linuxdebug/drivers/net/ethernet/intel/ice/ice_arfs.c

657 lines
19 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2018-2020, Intel Corporation. */
#include "ice.h"
/**
* ice_is_arfs_active - helper to check is aRFS is active
* @vsi: VSI to check
*/
static bool ice_is_arfs_active(struct ice_vsi *vsi)
{
return !!vsi->arfs_fltr_list;
}
/**
* ice_is_arfs_using_perfect_flow - check if aRFS has active perfect filters
* @hw: pointer to the HW structure
* @flow_type: flow type as Flow Director understands it
*
* Flow Director will query this function to see if aRFS is currently using
* the specified flow_type for perfect (4-tuple) filters.
*/
bool
ice_is_arfs_using_perfect_flow(struct ice_hw *hw, enum ice_fltr_ptype flow_type)
{
struct ice_arfs_active_fltr_cntrs *arfs_fltr_cntrs;
struct ice_pf *pf = hw->back;
struct ice_vsi *vsi;
vsi = ice_get_main_vsi(pf);
if (!vsi)
return false;
arfs_fltr_cntrs = vsi->arfs_fltr_cntrs;
/* active counters can be updated by multiple CPUs */
smp_mb__before_atomic();
switch (flow_type) {
case ICE_FLTR_PTYPE_NONF_IPV4_UDP:
return atomic_read(&arfs_fltr_cntrs->active_udpv4_cnt) > 0;
case ICE_FLTR_PTYPE_NONF_IPV6_UDP:
return atomic_read(&arfs_fltr_cntrs->active_udpv6_cnt) > 0;
case ICE_FLTR_PTYPE_NONF_IPV4_TCP:
return atomic_read(&arfs_fltr_cntrs->active_tcpv4_cnt) > 0;
case ICE_FLTR_PTYPE_NONF_IPV6_TCP:
return atomic_read(&arfs_fltr_cntrs->active_tcpv6_cnt) > 0;
default:
return false;
}
}
/**
* ice_arfs_update_active_fltr_cntrs - update active filter counters for aRFS
* @vsi: VSI that aRFS is active on
* @entry: aRFS entry used to change counters
* @add: true to increment counter, false to decrement
*/
static void
ice_arfs_update_active_fltr_cntrs(struct ice_vsi *vsi,
struct ice_arfs_entry *entry, bool add)
{
struct ice_arfs_active_fltr_cntrs *fltr_cntrs = vsi->arfs_fltr_cntrs;
switch (entry->fltr_info.flow_type) {
case ICE_FLTR_PTYPE_NONF_IPV4_TCP:
if (add)
atomic_inc(&fltr_cntrs->active_tcpv4_cnt);
else
atomic_dec(&fltr_cntrs->active_tcpv4_cnt);
break;
case ICE_FLTR_PTYPE_NONF_IPV6_TCP:
if (add)
atomic_inc(&fltr_cntrs->active_tcpv6_cnt);
else
atomic_dec(&fltr_cntrs->active_tcpv6_cnt);
break;
case ICE_FLTR_PTYPE_NONF_IPV4_UDP:
if (add)
atomic_inc(&fltr_cntrs->active_udpv4_cnt);
else
atomic_dec(&fltr_cntrs->active_udpv4_cnt);
break;
case ICE_FLTR_PTYPE_NONF_IPV6_UDP:
if (add)
atomic_inc(&fltr_cntrs->active_udpv6_cnt);
else
atomic_dec(&fltr_cntrs->active_udpv6_cnt);
break;
default:
dev_err(ice_pf_to_dev(vsi->back), "aRFS: Failed to update filter counters, invalid filter type %d\n",
entry->fltr_info.flow_type);
}
}
/**
* ice_arfs_del_flow_rules - delete the rules passed in from HW
* @vsi: VSI for the flow rules that need to be deleted
* @del_list_head: head of the list of ice_arfs_entry(s) for rule deletion
*
* Loop through the delete list passed in and remove the rules from HW. After
* each rule is deleted, disconnect and free the ice_arfs_entry because it is no
* longer being referenced by the aRFS hash table.
*/
static void
ice_arfs_del_flow_rules(struct ice_vsi *vsi, struct hlist_head *del_list_head)
{
struct ice_arfs_entry *e;
struct hlist_node *n;
struct device *dev;
dev = ice_pf_to_dev(vsi->back);
hlist_for_each_entry_safe(e, n, del_list_head, list_entry) {
int result;
result = ice_fdir_write_fltr(vsi->back, &e->fltr_info, false,
false);
if (!result)
ice_arfs_update_active_fltr_cntrs(vsi, e, false);
else
dev_dbg(dev, "Unable to delete aRFS entry, err %d fltr_state %d fltr_id %d flow_id %d Q %d\n",
result, e->fltr_state, e->fltr_info.fltr_id,
e->flow_id, e->fltr_info.q_index);
/* The aRFS hash table is no longer referencing this entry */
hlist_del(&e->list_entry);
devm_kfree(dev, e);
}
}
/**
* ice_arfs_add_flow_rules - add the rules passed in from HW
* @vsi: VSI for the flow rules that need to be added
* @add_list_head: head of the list of ice_arfs_entry_ptr(s) for rule addition
*
* Loop through the add list passed in and remove the rules from HW. After each
* rule is added, disconnect and free the ice_arfs_entry_ptr node. Don't free
* the ice_arfs_entry(s) because they are still being referenced in the aRFS
* hash table.
*/
static void
ice_arfs_add_flow_rules(struct ice_vsi *vsi, struct hlist_head *add_list_head)
{
struct ice_arfs_entry_ptr *ep;
struct hlist_node *n;
struct device *dev;
dev = ice_pf_to_dev(vsi->back);
hlist_for_each_entry_safe(ep, n, add_list_head, list_entry) {
int result;
result = ice_fdir_write_fltr(vsi->back,
&ep->arfs_entry->fltr_info, true,
false);
if (!result)
ice_arfs_update_active_fltr_cntrs(vsi, ep->arfs_entry,
true);
else
dev_dbg(dev, "Unable to add aRFS entry, err %d fltr_state %d fltr_id %d flow_id %d Q %d\n",
result, ep->arfs_entry->fltr_state,
ep->arfs_entry->fltr_info.fltr_id,
ep->arfs_entry->flow_id,
ep->arfs_entry->fltr_info.q_index);
hlist_del(&ep->list_entry);
devm_kfree(dev, ep);
}
}
/**
* ice_arfs_is_flow_expired - check if the aRFS entry has expired
* @vsi: VSI containing the aRFS entry
* @arfs_entry: aRFS entry that's being checked for expiration
*
* Return true if the flow has expired, else false. This function should be used
* to determine whether or not an aRFS entry should be removed from the hardware
* and software structures.
*/
static bool
ice_arfs_is_flow_expired(struct ice_vsi *vsi, struct ice_arfs_entry *arfs_entry)
{
#define ICE_ARFS_TIME_DELTA_EXPIRATION msecs_to_jiffies(5000)
if (rps_may_expire_flow(vsi->netdev, arfs_entry->fltr_info.q_index,
arfs_entry->flow_id,
arfs_entry->fltr_info.fltr_id))
return true;
/* expiration timer only used for UDP filters */
if (arfs_entry->fltr_info.flow_type != ICE_FLTR_PTYPE_NONF_IPV4_UDP &&
arfs_entry->fltr_info.flow_type != ICE_FLTR_PTYPE_NONF_IPV6_UDP)
return false;
return time_in_range64(arfs_entry->time_activated +
ICE_ARFS_TIME_DELTA_EXPIRATION,
arfs_entry->time_activated, get_jiffies_64());
}
/**
* ice_arfs_update_flow_rules - add/delete aRFS rules in HW
* @vsi: the VSI to be forwarded to
* @idx: index into the table of aRFS filter lists. Obtained from skb->hash
* @add_list: list to populate with filters to be added to Flow Director
* @del_list: list to populate with filters to be deleted from Flow Director
*
* Iterate over the hlist at the index given in the aRFS hash table and
* determine if there are any aRFS entries that need to be either added or
* deleted in the HW. If the aRFS entry is marked as ICE_ARFS_INACTIVE the
* filter needs to be added to HW, else if it's marked as ICE_ARFS_ACTIVE and
* the flow has expired delete the filter from HW. The caller of this function
* is expected to add/delete rules on the add_list/del_list respectively.
*/
static void
ice_arfs_update_flow_rules(struct ice_vsi *vsi, u16 idx,
struct hlist_head *add_list,
struct hlist_head *del_list)
{
struct ice_arfs_entry *e;
struct hlist_node *n;
struct device *dev;
dev = ice_pf_to_dev(vsi->back);
/* go through the aRFS hlist at this idx and check for needed updates */
hlist_for_each_entry_safe(e, n, &vsi->arfs_fltr_list[idx], list_entry)
/* check if filter needs to be added to HW */
if (e->fltr_state == ICE_ARFS_INACTIVE) {
enum ice_fltr_ptype flow_type = e->fltr_info.flow_type;
struct ice_arfs_entry_ptr *ep =
devm_kzalloc(dev, sizeof(*ep), GFP_ATOMIC);
if (!ep)
continue;
INIT_HLIST_NODE(&ep->list_entry);
/* reference aRFS entry to add HW filter */
ep->arfs_entry = e;
hlist_add_head(&ep->list_entry, add_list);
e->fltr_state = ICE_ARFS_ACTIVE;
/* expiration timer only used for UDP flows */
if (flow_type == ICE_FLTR_PTYPE_NONF_IPV4_UDP ||
flow_type == ICE_FLTR_PTYPE_NONF_IPV6_UDP)
e->time_activated = get_jiffies_64();
} else if (e->fltr_state == ICE_ARFS_ACTIVE) {
/* check if filter needs to be removed from HW */
if (ice_arfs_is_flow_expired(vsi, e)) {
/* remove aRFS entry from hash table for delete
* and to prevent referencing it the next time
* through this hlist index
*/
hlist_del(&e->list_entry);
e->fltr_state = ICE_ARFS_TODEL;
/* save reference to aRFS entry for delete */
hlist_add_head(&e->list_entry, del_list);
}
}
}
/**
* ice_sync_arfs_fltrs - update all aRFS filters
* @pf: board private structure
*/
void ice_sync_arfs_fltrs(struct ice_pf *pf)
{
HLIST_HEAD(tmp_del_list);
HLIST_HEAD(tmp_add_list);
struct ice_vsi *pf_vsi;
unsigned int i;
pf_vsi = ice_get_main_vsi(pf);
if (!pf_vsi)
return;
if (!ice_is_arfs_active(pf_vsi))
return;
spin_lock_bh(&pf_vsi->arfs_lock);
/* Once we process aRFS for the PF VSI get out */
for (i = 0; i < ICE_MAX_ARFS_LIST; i++)
ice_arfs_update_flow_rules(pf_vsi, i, &tmp_add_list,
&tmp_del_list);
spin_unlock_bh(&pf_vsi->arfs_lock);
/* use list of ice_arfs_entry(s) for delete */
ice_arfs_del_flow_rules(pf_vsi, &tmp_del_list);
/* use list of ice_arfs_entry_ptr(s) for add */
ice_arfs_add_flow_rules(pf_vsi, &tmp_add_list);
}
/**
* ice_arfs_build_entry - builds an aRFS entry based on input
* @vsi: destination VSI for this flow
* @fk: flow dissector keys for creating the tuple
* @rxq_idx: Rx queue to steer this flow to
* @flow_id: passed down from the stack and saved for flow expiration
*
* returns an aRFS entry on success and NULL on failure
*/
static struct ice_arfs_entry *
ice_arfs_build_entry(struct ice_vsi *vsi, const struct flow_keys *fk,
u16 rxq_idx, u32 flow_id)
{
struct ice_arfs_entry *arfs_entry;
struct ice_fdir_fltr *fltr_info;
u8 ip_proto;
arfs_entry = devm_kzalloc(ice_pf_to_dev(vsi->back),
sizeof(*arfs_entry),
GFP_ATOMIC | __GFP_NOWARN);
if (!arfs_entry)
return NULL;
fltr_info = &arfs_entry->fltr_info;
fltr_info->q_index = rxq_idx;
fltr_info->dest_ctl = ICE_FLTR_PRGM_DESC_DEST_DIRECT_PKT_QINDEX;
fltr_info->dest_vsi = vsi->idx;
ip_proto = fk->basic.ip_proto;
if (fk->basic.n_proto == htons(ETH_P_IP)) {
fltr_info->ip.v4.proto = ip_proto;
fltr_info->flow_type = (ip_proto == IPPROTO_TCP) ?
ICE_FLTR_PTYPE_NONF_IPV4_TCP :
ICE_FLTR_PTYPE_NONF_IPV4_UDP;
fltr_info->ip.v4.src_ip = fk->addrs.v4addrs.src;
fltr_info->ip.v4.dst_ip = fk->addrs.v4addrs.dst;
fltr_info->ip.v4.src_port = fk->ports.src;
fltr_info->ip.v4.dst_port = fk->ports.dst;
} else { /* ETH_P_IPV6 */
fltr_info->ip.v6.proto = ip_proto;
fltr_info->flow_type = (ip_proto == IPPROTO_TCP) ?
ICE_FLTR_PTYPE_NONF_IPV6_TCP :
ICE_FLTR_PTYPE_NONF_IPV6_UDP;
memcpy(&fltr_info->ip.v6.src_ip, &fk->addrs.v6addrs.src,
sizeof(struct in6_addr));
memcpy(&fltr_info->ip.v6.dst_ip, &fk->addrs.v6addrs.dst,
sizeof(struct in6_addr));
fltr_info->ip.v6.src_port = fk->ports.src;
fltr_info->ip.v6.dst_port = fk->ports.dst;
}
arfs_entry->flow_id = flow_id;
fltr_info->fltr_id =
atomic_inc_return(vsi->arfs_last_fltr_id) % RPS_NO_FILTER;
return arfs_entry;
}
/**
* ice_arfs_is_perfect_flow_set - Check to see if perfect flow is set
* @hw: pointer to HW structure
* @l3_proto: ETH_P_IP or ETH_P_IPV6 in network order
* @l4_proto: IPPROTO_UDP or IPPROTO_TCP
*
* We only support perfect (4-tuple) filters for aRFS. This function allows aRFS
* to check if perfect (4-tuple) flow rules are currently in place by Flow
* Director.
*/
static bool
ice_arfs_is_perfect_flow_set(struct ice_hw *hw, __be16 l3_proto, u8 l4_proto)
{
unsigned long *perfect_fltr = hw->fdir_perfect_fltr;
/* advanced Flow Director disabled, perfect filters always supported */
if (!perfect_fltr)
return true;
if (l3_proto == htons(ETH_P_IP) && l4_proto == IPPROTO_UDP)
return test_bit(ICE_FLTR_PTYPE_NONF_IPV4_UDP, perfect_fltr);
else if (l3_proto == htons(ETH_P_IP) && l4_proto == IPPROTO_TCP)
return test_bit(ICE_FLTR_PTYPE_NONF_IPV4_TCP, perfect_fltr);
else if (l3_proto == htons(ETH_P_IPV6) && l4_proto == IPPROTO_UDP)
return test_bit(ICE_FLTR_PTYPE_NONF_IPV6_UDP, perfect_fltr);
else if (l3_proto == htons(ETH_P_IPV6) && l4_proto == IPPROTO_TCP)
return test_bit(ICE_FLTR_PTYPE_NONF_IPV6_TCP, perfect_fltr);
return false;
}
/**
* ice_rx_flow_steer - steer the Rx flow to where application is being run
* @netdev: ptr to the netdev being adjusted
* @skb: buffer with required header information
* @rxq_idx: queue to which the flow needs to move
* @flow_id: flow identifier provided by the netdev
*
* Based on the skb, rxq_idx, and flow_id passed in add/update an entry in the
* aRFS hash table. Iterate over one of the hlists in the aRFS hash table and
* if the flow_id already exists in the hash table but the rxq_idx has changed
* mark the entry as ICE_ARFS_INACTIVE so it can get updated in HW, else
* if the entry is marked as ICE_ARFS_TODEL delete it from the aRFS hash table.
* If neither of the previous conditions are true then add a new entry in the
* aRFS hash table, which gets set to ICE_ARFS_INACTIVE by default so it can be
* added to HW.
*/
int
ice_rx_flow_steer(struct net_device *netdev, const struct sk_buff *skb,
u16 rxq_idx, u32 flow_id)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_arfs_entry *arfs_entry;
struct ice_vsi *vsi = np->vsi;
struct flow_keys fk;
struct ice_pf *pf;
__be16 n_proto;
u8 ip_proto;
u16 idx;
int ret;
/* failed to allocate memory for aRFS so don't crash */
if (unlikely(!vsi->arfs_fltr_list))
return -ENODEV;
pf = vsi->back;
if (skb->encapsulation)
return -EPROTONOSUPPORT;
if (!skb_flow_dissect_flow_keys(skb, &fk, 0))
return -EPROTONOSUPPORT;
n_proto = fk.basic.n_proto;
/* Support only IPV4 and IPV6 */
if ((n_proto == htons(ETH_P_IP) && !ip_is_fragment(ip_hdr(skb))) ||
n_proto == htons(ETH_P_IPV6))
ip_proto = fk.basic.ip_proto;
else
return -EPROTONOSUPPORT;
/* Support only TCP and UDP */
if (ip_proto != IPPROTO_TCP && ip_proto != IPPROTO_UDP)
return -EPROTONOSUPPORT;
/* only support 4-tuple filters for aRFS */
if (!ice_arfs_is_perfect_flow_set(&pf->hw, n_proto, ip_proto))
return -EOPNOTSUPP;
/* choose the aRFS list bucket based on skb hash */
idx = skb_get_hash_raw(skb) & ICE_ARFS_LST_MASK;
/* search for entry in the bucket */
spin_lock_bh(&vsi->arfs_lock);
hlist_for_each_entry(arfs_entry, &vsi->arfs_fltr_list[idx],
list_entry) {
struct ice_fdir_fltr *fltr_info;
/* keep searching for the already existing arfs_entry flow */
if (arfs_entry->flow_id != flow_id)
continue;
fltr_info = &arfs_entry->fltr_info;
ret = fltr_info->fltr_id;
if (fltr_info->q_index == rxq_idx ||
arfs_entry->fltr_state != ICE_ARFS_ACTIVE)
goto out;
/* update the queue to forward to on an already existing flow */
fltr_info->q_index = rxq_idx;
arfs_entry->fltr_state = ICE_ARFS_INACTIVE;
ice_arfs_update_active_fltr_cntrs(vsi, arfs_entry, false);
goto out_schedule_service_task;
}
arfs_entry = ice_arfs_build_entry(vsi, &fk, rxq_idx, flow_id);
if (!arfs_entry) {
ret = -ENOMEM;
goto out;
}
ret = arfs_entry->fltr_info.fltr_id;
INIT_HLIST_NODE(&arfs_entry->list_entry);
hlist_add_head(&arfs_entry->list_entry, &vsi->arfs_fltr_list[idx]);
out_schedule_service_task:
ice_service_task_schedule(pf);
out:
spin_unlock_bh(&vsi->arfs_lock);
return ret;
}
/**
* ice_init_arfs_cntrs - initialize aRFS counter values
* @vsi: VSI that aRFS counters need to be initialized on
*/
static int ice_init_arfs_cntrs(struct ice_vsi *vsi)
{
if (!vsi || vsi->type != ICE_VSI_PF)
return -EINVAL;
vsi->arfs_fltr_cntrs = kzalloc(sizeof(*vsi->arfs_fltr_cntrs),
GFP_KERNEL);
if (!vsi->arfs_fltr_cntrs)
return -ENOMEM;
vsi->arfs_last_fltr_id = kzalloc(sizeof(*vsi->arfs_last_fltr_id),
GFP_KERNEL);
if (!vsi->arfs_last_fltr_id) {
kfree(vsi->arfs_fltr_cntrs);
vsi->arfs_fltr_cntrs = NULL;
return -ENOMEM;
}
return 0;
}
/**
* ice_init_arfs - initialize aRFS resources
* @vsi: the VSI to be forwarded to
*/
void ice_init_arfs(struct ice_vsi *vsi)
{
struct hlist_head *arfs_fltr_list;
unsigned int i;
if (!vsi || vsi->type != ICE_VSI_PF)
return;
arfs_fltr_list = kcalloc(ICE_MAX_ARFS_LIST, sizeof(*arfs_fltr_list),
GFP_KERNEL);
if (!arfs_fltr_list)
return;
if (ice_init_arfs_cntrs(vsi))
goto free_arfs_fltr_list;
for (i = 0; i < ICE_MAX_ARFS_LIST; i++)
INIT_HLIST_HEAD(&arfs_fltr_list[i]);
spin_lock_init(&vsi->arfs_lock);
vsi->arfs_fltr_list = arfs_fltr_list;
return;
free_arfs_fltr_list:
kfree(arfs_fltr_list);
}
/**
* ice_clear_arfs - clear the aRFS hash table and any memory used for aRFS
* @vsi: the VSI to be forwarded to
*/
void ice_clear_arfs(struct ice_vsi *vsi)
{
struct device *dev;
unsigned int i;
if (!vsi || vsi->type != ICE_VSI_PF || !vsi->back ||
!vsi->arfs_fltr_list)
return;
dev = ice_pf_to_dev(vsi->back);
for (i = 0; i < ICE_MAX_ARFS_LIST; i++) {
struct ice_arfs_entry *r;
struct hlist_node *n;
spin_lock_bh(&vsi->arfs_lock);
hlist_for_each_entry_safe(r, n, &vsi->arfs_fltr_list[i],
list_entry) {
hlist_del(&r->list_entry);
devm_kfree(dev, r);
}
spin_unlock_bh(&vsi->arfs_lock);
}
kfree(vsi->arfs_fltr_list);
vsi->arfs_fltr_list = NULL;
kfree(vsi->arfs_last_fltr_id);
vsi->arfs_last_fltr_id = NULL;
kfree(vsi->arfs_fltr_cntrs);
vsi->arfs_fltr_cntrs = NULL;
}
/**
* ice_free_cpu_rx_rmap - free setup CPU reverse map
* @vsi: the VSI to be forwarded to
*/
void ice_free_cpu_rx_rmap(struct ice_vsi *vsi)
{
struct net_device *netdev;
if (!vsi || vsi->type != ICE_VSI_PF)
return;
netdev = vsi->netdev;
if (!netdev || !netdev->rx_cpu_rmap)
return;
free_irq_cpu_rmap(netdev->rx_cpu_rmap);
netdev->rx_cpu_rmap = NULL;
}
/**
* ice_set_cpu_rx_rmap - setup CPU reverse map for each queue
* @vsi: the VSI to be forwarded to
*/
int ice_set_cpu_rx_rmap(struct ice_vsi *vsi)
{
struct net_device *netdev;
struct ice_pf *pf;
int base_idx, i;
if (!vsi || vsi->type != ICE_VSI_PF)
return 0;
pf = vsi->back;
netdev = vsi->netdev;
if (!pf || !netdev || !vsi->num_q_vectors)
return -EINVAL;
netdev_dbg(netdev, "Setup CPU RMAP: vsi type 0x%x, ifname %s, q_vectors %d\n",
vsi->type, netdev->name, vsi->num_q_vectors);
netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(vsi->num_q_vectors);
if (unlikely(!netdev->rx_cpu_rmap))
return -EINVAL;
base_idx = vsi->base_vector;
ice_for_each_q_vector(vsi, i)
if (irq_cpu_rmap_add(netdev->rx_cpu_rmap,
pf->msix_entries[base_idx + i].vector)) {
ice_free_cpu_rx_rmap(vsi);
return -EINVAL;
}
return 0;
}
/**
* ice_remove_arfs - remove/clear all aRFS resources
* @pf: device private structure
*/
void ice_remove_arfs(struct ice_pf *pf)
{
struct ice_vsi *pf_vsi;
pf_vsi = ice_get_main_vsi(pf);
if (!pf_vsi)
return;
ice_clear_arfs(pf_vsi);
}
/**
* ice_rebuild_arfs - remove/clear all aRFS resources and rebuild after reset
* @pf: device private structure
*/
void ice_rebuild_arfs(struct ice_pf *pf)
{
struct ice_vsi *pf_vsi;
pf_vsi = ice_get_main_vsi(pf);
if (!pf_vsi)
return;
ice_remove_arfs(pf);
ice_init_arfs(pf_vsi);
}