
* ice_qp_ena - Enables a queue pair
* @vsi: VSI of interest
* @q_idx: ring index in array
*
* Returns 0 on success, negative on failure.
*/
static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
{
struct ice_aqc_add_tx_qgrp *qg_buf;
struct ice_q_vector *q_vector;
struct ice_tx_ring *tx_ring;
struct ice_rx_ring *rx_ring;
u16 size;
int err;
if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
return -EINVAL;
size = struct_size(qg_buf, txqs, 1);
qg_buf = kzalloc(size, GFP_KERNEL);
if (!qg_buf)
return -ENOMEM;
qg_buf->num_txqs = 1;
tx_ring = vsi->tx_rings[q_idx];
rx_ring = vsi->rx_rings[q_idx];
q_vector = rx_ring->q_vector;
err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
if (err)
goto free_buf;
if (ice_is_xdp_ena_vsi(vsi)) {
struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
memset(qg_buf, 0, size);
qg_buf->num_txqs = 1;
err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
if (err)
goto free_buf;
ice_set_ring_xdp(xdp_ring);
ice_tx_xsk_pool(vsi, q_idx);
}
err = ice_vsi_cfg_rxq(rx_ring);
if (err)
goto free_buf;
ice_qvec_cfg_msix(vsi, q_vector);
err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
if (err)
goto free_buf;
clear_bit(ICE_CFG_BUSY, vsi->state);
ice_qvec_toggle_napi(vsi, q_vector, true);
ice_qvec_ena_irq(vsi, q_vector);
netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
free_buf:
kfree(qg_buf);
return err;
}
/**
* ice_xsk_pool_disable - disable a buffer pool region
* @vsi: Current VSI
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
{
struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
if (!pool)
return -EINVAL;
clear_bit(qid, vsi->af_xdp_zc_qps);
xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
return 0;
}
/**
* ice_xsk_pool_enable - enable a buffer pool region
* @vsi: Current VSI
* @pool: pointer to a requested buffer pool region
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
static int
ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
{
int err;
if (vsi->type != ICE_VSI_PF)
return -EINVAL;
if (qid >= vsi->netdev->real_num_rx_queues ||
qid >= vsi->netdev->real_num_tx_queues)
return -EINVAL;
err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
ICE_RX_DMA_ATTR);
if (err)
return err;
set_bit(qid, vsi->af_xdp_zc_qps);
return 0;
}
/**
* ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
* @rx_ring: Rx ring
* @pool_present: is pool for XSK present
*
* Try allocating memory and return ENOMEM, if failed to allocate.
* If allocation was successful, substitute buffer with allocated one.
* Returns 0 on success, negative on failure
*/
static int
ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
{
size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
sizeof(*rx_ring->rx_buf);
void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
if (!sw_ring)
return -ENOMEM;
if (pool_present) {
kfree(rx_ring->rx_buf);
rx_ring->rx_buf = NULL;
rx_ring->xdp_buf = sw_ring;
} else {
kfree(rx_ring->xdp_buf);
rx_ring->xdp_buf = NULL;
rx_ring->rx_buf = sw_ring;
}
return 0;
}
/**
* ice_realloc_zc_buf - reallocate XDP ZC queue pairs
* @vsi: Current VSI
* @zc: is zero copy set
*
* Reallocate buffer for rx_rings that might be used by XSK.
* XDP requires more memory, than rx_buf provides.
* Returns 0 on success, negative on failure
*/
int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
{
struct ice_rx_ring *rx_ring;
unsigned long q;
for_each_set_bit(q, vsi->af_xdp_zc_qps,
max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) {
rx_ring = vsi->rx_rings[q];
if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
return -ENOMEM;
}
return 0;
}
/**
* ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
* @vsi: Current VSI
* @pool: buffer pool to enable/associate to a ring, NULL to disable
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
{
bool if_running, pool_present = !!pool;
int ret = 0, pool_failure = 0;
if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
pool_failure = -EINVAL;
goto failure;
}
if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
if (if_running) {
struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
ret = ice_qp_dis(vsi, qid);
if (ret) {
netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
goto xsk_pool_if_up;
}
ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
if (ret)
goto xsk_pool_if_up;
}
pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
ice_xsk_pool_disable(vsi, qid);
xsk_pool_if_up:
if (if_running) {
ret = ice_qp_ena(vsi, qid);
if (!ret && pool_present)
napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
else if (ret)
netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
}
failure:
if (pool_failure) {
netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
pool_present ? "en" : "dis", pool_failure);
return pool_failure;
}
return ret;
}
/**
* ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
* @pool: XSK Buffer pool to pull the buffers from
* @xdp: SW ring of xdp_buff that will hold the buffers
* @rx_desc: Pointer to Rx descriptors that will be filled
* @count: The number of buffers to allocate
*
* This function allocates a number of Rx buffers from the fill ring
* or the internal recycle mechanism and places them on the Rx ring.
*
* Note that ring wrap should be handled by caller of this function.
*
* Returns the amount of allocated Rx descriptors
*/
static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
union ice_32b_rx_flex_desc *rx_desc, u16 count)
{
dma_addr_t dma;
u16 buffs;
int i;
buffs = xsk_buff_alloc_batch(pool, xdp, count);
for (i = 0; i < buffs; i++) {
dma = xsk_buff_xdp_get_dma(*xdp);
rx_desc->read.pkt_addr = cpu_to_le64(dma);
rx_desc->wb.status_error0 = 0;
rx_desc++;
xdp++;
}
return buffs;
}
/**
* __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
* @rx_ring: Rx ring
* @count: The number of buffers to allocate
*
* Place the @count of descriptors onto Rx ring. Handle the ring wrap
* for case where space from next_to_use up to the end of ring is less
* than @count. Finally do a tail bump.
*
* Returns true if all allocations were successful, false if any fail.
*/
static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
{
u32 nb_buffs_extra = 0, nb_buffs = 0;
union ice_32b_rx_flex_desc *rx_desc;
u16 ntu = rx_ring->next_to_use;
u16 total_count = count;
struct xdp_buff **xdp;
rx_desc = ICE_RX_DESC(rx_ring, ntu);
xdp = ice_xdp_buf(rx_ring, ntu);
if (ntu + count >= rx_ring->count) {
nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
rx_desc,
rx_ring->count - ntu);
if (nb_buffs_extra != rx_ring->count - ntu) {
ntu += nb_buffs_extra;
goto exit;
}
rx_desc = ICE_RX_DESC(rx_ring, 0);
xdp = ice_xdp_buf(rx_ring, 0);
ntu = 0;
count -= nb_buffs_extra;
ice_release_rx_desc(rx_ring, 0);
}
nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
ntu += nb_buffs;
if (ntu == rx_ring->count)
ntu = 0;
exit:
if (rx_ring->next_to_use != ntu)
ice_release_rx_desc(rx_ring, ntu);
return total_count == (nb_buffs_extra + nb_buffs);
}
/**
* ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
* @rx_ring: Rx ring
* @count: The number of buffers to allocate
*
* Wrapper for internal allocation routine; figure out how many tail
* bumps should take place based on the given threshold
*
* Returns true if all calls to internal alloc routine succeeded
*/
bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
{
u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
u16 leftover, i, tail_bumps;
tail_bumps = count / rx_thresh;
leftover = count - (tail_bumps * rx_thresh);
for (i = 0; i < tail_bumps; i++)
if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
return false;
return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
}
/**
* ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
* @rx_ring: Rx ring
*/
static void ice_bump_ntc(struct ice_rx_ring *rx_ring)
{
int ntc = rx_ring->next_to_clean + 1;
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
prefetch(ICE_RX_DESC(rx_ring, ntc));
}
/**
* ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
* @rx_ring: Rx ring
* @xdp: Pointer to XDP buffer
*
* This function allocates a new skb from a zero-copy Rx buffer.
*
* Returns the skb on success, NULL on failure.
*/
static struct sk_buff *
ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
{
unsigned int totalsize = xdp->data_end - xdp->data_meta;
unsigned int metasize = xdp->data - xdp->data_meta;
struct sk_buff *skb;
net_prefetch(xdp->data_meta);
skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize,
GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(!skb))
return NULL;
memcpy(__skb_put(skb, totalsize), xdp->data_meta,
ALIGN(totalsize, sizeof(long)));
if (metasize) {
skb_metadata_set(skb, metasize);
__skb_pull(skb, metasize);
}
xsk_buff_free(xdp);
return skb;
}
/**
* ice_run_xdp_zc - Executes an XDP program in zero-copy path
* @rx_ring: Rx ring
* @xdp: xdp_buff used as input to the XDP program
* @xdp_prog: XDP program to run
* @xdp_ring: ring to be used for XDP_TX action
*
* Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
*/
static int
ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
{
int err, result = ICE_XDP_PASS;
u32 act;
act = bpf_prog_run_xdp(xdp_prog, xdp);
if (likely(act == XDP_REDIRECT)) {
err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
if (!err)
return ICE_XDP_REDIR;
if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS)
result = ICE_XDP_EXIT;
else
result = ICE_XDP_CONSUMED;
goto out_failure;
}
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
result = ice_xmit_xdp_buff(xdp, xdp_ring);
if (result == ICE_XDP_CONSUMED)
goto out_failure;
break;
case XDP_DROP:
result = ICE_XDP_CONSUMED;
break;
default:
bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
fallthrough;
case XDP_ABORTED:
result = ICE_XDP_CONSUMED;
out_failure:
trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
break;
}
return result;
}
/**
* ice_clean_rx_irq_zc - consumes packets from the hardware ring
* @rx_ring: AF_XDP Rx ring
* @budget: NAPI budget
*
* Returns number of processed packets on success, remaining budget on failure.
*/
int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
{
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
struct ice_tx_ring *xdp_ring;
unsigned int xdp_xmit = 0;
struct bpf_prog *xdp_prog;
bool failure = false;
int entries_to_alloc;
/* ZC patch is enabled only when XDP program is set,
* so here it can not be NULL
*/
xdp_prog = READ_ONCE(rx_ring->xdp_prog);
xdp_ring = rx_ring->xdp_ring;
while (likely(total_rx_packets < (unsigned int)budget)) {
union ice_32b_rx_flex_desc *rx_desc;
unsigned int size, xdp_res = 0;
struct xdp_buff *xdp;
struct sk_buff *skb;
u16 stat_err_bits;
u16 vlan_tag = 0;
u16 rx_ptype;
rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we have
* verified the descriptor has been written back.
*/
dma_rmb();
if (unlikely(rx_ring->next_to_clean == rx_ring->next_to_use))
break;
xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean);
size = le16_to_cpu(rx_desc->wb.pkt_len) &
ICE_RX_FLX_DESC_PKT_LEN_M;
if (!size) {
xdp->data = NULL;
xdp->data_end = NULL;
xdp->data_hard_start = NULL;
xdp->data_meta = NULL;
goto construct_skb;
}
xsk_buff_set_size(xdp, size);
xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool);
xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring);
if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
xdp_xmit |= xdp_res;
} else if (xdp_res == ICE_XDP_EXIT) {
failure = true;
break;
} else if (xdp_res == ICE_XDP_CONSUMED) {
xsk_buff_free(xdp);
} else if (xdp_res == ICE_XDP_PASS) {
goto construct_skb;
}
total_rx_bytes += size;
total_rx_packets++;
ice_bump_ntc(rx_ring);
continue;
construct_skb:
/* XDP_PASS path */
skb = ice_construct_skb_zc(rx_ring, xdp);
if (!skb) {
rx_ring->rx_stats.alloc_buf_failed++;
break;
}
ice_bump_ntc(rx_ring);
if (eth_skb_pad(skb)) {
skb = NULL;
continue;
}
total_rx_bytes += skb->len;
total_rx_packets++;
vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
ICE_RX_FLEX_DESC_PTYPE_M;
ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
ice_receive_skb(rx_ring, skb, vlan_tag);
}
entries_to_alloc = ICE_DESC_UNUSED(rx_ring);
if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc);
ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) {
if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
xsk_set_rx_need_wakeup(rx_ring->xsk_pool);
else
xsk_clear_rx_need_wakeup(rx_ring->xsk_pool);
return (int)total_rx_packets;
}
return failure ? budget : (int)total_rx_packets;
}
/**
* ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
* @xdp_ring: XDP Tx ring
* @tx_buf: Tx buffer to clean
*/
static void
ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf)
{
page_frag_free(tx_buf->raw_buf);
xdp_ring->xdp_tx_active--;
dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
}
/**
* ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
* @xdp_ring: XDP Tx ring
*/
static void ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring)
{
u16 ntc = xdp_ring->next_to_clean;
struct ice_tx_desc *tx_desc;
u16 cnt = xdp_ring->count;
struct ice_tx_buf *tx_buf;
u16 completed_frames = 0;
u16 xsk_frames = 0;
u16 last_rs;
int i;
last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
if ((tx_desc->cmd_type_offset_bsz &
cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
if (last_rs >= ntc)
completed_frames = last_rs - ntc + 1;
else
completed_frames = last_rs + cnt - ntc + 1;
}
if (!completed_frames)
return;
if (likely(!xdp_ring->xdp_tx_active)) {
xsk_frames = completed_frames;
goto skip;
}
ntc = xdp_ring->next_to_clean;
for (i = 0; i < completed_frames; i++) {
tx_buf = &xdp_ring->tx_buf[ntc];
if (tx_buf->raw_buf) {
ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
tx_buf->raw_buf = NULL;
} else {
xsk_frames++;
}
ntc++;
if (ntc >= xdp_ring->count)
ntc = 0;
}
skip:
tx_desc->cmd_type_offset_bsz = 0;
xdp_ring->next_to_clean += completed_frames;
if (xdp_ring->next_to_clean >= cnt)
xdp_ring->next_to_clean -= cnt;
if (xsk_frames)
xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
}
/**
* ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
* @xdp_ring: XDP ring to produce the HW Tx descriptor on
* @desc: AF_XDP descriptor to pull the DMA address and length from
* @total_bytes: bytes accumulator that will be used for stats update
*/
static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
unsigned int *total_bytes)
{
struct ice_tx_desc *tx_desc;
dma_addr_t dma;
dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
tx_desc->buf_addr = cpu_to_le64(dma);
tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP,
0, desc->len, 0);
*total_bytes += desc->len;
}
/**
* ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
* @xdp_ring: XDP ring to produce the HW Tx descriptors on
* @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
* @total_bytes: bytes accumulator that will be used for stats update
*/
static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
unsigned int *total_bytes)
{
u16 ntu = xdp_ring->next_to_use;
struct ice_tx_desc *tx_desc;
u32 i;
loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
dma_addr_t dma;
dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
tx_desc->buf_addr = cpu_to_le64(dma);
tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP,
0, descs[i].len, 0);
*total_bytes += descs[i].len;
}
xdp_ring->next_to_use = ntu;
}
/**
* ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
* @xdp_ring: XDP ring to produce the HW Tx descriptors on
* @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
* @nb_pkts: count of packets to be send
* @total_bytes: bytes accumulator that will be used for stats update
*/
static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
u32 nb_pkts, unsigned int *total_bytes)
{
u32 batched, leftover, i;
batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
leftover = nb_pkts & (PKTS_PER_BATCH - 1);
for (i = 0; i < batched; i += PKTS_PER_BATCH)
ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
for (; i < batched + leftover; i++)
ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
}
/**
* ice_set_rs_bit - set RS bit on last produced descriptor (one behind current NTU)
* @xdp_ring: XDP ring to produce the HW Tx descriptors on
*/
static void ice_set_rs_bit(struct ice_tx_ring *xdp_ring)
{
u16 ntu = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : xdp_ring->count - 1;
struct ice_tx_desc *tx_desc;
tx_desc = ICE_TX_DESC(xdp_ring, ntu);
tx_desc->cmd_type_offset_bsz |=
cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S);
}
/**
* ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
* @xdp_ring: XDP ring to produce the HW Tx descriptors on
*
* Returns true if there is no more work that needs to be done, false otherwise
*/
bool ice_xmit_zc(struct ice_tx_ring *xdp_ring)
{
struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
u32 nb_pkts, nb_processed = 0;
unsigned int total_bytes = 0;
int budget;
ice_clean_xdp_irq_zc(xdp_ring);
budget = ICE_DESC_UNUSED(xdp_ring);
budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
if (!nb_pkts)
return true;
if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
nb_processed = xdp_ring->count - xdp_ring->next_to_use;
ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
xdp_ring->next_to_use = 0;
}
ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
&total_bytes);
ice_set_rs_bit(xdp_ring);
ice_xdp_ring_update_tail(xdp_ring);
ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
return nb_pkts < budget;
}
/**
* ice_xsk_wakeup - Implements ndo_xsk_wakeup
* @netdev: net_device
* @queue_id: queue to wake up
* @flags: ignored in our case, since we have Rx and Tx in the same NAPI
*
* Returns negative on error, zero otherwise.
*/
int
ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
u32 __always_unused flags)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_q_vector *q_vector;
struct ice_vsi *vsi = np->vsi;
struct ice_tx_ring *ring;
if (test_bit(ICE_VSI_DOWN, vsi->state))
return -ENETDOWN;
if (!ice_is_xdp_ena_vsi(vsi))
return -EINVAL;
if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
return -EINVAL;
ring = vsi->rx_rings[queue_id]->xdp_ring;
if (!ring->xsk_pool)
return -EINVAL;
/* The idea here is that if NAPI is running, mark a miss, so
* it will run again. If not, trigger an interrupt and
* schedule the NAPI from interrupt context. If NAPI would be
* scheduled here, the interrupt affinity would not be
* honored.
*/
q_vector = ring->q_vector;
if (!napi_if_scheduled_mark_missed(&q_vector->napi))
ice_trigger_sw_intr(&vsi->back->hw, q_vector);
return 0;
}
/**
* ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
* @vsi: VSI to be checked
*
* Returns true if any of the Rx rings has an AF_XDP buff pool attached
*/
bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
{
int i;
ice_for_each_rxq(vsi, i) {
if (xsk_get_pool_from_qid(vsi->netdev, i))
return true;
}
return false;
}
/**
* ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
* @rx_ring: ring to be cleaned
*/
void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
{
u16 ntc = rx_ring->next_to_clean;
u16 ntu = rx_ring->next_to_use;
while (ntc != ntu) {
struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
xsk_buff_free(xdp);
ntc++;
if (ntc >= rx_ring->count)
ntc = 0;
}
}
/**
* ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
* @xdp_ring: XDP_Tx ring
*/
void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
{
u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
u32 xsk_frames = 0;
while (ntc != ntu) {
struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
if (tx_buf->raw_buf)
ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
else
xsk_frames++;
tx_buf->raw_buf = NULL;
ntc++;
if (ntc >= xdp_ring->count)
ntc = 0;
}
if (xsk_frames)
xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
}