linuxdebug/drivers/net/ethernet/intel/e1000/e1000_ethtool.c

1894 lines
51 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 1999 - 2006 Intel Corporation. */
/* ethtool support for e1000 */
#include "e1000.h"
#include <linux/jiffies.h>
#include <linux/uaccess.h>
enum {NETDEV_STATS, E1000_STATS};
struct e1000_stats {
char stat_string[ETH_GSTRING_LEN];
int type;
int sizeof_stat;
int stat_offset;
};
#define E1000_STAT(m) E1000_STATS, \
sizeof(((struct e1000_adapter *)0)->m), \
offsetof(struct e1000_adapter, m)
#define E1000_NETDEV_STAT(m) NETDEV_STATS, \
sizeof(((struct net_device *)0)->m), \
offsetof(struct net_device, m)
static const struct e1000_stats e1000_gstrings_stats[] = {
{ "rx_packets", E1000_STAT(stats.gprc) },
{ "tx_packets", E1000_STAT(stats.gptc) },
{ "rx_bytes", E1000_STAT(stats.gorcl) },
{ "tx_bytes", E1000_STAT(stats.gotcl) },
{ "rx_broadcast", E1000_STAT(stats.bprc) },
{ "tx_broadcast", E1000_STAT(stats.bptc) },
{ "rx_multicast", E1000_STAT(stats.mprc) },
{ "tx_multicast", E1000_STAT(stats.mptc) },
{ "rx_errors", E1000_STAT(stats.rxerrc) },
{ "tx_errors", E1000_STAT(stats.txerrc) },
{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
{ "multicast", E1000_STAT(stats.mprc) },
{ "collisions", E1000_STAT(stats.colc) },
{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
{ "rx_missed_errors", E1000_STAT(stats.mpc) },
{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
{ "tx_window_errors", E1000_STAT(stats.latecol) },
{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
{ "tx_deferred_ok", E1000_STAT(stats.dc) },
{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
{ "tx_restart_queue", E1000_STAT(restart_queue) },
{ "rx_long_length_errors", E1000_STAT(stats.roc) },
{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
{ "tx_smbus", E1000_STAT(stats.mgptc) },
{ "rx_smbus", E1000_STAT(stats.mgprc) },
{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
};
#define E1000_QUEUE_STATS_LEN 0
#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
"Register test (offline)", "Eeprom test (offline)",
"Interrupt test (offline)", "Loopback test (offline)",
"Link test (on/offline)"
};
#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
static int e1000_get_link_ksettings(struct net_device *netdev,
struct ethtool_link_ksettings *cmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 supported, advertising;
if (hw->media_type == e1000_media_type_copper) {
supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full|
SUPPORTED_Autoneg |
SUPPORTED_TP);
advertising = ADVERTISED_TP;
if (hw->autoneg == 1) {
advertising |= ADVERTISED_Autoneg;
/* the e1000 autoneg seems to match ethtool nicely */
advertising |= hw->autoneg_advertised;
}
cmd->base.port = PORT_TP;
cmd->base.phy_address = hw->phy_addr;
} else {
supported = (SUPPORTED_1000baseT_Full |
SUPPORTED_FIBRE |
SUPPORTED_Autoneg);
advertising = (ADVERTISED_1000baseT_Full |
ADVERTISED_FIBRE |
ADVERTISED_Autoneg);
cmd->base.port = PORT_FIBRE;
}
if (er32(STATUS) & E1000_STATUS_LU) {
e1000_get_speed_and_duplex(hw, &adapter->link_speed,
&adapter->link_duplex);
cmd->base.speed = adapter->link_speed;
/* unfortunately FULL_DUPLEX != DUPLEX_FULL
* and HALF_DUPLEX != DUPLEX_HALF
*/
if (adapter->link_duplex == FULL_DUPLEX)
cmd->base.duplex = DUPLEX_FULL;
else
cmd->base.duplex = DUPLEX_HALF;
} else {
cmd->base.speed = SPEED_UNKNOWN;
cmd->base.duplex = DUPLEX_UNKNOWN;
}
cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
/* MDI-X => 1; MDI => 0 */
if ((hw->media_type == e1000_media_type_copper) &&
netif_carrier_ok(netdev))
cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
ETH_TP_MDI_X : ETH_TP_MDI);
else
cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
if (hw->mdix == AUTO_ALL_MODES)
cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
else
cmd->base.eth_tp_mdix_ctrl = hw->mdix;
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
supported);
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
advertising);
return 0;
}
static int e1000_set_link_ksettings(struct net_device *netdev,
const struct ethtool_link_ksettings *cmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 advertising;
ethtool_convert_link_mode_to_legacy_u32(&advertising,
cmd->link_modes.advertising);
/* MDI setting is only allowed when autoneg enabled because
* some hardware doesn't allow MDI setting when speed or
* duplex is forced.
*/
if (cmd->base.eth_tp_mdix_ctrl) {
if (hw->media_type != e1000_media_type_copper)
return -EOPNOTSUPP;
if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
(cmd->base.autoneg != AUTONEG_ENABLE)) {
e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
return -EINVAL;
}
}
while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
msleep(1);
if (cmd->base.autoneg == AUTONEG_ENABLE) {
hw->autoneg = 1;
if (hw->media_type == e1000_media_type_fiber)
hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
ADVERTISED_FIBRE |
ADVERTISED_Autoneg;
else
hw->autoneg_advertised = advertising |
ADVERTISED_TP |
ADVERTISED_Autoneg;
} else {
u32 speed = cmd->base.speed;
/* calling this overrides forced MDI setting */
if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
clear_bit(__E1000_RESETTING, &adapter->flags);
return -EINVAL;
}
}
/* MDI-X => 2; MDI => 1; Auto => 3 */
if (cmd->base.eth_tp_mdix_ctrl) {
if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
hw->mdix = AUTO_ALL_MODES;
else
hw->mdix = cmd->base.eth_tp_mdix_ctrl;
}
/* reset the link */
if (netif_running(adapter->netdev)) {
e1000_down(adapter);
e1000_up(adapter);
} else {
e1000_reset(adapter);
}
clear_bit(__E1000_RESETTING, &adapter->flags);
return 0;
}
static u32 e1000_get_link(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
/* If the link is not reported up to netdev, interrupts are disabled,
* and so the physical link state may have changed since we last
* looked. Set get_link_status to make sure that the true link
* state is interrogated, rather than pulling a cached and possibly
* stale link state from the driver.
*/
if (!netif_carrier_ok(netdev))
adapter->hw.get_link_status = 1;
return e1000_has_link(adapter);
}
static void e1000_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
pause->autoneg =
(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
if (hw->fc == E1000_FC_RX_PAUSE) {
pause->rx_pause = 1;
} else if (hw->fc == E1000_FC_TX_PAUSE) {
pause->tx_pause = 1;
} else if (hw->fc == E1000_FC_FULL) {
pause->rx_pause = 1;
pause->tx_pause = 1;
}
}
static int e1000_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int retval = 0;
adapter->fc_autoneg = pause->autoneg;
while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
msleep(1);
if (pause->rx_pause && pause->tx_pause)
hw->fc = E1000_FC_FULL;
else if (pause->rx_pause && !pause->tx_pause)
hw->fc = E1000_FC_RX_PAUSE;
else if (!pause->rx_pause && pause->tx_pause)
hw->fc = E1000_FC_TX_PAUSE;
else if (!pause->rx_pause && !pause->tx_pause)
hw->fc = E1000_FC_NONE;
hw->original_fc = hw->fc;
if (adapter->fc_autoneg == AUTONEG_ENABLE) {
if (netif_running(adapter->netdev)) {
e1000_down(adapter);
e1000_up(adapter);
} else {
e1000_reset(adapter);
}
} else
retval = ((hw->media_type == e1000_media_type_fiber) ?
e1000_setup_link(hw) : e1000_force_mac_fc(hw));
clear_bit(__E1000_RESETTING, &adapter->flags);
return retval;
}
static u32 e1000_get_msglevel(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
return adapter->msg_enable;
}
static void e1000_set_msglevel(struct net_device *netdev, u32 data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
adapter->msg_enable = data;
}
static int e1000_get_regs_len(struct net_device *netdev)
{
#define E1000_REGS_LEN 32
return E1000_REGS_LEN * sizeof(u32);
}
static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
void *p)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 *regs_buff = p;
u16 phy_data;
memset(p, 0, E1000_REGS_LEN * sizeof(u32));
regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
regs_buff[0] = er32(CTRL);
regs_buff[1] = er32(STATUS);
regs_buff[2] = er32(RCTL);
regs_buff[3] = er32(RDLEN);
regs_buff[4] = er32(RDH);
regs_buff[5] = er32(RDT);
regs_buff[6] = er32(RDTR);
regs_buff[7] = er32(TCTL);
regs_buff[8] = er32(TDLEN);
regs_buff[9] = er32(TDH);
regs_buff[10] = er32(TDT);
regs_buff[11] = er32(TIDV);
regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
if (hw->phy_type == e1000_phy_igp) {
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
IGP01E1000_PHY_AGC_A);
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
regs_buff[13] = (u32)phy_data; /* cable length */
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
IGP01E1000_PHY_AGC_B);
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
regs_buff[14] = (u32)phy_data; /* cable length */
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
IGP01E1000_PHY_AGC_C);
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
regs_buff[15] = (u32)phy_data; /* cable length */
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
IGP01E1000_PHY_AGC_D);
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
regs_buff[16] = (u32)phy_data; /* cable length */
regs_buff[17] = 0; /* extended 10bt distance (not needed) */
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
regs_buff[18] = (u32)phy_data; /* cable polarity */
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
IGP01E1000_PHY_PCS_INIT_REG);
e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
regs_buff[19] = (u32)phy_data; /* cable polarity */
regs_buff[20] = 0; /* polarity correction enabled (always) */
regs_buff[22] = 0; /* phy receive errors (unavailable) */
regs_buff[23] = regs_buff[18]; /* mdix mode */
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
} else {
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
regs_buff[13] = (u32)phy_data; /* cable length */
regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
regs_buff[18] = regs_buff[13]; /* cable polarity */
regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[20] = regs_buff[17]; /* polarity correction */
/* phy receive errors */
regs_buff[22] = adapter->phy_stats.receive_errors;
regs_buff[23] = regs_buff[13]; /* mdix mode */
}
regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
regs_buff[24] = (u32)phy_data; /* phy local receiver status */
regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
if (hw->mac_type >= e1000_82540 &&
hw->media_type == e1000_media_type_copper) {
regs_buff[26] = er32(MANC);
}
}
static int e1000_get_eeprom_len(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
return hw->eeprom.word_size * 2;
}
static int e1000_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 *eeprom_buff;
int first_word, last_word;
int ret_val = 0;
u16 i;
if (eeprom->len == 0)
return -EINVAL;
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
if (hw->eeprom.type == e1000_eeprom_spi)
ret_val = e1000_read_eeprom(hw, first_word,
last_word - first_word + 1,
eeprom_buff);
else {
for (i = 0; i < last_word - first_word + 1; i++) {
ret_val = e1000_read_eeprom(hw, first_word + i, 1,
&eeprom_buff[i]);
if (ret_val)
break;
}
}
/* Device's eeprom is always little-endian, word addressable */
for (i = 0; i < last_word - first_word + 1; i++)
le16_to_cpus(&eeprom_buff[i]);
memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
eeprom->len);
kfree(eeprom_buff);
return ret_val;
}
static int e1000_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 *eeprom_buff;
void *ptr;
int max_len, first_word, last_word, ret_val = 0;
u16 i;
if (eeprom->len == 0)
return -EOPNOTSUPP;
if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
return -EFAULT;
max_len = hw->eeprom.word_size * 2;
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
ptr = (void *)eeprom_buff;
if (eeprom->offset & 1) {
/* need read/modify/write of first changed EEPROM word
* only the second byte of the word is being modified
*/
ret_val = e1000_read_eeprom(hw, first_word, 1,
&eeprom_buff[0]);
ptr++;
}
if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
/* need read/modify/write of last changed EEPROM word
* only the first byte of the word is being modified
*/
ret_val = e1000_read_eeprom(hw, last_word, 1,
&eeprom_buff[last_word - first_word]);
}
/* Device's eeprom is always little-endian, word addressable */
for (i = 0; i < last_word - first_word + 1; i++)
le16_to_cpus(&eeprom_buff[i]);
memcpy(ptr, bytes, eeprom->len);
for (i = 0; i < last_word - first_word + 1; i++)
cpu_to_le16s(&eeprom_buff[i]);
ret_val = e1000_write_eeprom(hw, first_word,
last_word - first_word + 1, eeprom_buff);
/* Update the checksum over the first part of the EEPROM if needed */
if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
e1000_update_eeprom_checksum(hw);
kfree(eeprom_buff);
return ret_val;
}
static void e1000_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
strscpy(drvinfo->driver, e1000_driver_name,
sizeof(drvinfo->driver));
strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
sizeof(drvinfo->bus_info));
}
static void e1000_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring,
struct kernel_ethtool_ringparam *kernel_ring,
struct netlink_ext_ack *extack)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
e1000_mac_type mac_type = hw->mac_type;
struct e1000_tx_ring *txdr = adapter->tx_ring;
struct e1000_rx_ring *rxdr = adapter->rx_ring;
ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
E1000_MAX_82544_RXD;
ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
E1000_MAX_82544_TXD;
ring->rx_pending = rxdr->count;
ring->tx_pending = txdr->count;
}
static int e1000_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring,
struct kernel_ethtool_ringparam *kernel_ring,
struct netlink_ext_ack *extack)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
e1000_mac_type mac_type = hw->mac_type;
struct e1000_tx_ring *txdr, *tx_old;
struct e1000_rx_ring *rxdr, *rx_old;
int i, err;
if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
return -EINVAL;
while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
msleep(1);
if (netif_running(adapter->netdev))
e1000_down(adapter);
tx_old = adapter->tx_ring;
rx_old = adapter->rx_ring;
err = -ENOMEM;
txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
GFP_KERNEL);
if (!txdr)
goto err_alloc_tx;
rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
GFP_KERNEL);
if (!rxdr)
goto err_alloc_rx;
adapter->tx_ring = txdr;
adapter->rx_ring = rxdr;
rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
E1000_MAX_RXD : E1000_MAX_82544_RXD));
rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
E1000_MAX_TXD : E1000_MAX_82544_TXD));
txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
for (i = 0; i < adapter->num_tx_queues; i++)
txdr[i].count = txdr->count;
for (i = 0; i < adapter->num_rx_queues; i++)
rxdr[i].count = rxdr->count;
err = 0;
if (netif_running(adapter->netdev)) {
/* Try to get new resources before deleting old */
err = e1000_setup_all_rx_resources(adapter);
if (err)
goto err_setup_rx;
err = e1000_setup_all_tx_resources(adapter);
if (err)
goto err_setup_tx;
/* save the new, restore the old in order to free it,
* then restore the new back again
*/
adapter->rx_ring = rx_old;
adapter->tx_ring = tx_old;
e1000_free_all_rx_resources(adapter);
e1000_free_all_tx_resources(adapter);
adapter->rx_ring = rxdr;
adapter->tx_ring = txdr;
err = e1000_up(adapter);
}
kfree(tx_old);
kfree(rx_old);
clear_bit(__E1000_RESETTING, &adapter->flags);
return err;
err_setup_tx:
e1000_free_all_rx_resources(adapter);
err_setup_rx:
adapter->rx_ring = rx_old;
adapter->tx_ring = tx_old;
kfree(rxdr);
err_alloc_rx:
kfree(txdr);
err_alloc_tx:
if (netif_running(adapter->netdev))
e1000_up(adapter);
clear_bit(__E1000_RESETTING, &adapter->flags);
return err;
}
static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
u32 mask, u32 write)
{
struct e1000_hw *hw = &adapter->hw;
static const u32 test[] = {
0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
};
u8 __iomem *address = hw->hw_addr + reg;
u32 read;
int i;
for (i = 0; i < ARRAY_SIZE(test); i++) {
writel(write & test[i], address);
read = readl(address);
if (read != (write & test[i] & mask)) {
e_err(drv, "pattern test reg %04X failed: "
"got 0x%08X expected 0x%08X\n",
reg, read, (write & test[i] & mask));
*data = reg;
return true;
}
}
return false;
}
static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
u32 mask, u32 write)
{
struct e1000_hw *hw = &adapter->hw;
u8 __iomem *address = hw->hw_addr + reg;
u32 read;
writel(write & mask, address);
read = readl(address);
if ((read & mask) != (write & mask)) {
e_err(drv, "set/check reg %04X test failed: "
"got 0x%08X expected 0x%08X\n",
reg, (read & mask), (write & mask));
*data = reg;
return true;
}
return false;
}
#define REG_PATTERN_TEST(reg, mask, write) \
do { \
if (reg_pattern_test(adapter, data, \
(hw->mac_type >= e1000_82543) \
? E1000_##reg : E1000_82542_##reg, \
mask, write)) \
return 1; \
} while (0)
#define REG_SET_AND_CHECK(reg, mask, write) \
do { \
if (reg_set_and_check(adapter, data, \
(hw->mac_type >= e1000_82543) \
? E1000_##reg : E1000_82542_##reg, \
mask, write)) \
return 1; \
} while (0)
static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
{
u32 value, before, after;
u32 i, toggle;
struct e1000_hw *hw = &adapter->hw;
/* The status register is Read Only, so a write should fail.
* Some bits that get toggled are ignored.
*/
/* there are several bits on newer hardware that are r/w */
toggle = 0xFFFFF833;
before = er32(STATUS);
value = (er32(STATUS) & toggle);
ew32(STATUS, toggle);
after = er32(STATUS) & toggle;
if (value != after) {
e_err(drv, "failed STATUS register test got: "
"0x%08X expected: 0x%08X\n", after, value);
*data = 1;
return 1;
}
/* restore previous status */
ew32(STATUS, before);
REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
before = 0x06DFB3FE;
REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
if (hw->mac_type >= e1000_82543) {
REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
value = E1000_RAR_ENTRIES;
for (i = 0; i < value; i++) {
REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
0x8003FFFF, 0xFFFFFFFF);
}
} else {
REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
}
value = E1000_MC_TBL_SIZE;
for (i = 0; i < value; i++)
REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
*data = 0;
return 0;
}
static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
{
struct e1000_hw *hw = &adapter->hw;
u16 temp;
u16 checksum = 0;
u16 i;
*data = 0;
/* Read and add up the contents of the EEPROM */
for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
*data = 1;
break;
}
checksum += temp;
}
/* If Checksum is not Correct return error else test passed */
if ((checksum != (u16)EEPROM_SUM) && !(*data))
*data = 2;
return *data;
}
static irqreturn_t e1000_test_intr(int irq, void *data)
{
struct net_device *netdev = (struct net_device *)data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
adapter->test_icr |= er32(ICR);
return IRQ_HANDLED;
}
static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
{
struct net_device *netdev = adapter->netdev;
u32 mask, i = 0;
bool shared_int = true;
u32 irq = adapter->pdev->irq;
struct e1000_hw *hw = &adapter->hw;
*data = 0;
/* NOTE: we don't test MSI interrupts here, yet
* Hook up test interrupt handler just for this test
*/
if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
netdev))
shared_int = false;
else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
netdev->name, netdev)) {
*data = 1;
return -1;
}
e_info(hw, "testing %s interrupt\n", (shared_int ?
"shared" : "unshared"));
/* Disable all the interrupts */
ew32(IMC, 0xFFFFFFFF);
E1000_WRITE_FLUSH();
msleep(10);
/* Test each interrupt */
for (; i < 10; i++) {
/* Interrupt to test */
mask = 1 << i;
if (!shared_int) {
/* Disable the interrupt to be reported in
* the cause register and then force the same
* interrupt and see if one gets posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
ew32(IMC, mask);
ew32(ICS, mask);
E1000_WRITE_FLUSH();
msleep(10);
if (adapter->test_icr & mask) {
*data = 3;
break;
}
}
/* Enable the interrupt to be reported in
* the cause register and then force the same
* interrupt and see if one gets posted. If
* an interrupt was not posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
ew32(IMS, mask);
ew32(ICS, mask);
E1000_WRITE_FLUSH();
msleep(10);
if (!(adapter->test_icr & mask)) {
*data = 4;
break;
}
if (!shared_int) {
/* Disable the other interrupts to be reported in
* the cause register and then force the other
* interrupts and see if any get posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
ew32(IMC, ~mask & 0x00007FFF);
ew32(ICS, ~mask & 0x00007FFF);
E1000_WRITE_FLUSH();
msleep(10);
if (adapter->test_icr) {
*data = 5;
break;
}
}
}
/* Disable all the interrupts */
ew32(IMC, 0xFFFFFFFF);
E1000_WRITE_FLUSH();
msleep(10);
/* Unhook test interrupt handler */
free_irq(irq, netdev);
return *data;
}
static void e1000_free_desc_rings(struct e1000_adapter *adapter)
{
struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
int i;
if (txdr->desc && txdr->buffer_info) {
for (i = 0; i < txdr->count; i++) {
if (txdr->buffer_info[i].dma)
dma_unmap_single(&pdev->dev,
txdr->buffer_info[i].dma,
txdr->buffer_info[i].length,
DMA_TO_DEVICE);
dev_kfree_skb(txdr->buffer_info[i].skb);
}
}
if (rxdr->desc && rxdr->buffer_info) {
for (i = 0; i < rxdr->count; i++) {
if (rxdr->buffer_info[i].dma)
dma_unmap_single(&pdev->dev,
rxdr->buffer_info[i].dma,
E1000_RXBUFFER_2048,
DMA_FROM_DEVICE);
kfree(rxdr->buffer_info[i].rxbuf.data);
}
}
if (txdr->desc) {
dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
txdr->dma);
txdr->desc = NULL;
}
if (rxdr->desc) {
dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
rxdr->dma);
rxdr->desc = NULL;
}
kfree(txdr->buffer_info);
txdr->buffer_info = NULL;
kfree(rxdr->buffer_info);
rxdr->buffer_info = NULL;
}
static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
u32 rctl;
int i, ret_val;
/* Setup Tx descriptor ring and Tx buffers */
if (!txdr->count)
txdr->count = E1000_DEFAULT_TXD;
txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
GFP_KERNEL);
if (!txdr->buffer_info) {
ret_val = 1;
goto err_nomem;
}
txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
txdr->size = ALIGN(txdr->size, 4096);
txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
GFP_KERNEL);
if (!txdr->desc) {
ret_val = 2;
goto err_nomem;
}
txdr->next_to_use = txdr->next_to_clean = 0;
ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
ew32(TDBAH, ((u64)txdr->dma >> 32));
ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
ew32(TDH, 0);
ew32(TDT, 0);
ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
for (i = 0; i < txdr->count; i++) {
struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
struct sk_buff *skb;
unsigned int size = 1024;
skb = alloc_skb(size, GFP_KERNEL);
if (!skb) {
ret_val = 3;
goto err_nomem;
}
skb_put(skb, size);
txdr->buffer_info[i].skb = skb;
txdr->buffer_info[i].length = skb->len;
txdr->buffer_info[i].dma =
dma_map_single(&pdev->dev, skb->data, skb->len,
DMA_TO_DEVICE);
if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
ret_val = 4;
goto err_nomem;
}
tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
tx_desc->lower.data = cpu_to_le32(skb->len);
tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
E1000_TXD_CMD_IFCS |
E1000_TXD_CMD_RPS);
tx_desc->upper.data = 0;
}
/* Setup Rx descriptor ring and Rx buffers */
if (!rxdr->count)
rxdr->count = E1000_DEFAULT_RXD;
rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
GFP_KERNEL);
if (!rxdr->buffer_info) {
ret_val = 5;
goto err_nomem;
}
rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
GFP_KERNEL);
if (!rxdr->desc) {
ret_val = 6;
goto err_nomem;
}
rxdr->next_to_use = rxdr->next_to_clean = 0;
rctl = er32(RCTL);
ew32(RCTL, rctl & ~E1000_RCTL_EN);
ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
ew32(RDBAH, ((u64)rxdr->dma >> 32));
ew32(RDLEN, rxdr->size);
ew32(RDH, 0);
ew32(RDT, 0);
rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
ew32(RCTL, rctl);
for (i = 0; i < rxdr->count; i++) {
struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
u8 *buf;
buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
GFP_KERNEL);
if (!buf) {
ret_val = 7;
goto err_nomem;
}
rxdr->buffer_info[i].rxbuf.data = buf;
rxdr->buffer_info[i].dma =
dma_map_single(&pdev->dev,
buf + NET_SKB_PAD + NET_IP_ALIGN,
E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
ret_val = 8;
goto err_nomem;
}
rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
}
return 0;
err_nomem:
e1000_free_desc_rings(adapter);
return ret_val;
}
static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
e1000_write_phy_reg(hw, 29, 0x001F);
e1000_write_phy_reg(hw, 30, 0x8FFC);
e1000_write_phy_reg(hw, 29, 0x001A);
e1000_write_phy_reg(hw, 30, 0x8FF0);
}
static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 phy_reg;
/* Because we reset the PHY above, we need to re-force TX_CLK in the
* Extended PHY Specific Control Register to 25MHz clock. This
* value defaults back to a 2.5MHz clock when the PHY is reset.
*/
e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
phy_reg |= M88E1000_EPSCR_TX_CLK_25;
e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
/* In addition, because of the s/w reset above, we need to enable
* CRS on TX. This must be set for both full and half duplex
* operation.
*/
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
}
static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_reg;
u16 phy_reg;
/* Setup the Device Control Register for PHY loopback test. */
ctrl_reg = er32(CTRL);
ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
E1000_CTRL_FD); /* Force Duplex to FULL */
ew32(CTRL, ctrl_reg);
/* Read the PHY Specific Control Register (0x10) */
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
/* Clear Auto-Crossover bits in PHY Specific Control Register
* (bits 6:5).
*/
phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
/* Perform software reset on the PHY */
e1000_phy_reset(hw);
/* Have to setup TX_CLK and TX_CRS after software reset */
e1000_phy_reset_clk_and_crs(adapter);
e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
/* Wait for reset to complete. */
udelay(500);
/* Have to setup TX_CLK and TX_CRS after software reset */
e1000_phy_reset_clk_and_crs(adapter);
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
e1000_phy_disable_receiver(adapter);
/* Set the loopback bit in the PHY control register. */
e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
phy_reg |= MII_CR_LOOPBACK;
e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
/* Setup TX_CLK and TX_CRS one more time. */
e1000_phy_reset_clk_and_crs(adapter);
/* Check Phy Configuration */
e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
if (phy_reg != 0x4100)
return 9;
e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
if (phy_reg != 0x0070)
return 10;
e1000_read_phy_reg(hw, 29, &phy_reg);
if (phy_reg != 0x001A)
return 11;
return 0;
}
static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_reg = 0;
u32 stat_reg = 0;
hw->autoneg = false;
if (hw->phy_type == e1000_phy_m88) {
/* Auto-MDI/MDIX Off */
e1000_write_phy_reg(hw,
M88E1000_PHY_SPEC_CTRL, 0x0808);
/* reset to update Auto-MDI/MDIX */
e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
/* autoneg off */
e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
}
ctrl_reg = er32(CTRL);
/* force 1000, set loopback */
e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
/* Now set up the MAC to the same speed/duplex as the PHY. */
ctrl_reg = er32(CTRL);
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
E1000_CTRL_FD); /* Force Duplex to FULL */
if (hw->media_type == e1000_media_type_copper &&
hw->phy_type == e1000_phy_m88)
ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
else {
/* Set the ILOS bit on the fiber Nic is half
* duplex link is detected.
*/
stat_reg = er32(STATUS);
if ((stat_reg & E1000_STATUS_FD) == 0)
ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
}
ew32(CTRL, ctrl_reg);
/* Disable the receiver on the PHY so when a cable is plugged in, the
* PHY does not begin to autoneg when a cable is reconnected to the NIC.
*/
if (hw->phy_type == e1000_phy_m88)
e1000_phy_disable_receiver(adapter);
udelay(500);
return 0;
}
static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 phy_reg = 0;
u16 count = 0;
switch (hw->mac_type) {
case e1000_82543:
if (hw->media_type == e1000_media_type_copper) {
/* Attempt to setup Loopback mode on Non-integrated PHY.
* Some PHY registers get corrupted at random, so
* attempt this 10 times.
*/
while (e1000_nonintegrated_phy_loopback(adapter) &&
count++ < 10);
if (count < 11)
return 0;
}
break;
case e1000_82544:
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
return e1000_integrated_phy_loopback(adapter);
default:
/* Default PHY loopback work is to read the MII
* control register and assert bit 14 (loopback mode).
*/
e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
phy_reg |= MII_CR_LOOPBACK;
e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
return 0;
}
return 8;
}
static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
if (hw->media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes) {
switch (hw->mac_type) {
case e1000_82545:
case e1000_82546:
case e1000_82545_rev_3:
case e1000_82546_rev_3:
return e1000_set_phy_loopback(adapter);
default:
rctl = er32(RCTL);
rctl |= E1000_RCTL_LBM_TCVR;
ew32(RCTL, rctl);
return 0;
}
} else if (hw->media_type == e1000_media_type_copper) {
return e1000_set_phy_loopback(adapter);
}
return 7;
}
static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
u16 phy_reg;
rctl = er32(RCTL);
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
ew32(RCTL, rctl);
switch (hw->mac_type) {
case e1000_82545:
case e1000_82546:
case e1000_82545_rev_3:
case e1000_82546_rev_3:
default:
hw->autoneg = true;
e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
if (phy_reg & MII_CR_LOOPBACK) {
phy_reg &= ~MII_CR_LOOPBACK;
e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
e1000_phy_reset(hw);
}
break;
}
}
static void e1000_create_lbtest_frame(struct sk_buff *skb,
unsigned int frame_size)
{
memset(skb->data, 0xFF, frame_size);
frame_size &= ~1;
memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
skb->data[frame_size / 2 + 10] = 0xBE;
skb->data[frame_size / 2 + 12] = 0xAF;
}
static int e1000_check_lbtest_frame(const unsigned char *data,
unsigned int frame_size)
{
frame_size &= ~1;
if (*(data + 3) == 0xFF) {
if ((*(data + frame_size / 2 + 10) == 0xBE) &&
(*(data + frame_size / 2 + 12) == 0xAF)) {
return 0;
}
}
return 13;
}
static int e1000_run_loopback_test(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
int i, j, k, l, lc, good_cnt, ret_val = 0;
unsigned long time;
ew32(RDT, rxdr->count - 1);
/* Calculate the loop count based on the largest descriptor ring
* The idea is to wrap the largest ring a number of times using 64
* send/receive pairs during each loop
*/
if (rxdr->count <= txdr->count)
lc = ((txdr->count / 64) * 2) + 1;
else
lc = ((rxdr->count / 64) * 2) + 1;
k = l = 0;
for (j = 0; j <= lc; j++) { /* loop count loop */
for (i = 0; i < 64; i++) { /* send the packets */
e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1024);
dma_sync_single_for_device(&pdev->dev,
txdr->buffer_info[k].dma,
txdr->buffer_info[k].length,
DMA_TO_DEVICE);
if (unlikely(++k == txdr->count))
k = 0;
}
ew32(TDT, k);
E1000_WRITE_FLUSH();
msleep(200);
time = jiffies; /* set the start time for the receive */
good_cnt = 0;
do { /* receive the sent packets */
dma_sync_single_for_cpu(&pdev->dev,
rxdr->buffer_info[l].dma,
E1000_RXBUFFER_2048,
DMA_FROM_DEVICE);
ret_val = e1000_check_lbtest_frame(
rxdr->buffer_info[l].rxbuf.data +
NET_SKB_PAD + NET_IP_ALIGN,
1024);
if (!ret_val)
good_cnt++;
if (unlikely(++l == rxdr->count))
l = 0;
/* time + 20 msecs (200 msecs on 2.4) is more than
* enough time to complete the receives, if it's
* exceeded, break and error off
*/
} while (good_cnt < 64 && time_after(time + 20, jiffies));
if (good_cnt != 64) {
ret_val = 13; /* ret_val is the same as mis-compare */
break;
}
if (time_after_eq(jiffies, time + 2)) {
ret_val = 14; /* error code for time out error */
break;
}
} /* end loop count loop */
return ret_val;
}
static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
{
*data = e1000_setup_desc_rings(adapter);
if (*data)
goto out;
*data = e1000_setup_loopback_test(adapter);
if (*data)
goto err_loopback;
*data = e1000_run_loopback_test(adapter);
e1000_loopback_cleanup(adapter);
err_loopback:
e1000_free_desc_rings(adapter);
out:
return *data;
}
static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
{
struct e1000_hw *hw = &adapter->hw;
*data = 0;
if (hw->media_type == e1000_media_type_internal_serdes) {
int i = 0;
hw->serdes_has_link = false;
/* On some blade server designs, link establishment
* could take as long as 2-3 minutes
*/
do {
e1000_check_for_link(hw);
if (hw->serdes_has_link)
return *data;
msleep(20);
} while (i++ < 3750);
*data = 1;
} else {
e1000_check_for_link(hw);
if (hw->autoneg) /* if auto_neg is set wait for it */
msleep(4000);
if (!(er32(STATUS) & E1000_STATUS_LU))
*data = 1;
}
return *data;
}
static int e1000_get_sset_count(struct net_device *netdev, int sset)
{
switch (sset) {
case ETH_SS_TEST:
return E1000_TEST_LEN;
case ETH_SS_STATS:
return E1000_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
static void e1000_diag_test(struct net_device *netdev,
struct ethtool_test *eth_test, u64 *data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
bool if_running = netif_running(netdev);
set_bit(__E1000_TESTING, &adapter->flags);
if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
/* Offline tests */
/* save speed, duplex, autoneg settings */
u16 autoneg_advertised = hw->autoneg_advertised;
u8 forced_speed_duplex = hw->forced_speed_duplex;
u8 autoneg = hw->autoneg;
e_info(hw, "offline testing starting\n");
/* Link test performed before hardware reset so autoneg doesn't
* interfere with test result
*/
if (e1000_link_test(adapter, &data[4]))
eth_test->flags |= ETH_TEST_FL_FAILED;
if (if_running)
/* indicate we're in test mode */
e1000_close(netdev);
else
e1000_reset(adapter);
if (e1000_reg_test(adapter, &data[0]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000_reset(adapter);
if (e1000_eeprom_test(adapter, &data[1]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000_reset(adapter);
if (e1000_intr_test(adapter, &data[2]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000_reset(adapter);
/* make sure the phy is powered up */
e1000_power_up_phy(adapter);
if (e1000_loopback_test(adapter, &data[3]))
eth_test->flags |= ETH_TEST_FL_FAILED;
/* restore speed, duplex, autoneg settings */
hw->autoneg_advertised = autoneg_advertised;
hw->forced_speed_duplex = forced_speed_duplex;
hw->autoneg = autoneg;
e1000_reset(adapter);
clear_bit(__E1000_TESTING, &adapter->flags);
if (if_running)
e1000_open(netdev);
} else {
e_info(hw, "online testing starting\n");
/* Online tests */
if (e1000_link_test(adapter, &data[4]))
eth_test->flags |= ETH_TEST_FL_FAILED;
/* Online tests aren't run; pass by default */
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0;
clear_bit(__E1000_TESTING, &adapter->flags);
}
msleep_interruptible(4 * 1000);
}
static int e1000_wol_exclusion(struct e1000_adapter *adapter,
struct ethtool_wolinfo *wol)
{
struct e1000_hw *hw = &adapter->hw;
int retval = 1; /* fail by default */
switch (hw->device_id) {
case E1000_DEV_ID_82542:
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82543GC_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
case E1000_DEV_ID_82545EM_FIBER:
case E1000_DEV_ID_82545EM_COPPER:
case E1000_DEV_ID_82546GB_QUAD_COPPER:
case E1000_DEV_ID_82546GB_PCIE:
/* these don't support WoL at all */
wol->supported = 0;
break;
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546GB_FIBER:
/* Wake events not supported on port B */
if (er32(STATUS) & E1000_STATUS_FUNC_1) {
wol->supported = 0;
break;
}
/* return success for non excluded adapter ports */
retval = 0;
break;
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
/* quad port adapters only support WoL on port A */
if (!adapter->quad_port_a) {
wol->supported = 0;
break;
}
/* return success for non excluded adapter ports */
retval = 0;
break;
default:
/* dual port cards only support WoL on port A from now on
* unless it was enabled in the eeprom for port B
* so exclude FUNC_1 ports from having WoL enabled
*/
if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
!adapter->eeprom_wol) {
wol->supported = 0;
break;
}
retval = 0;
}
return retval;
}
static void e1000_get_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
wol->wolopts = 0;
/* this function will set ->supported = 0 and return 1 if wol is not
* supported by this hardware
*/
if (e1000_wol_exclusion(adapter, wol) ||
!device_can_wakeup(&adapter->pdev->dev))
return;
/* apply any specific unsupported masks here */
switch (hw->device_id) {
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
/* KSP3 does not support UCAST wake-ups */
wol->supported &= ~WAKE_UCAST;
if (adapter->wol & E1000_WUFC_EX)
e_err(drv, "Interface does not support directed "
"(unicast) frame wake-up packets\n");
break;
default:
break;
}
if (adapter->wol & E1000_WUFC_EX)
wol->wolopts |= WAKE_UCAST;
if (adapter->wol & E1000_WUFC_MC)
wol->wolopts |= WAKE_MCAST;
if (adapter->wol & E1000_WUFC_BC)
wol->wolopts |= WAKE_BCAST;
if (adapter->wol & E1000_WUFC_MAG)
wol->wolopts |= WAKE_MAGIC;
}
static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
return -EOPNOTSUPP;
if (e1000_wol_exclusion(adapter, wol) ||
!device_can_wakeup(&adapter->pdev->dev))
return wol->wolopts ? -EOPNOTSUPP : 0;
switch (hw->device_id) {
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
if (wol->wolopts & WAKE_UCAST) {
e_err(drv, "Interface does not support directed "
"(unicast) frame wake-up packets\n");
return -EOPNOTSUPP;
}
break;
default:
break;
}
/* these settings will always override what we currently have */
adapter->wol = 0;
if (wol->wolopts & WAKE_UCAST)
adapter->wol |= E1000_WUFC_EX;
if (wol->wolopts & WAKE_MCAST)
adapter->wol |= E1000_WUFC_MC;
if (wol->wolopts & WAKE_BCAST)
adapter->wol |= E1000_WUFC_BC;
if (wol->wolopts & WAKE_MAGIC)
adapter->wol |= E1000_WUFC_MAG;
device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
return 0;
}
static int e1000_set_phys_id(struct net_device *netdev,
enum ethtool_phys_id_state state)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
switch (state) {
case ETHTOOL_ID_ACTIVE:
e1000_setup_led(hw);
return 2;
case ETHTOOL_ID_ON:
e1000_led_on(hw);
break;
case ETHTOOL_ID_OFF:
e1000_led_off(hw);
break;
case ETHTOOL_ID_INACTIVE:
e1000_cleanup_led(hw);
}
return 0;
}
static int e1000_get_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec,
struct kernel_ethtool_coalesce *kernel_coal,
struct netlink_ext_ack *extack)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (adapter->hw.mac_type < e1000_82545)
return -EOPNOTSUPP;
if (adapter->itr_setting <= 4)
ec->rx_coalesce_usecs = adapter->itr_setting;
else
ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
return 0;
}
static int e1000_set_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec,
struct kernel_ethtool_coalesce *kernel_coal,
struct netlink_ext_ack *extack)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
if (hw->mac_type < e1000_82545)
return -EOPNOTSUPP;
if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
((ec->rx_coalesce_usecs > 4) &&
(ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
(ec->rx_coalesce_usecs == 2))
return -EINVAL;
if (ec->rx_coalesce_usecs == 4) {
adapter->itr = adapter->itr_setting = 4;
} else if (ec->rx_coalesce_usecs <= 3) {
adapter->itr = 20000;
adapter->itr_setting = ec->rx_coalesce_usecs;
} else {
adapter->itr = (1000000 / ec->rx_coalesce_usecs);
adapter->itr_setting = adapter->itr & ~3;
}
if (adapter->itr_setting != 0)
ew32(ITR, 1000000000 / (adapter->itr * 256));
else
ew32(ITR, 0);
return 0;
}
static int e1000_nway_reset(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (netif_running(netdev))
e1000_reinit_locked(adapter);
return 0;
}
static void e1000_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, u64 *data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
int i;
const struct e1000_stats *stat = e1000_gstrings_stats;
e1000_update_stats(adapter);
for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
char *p;
switch (stat->type) {
case NETDEV_STATS:
p = (char *)netdev + stat->stat_offset;
break;
case E1000_STATS:
p = (char *)adapter + stat->stat_offset;
break;
default:
netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
stat->type, i);
continue;
}
if (stat->sizeof_stat == sizeof(u64))
data[i] = *(u64 *)p;
else
data[i] = *(u32 *)p;
}
/* BUG_ON(i != E1000_STATS_LEN); */
}
static void e1000_get_strings(struct net_device *netdev, u32 stringset,
u8 *data)
{
u8 *p = data;
int i;
switch (stringset) {
case ETH_SS_TEST:
memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
break;
case ETH_SS_STATS:
for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
memcpy(p, e1000_gstrings_stats[i].stat_string,
ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
break;
}
}
static const struct ethtool_ops e1000_ethtool_ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
.get_drvinfo = e1000_get_drvinfo,
.get_regs_len = e1000_get_regs_len,
.get_regs = e1000_get_regs,
.get_wol = e1000_get_wol,
.set_wol = e1000_set_wol,
.get_msglevel = e1000_get_msglevel,
.set_msglevel = e1000_set_msglevel,
.nway_reset = e1000_nway_reset,
.get_link = e1000_get_link,
.get_eeprom_len = e1000_get_eeprom_len,
.get_eeprom = e1000_get_eeprom,
.set_eeprom = e1000_set_eeprom,
.get_ringparam = e1000_get_ringparam,
.set_ringparam = e1000_set_ringparam,
.get_pauseparam = e1000_get_pauseparam,
.set_pauseparam = e1000_set_pauseparam,
.self_test = e1000_diag_test,
.get_strings = e1000_get_strings,
.set_phys_id = e1000_set_phys_id,
.get_ethtool_stats = e1000_get_ethtool_stats,
.get_sset_count = e1000_get_sset_count,
.get_coalesce = e1000_get_coalesce,
.set_coalesce = e1000_set_coalesce,
.get_ts_info = ethtool_op_get_ts_info,
.get_link_ksettings = e1000_get_link_ksettings,
.set_link_ksettings = e1000_set_link_ksettings,
};
void e1000_set_ethtool_ops(struct net_device *netdev)
{
netdev->ethtool_ops = &e1000_ethtool_ops;
}