2697 lines
67 KiB
C
2697 lines
67 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* The input core
|
||
|
*
|
||
|
* Copyright (c) 1999-2002 Vojtech Pavlik
|
||
|
*/
|
||
|
|
||
|
|
||
|
#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
|
||
|
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/idr.h>
|
||
|
#include <linux/input/mt.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <linux/major.h>
|
||
|
#include <linux/proc_fs.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/seq_file.h>
|
||
|
#include <linux/poll.h>
|
||
|
#include <linux/device.h>
|
||
|
#include <linux/mutex.h>
|
||
|
#include <linux/rcupdate.h>
|
||
|
#include "input-compat.h"
|
||
|
#include "input-core-private.h"
|
||
|
#include "input-poller.h"
|
||
|
|
||
|
MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
|
||
|
MODULE_DESCRIPTION("Input core");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
|
||
|
#define INPUT_MAX_CHAR_DEVICES 1024
|
||
|
#define INPUT_FIRST_DYNAMIC_DEV 256
|
||
|
static DEFINE_IDA(input_ida);
|
||
|
|
||
|
static LIST_HEAD(input_dev_list);
|
||
|
static LIST_HEAD(input_handler_list);
|
||
|
|
||
|
/*
|
||
|
* input_mutex protects access to both input_dev_list and input_handler_list.
|
||
|
* This also causes input_[un]register_device and input_[un]register_handler
|
||
|
* be mutually exclusive which simplifies locking in drivers implementing
|
||
|
* input handlers.
|
||
|
*/
|
||
|
static DEFINE_MUTEX(input_mutex);
|
||
|
|
||
|
static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
|
||
|
|
||
|
static const unsigned int input_max_code[EV_CNT] = {
|
||
|
[EV_KEY] = KEY_MAX,
|
||
|
[EV_REL] = REL_MAX,
|
||
|
[EV_ABS] = ABS_MAX,
|
||
|
[EV_MSC] = MSC_MAX,
|
||
|
[EV_SW] = SW_MAX,
|
||
|
[EV_LED] = LED_MAX,
|
||
|
[EV_SND] = SND_MAX,
|
||
|
[EV_FF] = FF_MAX,
|
||
|
};
|
||
|
|
||
|
static inline int is_event_supported(unsigned int code,
|
||
|
unsigned long *bm, unsigned int max)
|
||
|
{
|
||
|
return code <= max && test_bit(code, bm);
|
||
|
}
|
||
|
|
||
|
static int input_defuzz_abs_event(int value, int old_val, int fuzz)
|
||
|
{
|
||
|
if (fuzz) {
|
||
|
if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
|
||
|
return old_val;
|
||
|
|
||
|
if (value > old_val - fuzz && value < old_val + fuzz)
|
||
|
return (old_val * 3 + value) / 4;
|
||
|
|
||
|
if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
|
||
|
return (old_val + value) / 2;
|
||
|
}
|
||
|
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
static void input_start_autorepeat(struct input_dev *dev, int code)
|
||
|
{
|
||
|
if (test_bit(EV_REP, dev->evbit) &&
|
||
|
dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
|
||
|
dev->timer.function) {
|
||
|
dev->repeat_key = code;
|
||
|
mod_timer(&dev->timer,
|
||
|
jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void input_stop_autorepeat(struct input_dev *dev)
|
||
|
{
|
||
|
del_timer(&dev->timer);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Pass event first through all filters and then, if event has not been
|
||
|
* filtered out, through all open handles. This function is called with
|
||
|
* dev->event_lock held and interrupts disabled.
|
||
|
*/
|
||
|
static unsigned int input_to_handler(struct input_handle *handle,
|
||
|
struct input_value *vals, unsigned int count)
|
||
|
{
|
||
|
struct input_handler *handler = handle->handler;
|
||
|
struct input_value *end = vals;
|
||
|
struct input_value *v;
|
||
|
|
||
|
if (handler->filter) {
|
||
|
for (v = vals; v != vals + count; v++) {
|
||
|
if (handler->filter(handle, v->type, v->code, v->value))
|
||
|
continue;
|
||
|
if (end != v)
|
||
|
*end = *v;
|
||
|
end++;
|
||
|
}
|
||
|
count = end - vals;
|
||
|
}
|
||
|
|
||
|
if (!count)
|
||
|
return 0;
|
||
|
|
||
|
if (handler->events)
|
||
|
handler->events(handle, vals, count);
|
||
|
else if (handler->event)
|
||
|
for (v = vals; v != vals + count; v++)
|
||
|
handler->event(handle, v->type, v->code, v->value);
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Pass values first through all filters and then, if event has not been
|
||
|
* filtered out, through all open handles. This function is called with
|
||
|
* dev->event_lock held and interrupts disabled.
|
||
|
*/
|
||
|
static void input_pass_values(struct input_dev *dev,
|
||
|
struct input_value *vals, unsigned int count)
|
||
|
{
|
||
|
struct input_handle *handle;
|
||
|
struct input_value *v;
|
||
|
|
||
|
lockdep_assert_held(&dev->event_lock);
|
||
|
|
||
|
if (!count)
|
||
|
return;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
|
||
|
handle = rcu_dereference(dev->grab);
|
||
|
if (handle) {
|
||
|
count = input_to_handler(handle, vals, count);
|
||
|
} else {
|
||
|
list_for_each_entry_rcu(handle, &dev->h_list, d_node)
|
||
|
if (handle->open) {
|
||
|
count = input_to_handler(handle, vals, count);
|
||
|
if (!count)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
/* trigger auto repeat for key events */
|
||
|
if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
|
||
|
for (v = vals; v != vals + count; v++) {
|
||
|
if (v->type == EV_KEY && v->value != 2) {
|
||
|
if (v->value)
|
||
|
input_start_autorepeat(dev, v->code);
|
||
|
else
|
||
|
input_stop_autorepeat(dev);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define INPUT_IGNORE_EVENT 0
|
||
|
#define INPUT_PASS_TO_HANDLERS 1
|
||
|
#define INPUT_PASS_TO_DEVICE 2
|
||
|
#define INPUT_SLOT 4
|
||
|
#define INPUT_FLUSH 8
|
||
|
#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
|
||
|
|
||
|
static int input_handle_abs_event(struct input_dev *dev,
|
||
|
unsigned int code, int *pval)
|
||
|
{
|
||
|
struct input_mt *mt = dev->mt;
|
||
|
bool is_mt_event;
|
||
|
int *pold;
|
||
|
|
||
|
if (code == ABS_MT_SLOT) {
|
||
|
/*
|
||
|
* "Stage" the event; we'll flush it later, when we
|
||
|
* get actual touch data.
|
||
|
*/
|
||
|
if (mt && *pval >= 0 && *pval < mt->num_slots)
|
||
|
mt->slot = *pval;
|
||
|
|
||
|
return INPUT_IGNORE_EVENT;
|
||
|
}
|
||
|
|
||
|
is_mt_event = input_is_mt_value(code);
|
||
|
|
||
|
if (!is_mt_event) {
|
||
|
pold = &dev->absinfo[code].value;
|
||
|
} else if (mt) {
|
||
|
pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
|
||
|
} else {
|
||
|
/*
|
||
|
* Bypass filtering for multi-touch events when
|
||
|
* not employing slots.
|
||
|
*/
|
||
|
pold = NULL;
|
||
|
}
|
||
|
|
||
|
if (pold) {
|
||
|
*pval = input_defuzz_abs_event(*pval, *pold,
|
||
|
dev->absinfo[code].fuzz);
|
||
|
if (*pold == *pval)
|
||
|
return INPUT_IGNORE_EVENT;
|
||
|
|
||
|
*pold = *pval;
|
||
|
}
|
||
|
|
||
|
/* Flush pending "slot" event */
|
||
|
if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
|
||
|
input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
|
||
|
return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
|
||
|
}
|
||
|
|
||
|
return INPUT_PASS_TO_HANDLERS;
|
||
|
}
|
||
|
|
||
|
static int input_get_disposition(struct input_dev *dev,
|
||
|
unsigned int type, unsigned int code, int *pval)
|
||
|
{
|
||
|
int disposition = INPUT_IGNORE_EVENT;
|
||
|
int value = *pval;
|
||
|
|
||
|
/* filter-out events from inhibited devices */
|
||
|
if (dev->inhibited)
|
||
|
return INPUT_IGNORE_EVENT;
|
||
|
|
||
|
switch (type) {
|
||
|
|
||
|
case EV_SYN:
|
||
|
switch (code) {
|
||
|
case SYN_CONFIG:
|
||
|
disposition = INPUT_PASS_TO_ALL;
|
||
|
break;
|
||
|
|
||
|
case SYN_REPORT:
|
||
|
disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
|
||
|
break;
|
||
|
case SYN_MT_REPORT:
|
||
|
disposition = INPUT_PASS_TO_HANDLERS;
|
||
|
break;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case EV_KEY:
|
||
|
if (is_event_supported(code, dev->keybit, KEY_MAX)) {
|
||
|
|
||
|
/* auto-repeat bypasses state updates */
|
||
|
if (value == 2) {
|
||
|
disposition = INPUT_PASS_TO_HANDLERS;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (!!test_bit(code, dev->key) != !!value) {
|
||
|
|
||
|
__change_bit(code, dev->key);
|
||
|
disposition = INPUT_PASS_TO_HANDLERS;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case EV_SW:
|
||
|
if (is_event_supported(code, dev->swbit, SW_MAX) &&
|
||
|
!!test_bit(code, dev->sw) != !!value) {
|
||
|
|
||
|
__change_bit(code, dev->sw);
|
||
|
disposition = INPUT_PASS_TO_HANDLERS;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case EV_ABS:
|
||
|
if (is_event_supported(code, dev->absbit, ABS_MAX))
|
||
|
disposition = input_handle_abs_event(dev, code, &value);
|
||
|
|
||
|
break;
|
||
|
|
||
|
case EV_REL:
|
||
|
if (is_event_supported(code, dev->relbit, REL_MAX) && value)
|
||
|
disposition = INPUT_PASS_TO_HANDLERS;
|
||
|
|
||
|
break;
|
||
|
|
||
|
case EV_MSC:
|
||
|
if (is_event_supported(code, dev->mscbit, MSC_MAX))
|
||
|
disposition = INPUT_PASS_TO_ALL;
|
||
|
|
||
|
break;
|
||
|
|
||
|
case EV_LED:
|
||
|
if (is_event_supported(code, dev->ledbit, LED_MAX) &&
|
||
|
!!test_bit(code, dev->led) != !!value) {
|
||
|
|
||
|
__change_bit(code, dev->led);
|
||
|
disposition = INPUT_PASS_TO_ALL;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case EV_SND:
|
||
|
if (is_event_supported(code, dev->sndbit, SND_MAX)) {
|
||
|
|
||
|
if (!!test_bit(code, dev->snd) != !!value)
|
||
|
__change_bit(code, dev->snd);
|
||
|
disposition = INPUT_PASS_TO_ALL;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case EV_REP:
|
||
|
if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
|
||
|
dev->rep[code] = value;
|
||
|
disposition = INPUT_PASS_TO_ALL;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case EV_FF:
|
||
|
if (value >= 0)
|
||
|
disposition = INPUT_PASS_TO_ALL;
|
||
|
break;
|
||
|
|
||
|
case EV_PWR:
|
||
|
disposition = INPUT_PASS_TO_ALL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
*pval = value;
|
||
|
return disposition;
|
||
|
}
|
||
|
|
||
|
static void input_event_dispose(struct input_dev *dev, int disposition,
|
||
|
unsigned int type, unsigned int code, int value)
|
||
|
{
|
||
|
if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
|
||
|
dev->event(dev, type, code, value);
|
||
|
|
||
|
if (!dev->vals)
|
||
|
return;
|
||
|
|
||
|
if (disposition & INPUT_PASS_TO_HANDLERS) {
|
||
|
struct input_value *v;
|
||
|
|
||
|
if (disposition & INPUT_SLOT) {
|
||
|
v = &dev->vals[dev->num_vals++];
|
||
|
v->type = EV_ABS;
|
||
|
v->code = ABS_MT_SLOT;
|
||
|
v->value = dev->mt->slot;
|
||
|
}
|
||
|
|
||
|
v = &dev->vals[dev->num_vals++];
|
||
|
v->type = type;
|
||
|
v->code = code;
|
||
|
v->value = value;
|
||
|
}
|
||
|
|
||
|
if (disposition & INPUT_FLUSH) {
|
||
|
if (dev->num_vals >= 2)
|
||
|
input_pass_values(dev, dev->vals, dev->num_vals);
|
||
|
dev->num_vals = 0;
|
||
|
/*
|
||
|
* Reset the timestamp on flush so we won't end up
|
||
|
* with a stale one. Note we only need to reset the
|
||
|
* monolithic one as we use its presence when deciding
|
||
|
* whether to generate a synthetic timestamp.
|
||
|
*/
|
||
|
dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
|
||
|
} else if (dev->num_vals >= dev->max_vals - 2) {
|
||
|
dev->vals[dev->num_vals++] = input_value_sync;
|
||
|
input_pass_values(dev, dev->vals, dev->num_vals);
|
||
|
dev->num_vals = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void input_handle_event(struct input_dev *dev,
|
||
|
unsigned int type, unsigned int code, int value)
|
||
|
{
|
||
|
int disposition;
|
||
|
|
||
|
lockdep_assert_held(&dev->event_lock);
|
||
|
|
||
|
disposition = input_get_disposition(dev, type, code, &value);
|
||
|
if (disposition != INPUT_IGNORE_EVENT) {
|
||
|
if (type != EV_SYN)
|
||
|
add_input_randomness(type, code, value);
|
||
|
|
||
|
input_event_dispose(dev, disposition, type, code, value);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* input_event() - report new input event
|
||
|
* @dev: device that generated the event
|
||
|
* @type: type of the event
|
||
|
* @code: event code
|
||
|
* @value: value of the event
|
||
|
*
|
||
|
* This function should be used by drivers implementing various input
|
||
|
* devices to report input events. See also input_inject_event().
|
||
|
*
|
||
|
* NOTE: input_event() may be safely used right after input device was
|
||
|
* allocated with input_allocate_device(), even before it is registered
|
||
|
* with input_register_device(), but the event will not reach any of the
|
||
|
* input handlers. Such early invocation of input_event() may be used
|
||
|
* to 'seed' initial state of a switch or initial position of absolute
|
||
|
* axis, etc.
|
||
|
*/
|
||
|
void input_event(struct input_dev *dev,
|
||
|
unsigned int type, unsigned int code, int value)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (is_event_supported(type, dev->evbit, EV_MAX)) {
|
||
|
|
||
|
spin_lock_irqsave(&dev->event_lock, flags);
|
||
|
input_handle_event(dev, type, code, value);
|
||
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_event);
|
||
|
|
||
|
/**
|
||
|
* input_inject_event() - send input event from input handler
|
||
|
* @handle: input handle to send event through
|
||
|
* @type: type of the event
|
||
|
* @code: event code
|
||
|
* @value: value of the event
|
||
|
*
|
||
|
* Similar to input_event() but will ignore event if device is
|
||
|
* "grabbed" and handle injecting event is not the one that owns
|
||
|
* the device.
|
||
|
*/
|
||
|
void input_inject_event(struct input_handle *handle,
|
||
|
unsigned int type, unsigned int code, int value)
|
||
|
{
|
||
|
struct input_dev *dev = handle->dev;
|
||
|
struct input_handle *grab;
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (is_event_supported(type, dev->evbit, EV_MAX)) {
|
||
|
spin_lock_irqsave(&dev->event_lock, flags);
|
||
|
|
||
|
rcu_read_lock();
|
||
|
grab = rcu_dereference(dev->grab);
|
||
|
if (!grab || grab == handle)
|
||
|
input_handle_event(dev, type, code, value);
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_inject_event);
|
||
|
|
||
|
/**
|
||
|
* input_alloc_absinfo - allocates array of input_absinfo structs
|
||
|
* @dev: the input device emitting absolute events
|
||
|
*
|
||
|
* If the absinfo struct the caller asked for is already allocated, this
|
||
|
* functions will not do anything.
|
||
|
*/
|
||
|
void input_alloc_absinfo(struct input_dev *dev)
|
||
|
{
|
||
|
if (dev->absinfo)
|
||
|
return;
|
||
|
|
||
|
dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
|
||
|
if (!dev->absinfo) {
|
||
|
dev_err(dev->dev.parent ?: &dev->dev,
|
||
|
"%s: unable to allocate memory\n", __func__);
|
||
|
/*
|
||
|
* We will handle this allocation failure in
|
||
|
* input_register_device() when we refuse to register input
|
||
|
* device with ABS bits but without absinfo.
|
||
|
*/
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_alloc_absinfo);
|
||
|
|
||
|
void input_set_abs_params(struct input_dev *dev, unsigned int axis,
|
||
|
int min, int max, int fuzz, int flat)
|
||
|
{
|
||
|
struct input_absinfo *absinfo;
|
||
|
|
||
|
__set_bit(EV_ABS, dev->evbit);
|
||
|
__set_bit(axis, dev->absbit);
|
||
|
|
||
|
input_alloc_absinfo(dev);
|
||
|
if (!dev->absinfo)
|
||
|
return;
|
||
|
|
||
|
absinfo = &dev->absinfo[axis];
|
||
|
absinfo->minimum = min;
|
||
|
absinfo->maximum = max;
|
||
|
absinfo->fuzz = fuzz;
|
||
|
absinfo->flat = flat;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_set_abs_params);
|
||
|
|
||
|
/**
|
||
|
* input_copy_abs - Copy absinfo from one input_dev to another
|
||
|
* @dst: Destination input device to copy the abs settings to
|
||
|
* @dst_axis: ABS_* value selecting the destination axis
|
||
|
* @src: Source input device to copy the abs settings from
|
||
|
* @src_axis: ABS_* value selecting the source axis
|
||
|
*
|
||
|
* Set absinfo for the selected destination axis by copying it from
|
||
|
* the specified source input device's source axis.
|
||
|
* This is useful to e.g. setup a pen/stylus input-device for combined
|
||
|
* touchscreen/pen hardware where the pen uses the same coordinates as
|
||
|
* the touchscreen.
|
||
|
*/
|
||
|
void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
|
||
|
const struct input_dev *src, unsigned int src_axis)
|
||
|
{
|
||
|
/* src must have EV_ABS and src_axis set */
|
||
|
if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
|
||
|
test_bit(src_axis, src->absbit))))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* input_alloc_absinfo() may have failed for the source. Our caller is
|
||
|
* expected to catch this when registering the input devices, which may
|
||
|
* happen after the input_copy_abs() call.
|
||
|
*/
|
||
|
if (!src->absinfo)
|
||
|
return;
|
||
|
|
||
|
input_set_capability(dst, EV_ABS, dst_axis);
|
||
|
if (!dst->absinfo)
|
||
|
return;
|
||
|
|
||
|
dst->absinfo[dst_axis] = src->absinfo[src_axis];
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_copy_abs);
|
||
|
|
||
|
/**
|
||
|
* input_grab_device - grabs device for exclusive use
|
||
|
* @handle: input handle that wants to own the device
|
||
|
*
|
||
|
* When a device is grabbed by an input handle all events generated by
|
||
|
* the device are delivered only to this handle. Also events injected
|
||
|
* by other input handles are ignored while device is grabbed.
|
||
|
*/
|
||
|
int input_grab_device(struct input_handle *handle)
|
||
|
{
|
||
|
struct input_dev *dev = handle->dev;
|
||
|
int retval;
|
||
|
|
||
|
retval = mutex_lock_interruptible(&dev->mutex);
|
||
|
if (retval)
|
||
|
return retval;
|
||
|
|
||
|
if (dev->grab) {
|
||
|
retval = -EBUSY;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
rcu_assign_pointer(dev->grab, handle);
|
||
|
|
||
|
out:
|
||
|
mutex_unlock(&dev->mutex);
|
||
|
return retval;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_grab_device);
|
||
|
|
||
|
static void __input_release_device(struct input_handle *handle)
|
||
|
{
|
||
|
struct input_dev *dev = handle->dev;
|
||
|
struct input_handle *grabber;
|
||
|
|
||
|
grabber = rcu_dereference_protected(dev->grab,
|
||
|
lockdep_is_held(&dev->mutex));
|
||
|
if (grabber == handle) {
|
||
|
rcu_assign_pointer(dev->grab, NULL);
|
||
|
/* Make sure input_pass_values() notices that grab is gone */
|
||
|
synchronize_rcu();
|
||
|
|
||
|
list_for_each_entry(handle, &dev->h_list, d_node)
|
||
|
if (handle->open && handle->handler->start)
|
||
|
handle->handler->start(handle);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* input_release_device - release previously grabbed device
|
||
|
* @handle: input handle that owns the device
|
||
|
*
|
||
|
* Releases previously grabbed device so that other input handles can
|
||
|
* start receiving input events. Upon release all handlers attached
|
||
|
* to the device have their start() method called so they have a change
|
||
|
* to synchronize device state with the rest of the system.
|
||
|
*/
|
||
|
void input_release_device(struct input_handle *handle)
|
||
|
{
|
||
|
struct input_dev *dev = handle->dev;
|
||
|
|
||
|
mutex_lock(&dev->mutex);
|
||
|
__input_release_device(handle);
|
||
|
mutex_unlock(&dev->mutex);
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_release_device);
|
||
|
|
||
|
/**
|
||
|
* input_open_device - open input device
|
||
|
* @handle: handle through which device is being accessed
|
||
|
*
|
||
|
* This function should be called by input handlers when they
|
||
|
* want to start receive events from given input device.
|
||
|
*/
|
||
|
int input_open_device(struct input_handle *handle)
|
||
|
{
|
||
|
struct input_dev *dev = handle->dev;
|
||
|
int retval;
|
||
|
|
||
|
retval = mutex_lock_interruptible(&dev->mutex);
|
||
|
if (retval)
|
||
|
return retval;
|
||
|
|
||
|
if (dev->going_away) {
|
||
|
retval = -ENODEV;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
handle->open++;
|
||
|
|
||
|
if (dev->users++ || dev->inhibited) {
|
||
|
/*
|
||
|
* Device is already opened and/or inhibited,
|
||
|
* so we can exit immediately and report success.
|
||
|
*/
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (dev->open) {
|
||
|
retval = dev->open(dev);
|
||
|
if (retval) {
|
||
|
dev->users--;
|
||
|
handle->open--;
|
||
|
/*
|
||
|
* Make sure we are not delivering any more events
|
||
|
* through this handle
|
||
|
*/
|
||
|
synchronize_rcu();
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (dev->poller)
|
||
|
input_dev_poller_start(dev->poller);
|
||
|
|
||
|
out:
|
||
|
mutex_unlock(&dev->mutex);
|
||
|
return retval;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_open_device);
|
||
|
|
||
|
int input_flush_device(struct input_handle *handle, struct file *file)
|
||
|
{
|
||
|
struct input_dev *dev = handle->dev;
|
||
|
int retval;
|
||
|
|
||
|
retval = mutex_lock_interruptible(&dev->mutex);
|
||
|
if (retval)
|
||
|
return retval;
|
||
|
|
||
|
if (dev->flush)
|
||
|
retval = dev->flush(dev, file);
|
||
|
|
||
|
mutex_unlock(&dev->mutex);
|
||
|
return retval;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_flush_device);
|
||
|
|
||
|
/**
|
||
|
* input_close_device - close input device
|
||
|
* @handle: handle through which device is being accessed
|
||
|
*
|
||
|
* This function should be called by input handlers when they
|
||
|
* want to stop receive events from given input device.
|
||
|
*/
|
||
|
void input_close_device(struct input_handle *handle)
|
||
|
{
|
||
|
struct input_dev *dev = handle->dev;
|
||
|
|
||
|
mutex_lock(&dev->mutex);
|
||
|
|
||
|
__input_release_device(handle);
|
||
|
|
||
|
if (!--dev->users && !dev->inhibited) {
|
||
|
if (dev->poller)
|
||
|
input_dev_poller_stop(dev->poller);
|
||
|
if (dev->close)
|
||
|
dev->close(dev);
|
||
|
}
|
||
|
|
||
|
if (!--handle->open) {
|
||
|
/*
|
||
|
* synchronize_rcu() makes sure that input_pass_values()
|
||
|
* completed and that no more input events are delivered
|
||
|
* through this handle
|
||
|
*/
|
||
|
synchronize_rcu();
|
||
|
}
|
||
|
|
||
|
mutex_unlock(&dev->mutex);
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_close_device);
|
||
|
|
||
|
/*
|
||
|
* Simulate keyup events for all keys that are marked as pressed.
|
||
|
* The function must be called with dev->event_lock held.
|
||
|
*/
|
||
|
static bool input_dev_release_keys(struct input_dev *dev)
|
||
|
{
|
||
|
bool need_sync = false;
|
||
|
int code;
|
||
|
|
||
|
lockdep_assert_held(&dev->event_lock);
|
||
|
|
||
|
if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
|
||
|
for_each_set_bit(code, dev->key, KEY_CNT) {
|
||
|
input_handle_event(dev, EV_KEY, code, 0);
|
||
|
need_sync = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return need_sync;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Prepare device for unregistering
|
||
|
*/
|
||
|
static void input_disconnect_device(struct input_dev *dev)
|
||
|
{
|
||
|
struct input_handle *handle;
|
||
|
|
||
|
/*
|
||
|
* Mark device as going away. Note that we take dev->mutex here
|
||
|
* not to protect access to dev->going_away but rather to ensure
|
||
|
* that there are no threads in the middle of input_open_device()
|
||
|
*/
|
||
|
mutex_lock(&dev->mutex);
|
||
|
dev->going_away = true;
|
||
|
mutex_unlock(&dev->mutex);
|
||
|
|
||
|
spin_lock_irq(&dev->event_lock);
|
||
|
|
||
|
/*
|
||
|
* Simulate keyup events for all pressed keys so that handlers
|
||
|
* are not left with "stuck" keys. The driver may continue
|
||
|
* generate events even after we done here but they will not
|
||
|
* reach any handlers.
|
||
|
*/
|
||
|
if (input_dev_release_keys(dev))
|
||
|
input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
|
||
|
|
||
|
list_for_each_entry(handle, &dev->h_list, d_node)
|
||
|
handle->open = 0;
|
||
|
|
||
|
spin_unlock_irq(&dev->event_lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
|
||
|
* @ke: keymap entry containing scancode to be converted.
|
||
|
* @scancode: pointer to the location where converted scancode should
|
||
|
* be stored.
|
||
|
*
|
||
|
* This function is used to convert scancode stored in &struct keymap_entry
|
||
|
* into scalar form understood by legacy keymap handling methods. These
|
||
|
* methods expect scancodes to be represented as 'unsigned int'.
|
||
|
*/
|
||
|
int input_scancode_to_scalar(const struct input_keymap_entry *ke,
|
||
|
unsigned int *scancode)
|
||
|
{
|
||
|
switch (ke->len) {
|
||
|
case 1:
|
||
|
*scancode = *((u8 *)ke->scancode);
|
||
|
break;
|
||
|
|
||
|
case 2:
|
||
|
*scancode = *((u16 *)ke->scancode);
|
||
|
break;
|
||
|
|
||
|
case 4:
|
||
|
*scancode = *((u32 *)ke->scancode);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_scancode_to_scalar);
|
||
|
|
||
|
/*
|
||
|
* Those routines handle the default case where no [gs]etkeycode() is
|
||
|
* defined. In this case, an array indexed by the scancode is used.
|
||
|
*/
|
||
|
|
||
|
static unsigned int input_fetch_keycode(struct input_dev *dev,
|
||
|
unsigned int index)
|
||
|
{
|
||
|
switch (dev->keycodesize) {
|
||
|
case 1:
|
||
|
return ((u8 *)dev->keycode)[index];
|
||
|
|
||
|
case 2:
|
||
|
return ((u16 *)dev->keycode)[index];
|
||
|
|
||
|
default:
|
||
|
return ((u32 *)dev->keycode)[index];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int input_default_getkeycode(struct input_dev *dev,
|
||
|
struct input_keymap_entry *ke)
|
||
|
{
|
||
|
unsigned int index;
|
||
|
int error;
|
||
|
|
||
|
if (!dev->keycodesize)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (ke->flags & INPUT_KEYMAP_BY_INDEX)
|
||
|
index = ke->index;
|
||
|
else {
|
||
|
error = input_scancode_to_scalar(ke, &index);
|
||
|
if (error)
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
if (index >= dev->keycodemax)
|
||
|
return -EINVAL;
|
||
|
|
||
|
ke->keycode = input_fetch_keycode(dev, index);
|
||
|
ke->index = index;
|
||
|
ke->len = sizeof(index);
|
||
|
memcpy(ke->scancode, &index, sizeof(index));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int input_default_setkeycode(struct input_dev *dev,
|
||
|
const struct input_keymap_entry *ke,
|
||
|
unsigned int *old_keycode)
|
||
|
{
|
||
|
unsigned int index;
|
||
|
int error;
|
||
|
int i;
|
||
|
|
||
|
if (!dev->keycodesize)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
|
||
|
index = ke->index;
|
||
|
} else {
|
||
|
error = input_scancode_to_scalar(ke, &index);
|
||
|
if (error)
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
if (index >= dev->keycodemax)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (dev->keycodesize < sizeof(ke->keycode) &&
|
||
|
(ke->keycode >> (dev->keycodesize * 8)))
|
||
|
return -EINVAL;
|
||
|
|
||
|
switch (dev->keycodesize) {
|
||
|
case 1: {
|
||
|
u8 *k = (u8 *)dev->keycode;
|
||
|
*old_keycode = k[index];
|
||
|
k[index] = ke->keycode;
|
||
|
break;
|
||
|
}
|
||
|
case 2: {
|
||
|
u16 *k = (u16 *)dev->keycode;
|
||
|
*old_keycode = k[index];
|
||
|
k[index] = ke->keycode;
|
||
|
break;
|
||
|
}
|
||
|
default: {
|
||
|
u32 *k = (u32 *)dev->keycode;
|
||
|
*old_keycode = k[index];
|
||
|
k[index] = ke->keycode;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (*old_keycode <= KEY_MAX) {
|
||
|
__clear_bit(*old_keycode, dev->keybit);
|
||
|
for (i = 0; i < dev->keycodemax; i++) {
|
||
|
if (input_fetch_keycode(dev, i) == *old_keycode) {
|
||
|
__set_bit(*old_keycode, dev->keybit);
|
||
|
/* Setting the bit twice is useless, so break */
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__set_bit(ke->keycode, dev->keybit);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* input_get_keycode - retrieve keycode currently mapped to a given scancode
|
||
|
* @dev: input device which keymap is being queried
|
||
|
* @ke: keymap entry
|
||
|
*
|
||
|
* This function should be called by anyone interested in retrieving current
|
||
|
* keymap. Presently evdev handlers use it.
|
||
|
*/
|
||
|
int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
int retval;
|
||
|
|
||
|
spin_lock_irqsave(&dev->event_lock, flags);
|
||
|
retval = dev->getkeycode(dev, ke);
|
||
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_get_keycode);
|
||
|
|
||
|
/**
|
||
|
* input_set_keycode - attribute a keycode to a given scancode
|
||
|
* @dev: input device which keymap is being updated
|
||
|
* @ke: new keymap entry
|
||
|
*
|
||
|
* This function should be called by anyone needing to update current
|
||
|
* keymap. Presently keyboard and evdev handlers use it.
|
||
|
*/
|
||
|
int input_set_keycode(struct input_dev *dev,
|
||
|
const struct input_keymap_entry *ke)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
unsigned int old_keycode;
|
||
|
int retval;
|
||
|
|
||
|
if (ke->keycode > KEY_MAX)
|
||
|
return -EINVAL;
|
||
|
|
||
|
spin_lock_irqsave(&dev->event_lock, flags);
|
||
|
|
||
|
retval = dev->setkeycode(dev, ke, &old_keycode);
|
||
|
if (retval)
|
||
|
goto out;
|
||
|
|
||
|
/* Make sure KEY_RESERVED did not get enabled. */
|
||
|
__clear_bit(KEY_RESERVED, dev->keybit);
|
||
|
|
||
|
/*
|
||
|
* Simulate keyup event if keycode is not present
|
||
|
* in the keymap anymore
|
||
|
*/
|
||
|
if (old_keycode > KEY_MAX) {
|
||
|
dev_warn(dev->dev.parent ?: &dev->dev,
|
||
|
"%s: got too big old keycode %#x\n",
|
||
|
__func__, old_keycode);
|
||
|
} else if (test_bit(EV_KEY, dev->evbit) &&
|
||
|
!is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
|
||
|
__test_and_clear_bit(old_keycode, dev->key)) {
|
||
|
/*
|
||
|
* We have to use input_event_dispose() here directly instead
|
||
|
* of input_handle_event() because the key we want to release
|
||
|
* here is considered no longer supported by the device and
|
||
|
* input_handle_event() will ignore it.
|
||
|
*/
|
||
|
input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
|
||
|
EV_KEY, old_keycode, 0);
|
||
|
input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
|
||
|
EV_SYN, SYN_REPORT, 1);
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_set_keycode);
|
||
|
|
||
|
bool input_match_device_id(const struct input_dev *dev,
|
||
|
const struct input_device_id *id)
|
||
|
{
|
||
|
if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
|
||
|
if (id->bustype != dev->id.bustype)
|
||
|
return false;
|
||
|
|
||
|
if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
|
||
|
if (id->vendor != dev->id.vendor)
|
||
|
return false;
|
||
|
|
||
|
if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
|
||
|
if (id->product != dev->id.product)
|
||
|
return false;
|
||
|
|
||
|
if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
|
||
|
if (id->version != dev->id.version)
|
||
|
return false;
|
||
|
|
||
|
if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
|
||
|
!bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
|
||
|
!bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
|
||
|
!bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
|
||
|
!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
|
||
|
!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
|
||
|
!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
|
||
|
!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
|
||
|
!bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
|
||
|
!bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_match_device_id);
|
||
|
|
||
|
static const struct input_device_id *input_match_device(struct input_handler *handler,
|
||
|
struct input_dev *dev)
|
||
|
{
|
||
|
const struct input_device_id *id;
|
||
|
|
||
|
for (id = handler->id_table; id->flags || id->driver_info; id++) {
|
||
|
if (input_match_device_id(dev, id) &&
|
||
|
(!handler->match || handler->match(handler, dev))) {
|
||
|
return id;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
|
||
|
{
|
||
|
const struct input_device_id *id;
|
||
|
int error;
|
||
|
|
||
|
id = input_match_device(handler, dev);
|
||
|
if (!id)
|
||
|
return -ENODEV;
|
||
|
|
||
|
error = handler->connect(handler, dev, id);
|
||
|
if (error && error != -ENODEV)
|
||
|
pr_err("failed to attach handler %s to device %s, error: %d\n",
|
||
|
handler->name, kobject_name(&dev->dev.kobj), error);
|
||
|
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_COMPAT
|
||
|
|
||
|
static int input_bits_to_string(char *buf, int buf_size,
|
||
|
unsigned long bits, bool skip_empty)
|
||
|
{
|
||
|
int len = 0;
|
||
|
|
||
|
if (in_compat_syscall()) {
|
||
|
u32 dword = bits >> 32;
|
||
|
if (dword || !skip_empty)
|
||
|
len += snprintf(buf, buf_size, "%x ", dword);
|
||
|
|
||
|
dword = bits & 0xffffffffUL;
|
||
|
if (dword || !skip_empty || len)
|
||
|
len += snprintf(buf + len, max(buf_size - len, 0),
|
||
|
"%x", dword);
|
||
|
} else {
|
||
|
if (bits || !skip_empty)
|
||
|
len += snprintf(buf, buf_size, "%lx", bits);
|
||
|
}
|
||
|
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
#else /* !CONFIG_COMPAT */
|
||
|
|
||
|
static int input_bits_to_string(char *buf, int buf_size,
|
||
|
unsigned long bits, bool skip_empty)
|
||
|
{
|
||
|
return bits || !skip_empty ?
|
||
|
snprintf(buf, buf_size, "%lx", bits) : 0;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#ifdef CONFIG_PROC_FS
|
||
|
|
||
|
static struct proc_dir_entry *proc_bus_input_dir;
|
||
|
static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
|
||
|
static int input_devices_state;
|
||
|
|
||
|
static inline void input_wakeup_procfs_readers(void)
|
||
|
{
|
||
|
input_devices_state++;
|
||
|
wake_up(&input_devices_poll_wait);
|
||
|
}
|
||
|
|
||
|
static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
|
||
|
{
|
||
|
poll_wait(file, &input_devices_poll_wait, wait);
|
||
|
if (file->f_version != input_devices_state) {
|
||
|
file->f_version = input_devices_state;
|
||
|
return EPOLLIN | EPOLLRDNORM;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
union input_seq_state {
|
||
|
struct {
|
||
|
unsigned short pos;
|
||
|
bool mutex_acquired;
|
||
|
};
|
||
|
void *p;
|
||
|
};
|
||
|
|
||
|
static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
|
||
|
{
|
||
|
union input_seq_state *state = (union input_seq_state *)&seq->private;
|
||
|
int error;
|
||
|
|
||
|
/* We need to fit into seq->private pointer */
|
||
|
BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
|
||
|
|
||
|
error = mutex_lock_interruptible(&input_mutex);
|
||
|
if (error) {
|
||
|
state->mutex_acquired = false;
|
||
|
return ERR_PTR(error);
|
||
|
}
|
||
|
|
||
|
state->mutex_acquired = true;
|
||
|
|
||
|
return seq_list_start(&input_dev_list, *pos);
|
||
|
}
|
||
|
|
||
|
static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
||
|
{
|
||
|
return seq_list_next(v, &input_dev_list, pos);
|
||
|
}
|
||
|
|
||
|
static void input_seq_stop(struct seq_file *seq, void *v)
|
||
|
{
|
||
|
union input_seq_state *state = (union input_seq_state *)&seq->private;
|
||
|
|
||
|
if (state->mutex_acquired)
|
||
|
mutex_unlock(&input_mutex);
|
||
|
}
|
||
|
|
||
|
static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
|
||
|
unsigned long *bitmap, int max)
|
||
|
{
|
||
|
int i;
|
||
|
bool skip_empty = true;
|
||
|
char buf[18];
|
||
|
|
||
|
seq_printf(seq, "B: %s=", name);
|
||
|
|
||
|
for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
|
||
|
if (input_bits_to_string(buf, sizeof(buf),
|
||
|
bitmap[i], skip_empty)) {
|
||
|
skip_empty = false;
|
||
|
seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If no output was produced print a single 0.
|
||
|
*/
|
||
|
if (skip_empty)
|
||
|
seq_putc(seq, '0');
|
||
|
|
||
|
seq_putc(seq, '\n');
|
||
|
}
|
||
|
|
||
|
static int input_devices_seq_show(struct seq_file *seq, void *v)
|
||
|
{
|
||
|
struct input_dev *dev = container_of(v, struct input_dev, node);
|
||
|
const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
|
||
|
struct input_handle *handle;
|
||
|
|
||
|
seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
|
||
|
dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
|
||
|
|
||
|
seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
|
||
|
seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
|
||
|
seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
|
||
|
seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
|
||
|
seq_puts(seq, "H: Handlers=");
|
||
|
|
||
|
list_for_each_entry(handle, &dev->h_list, d_node)
|
||
|
seq_printf(seq, "%s ", handle->name);
|
||
|
seq_putc(seq, '\n');
|
||
|
|
||
|
input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
|
||
|
|
||
|
input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
|
||
|
if (test_bit(EV_KEY, dev->evbit))
|
||
|
input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
|
||
|
if (test_bit(EV_REL, dev->evbit))
|
||
|
input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
|
||
|
if (test_bit(EV_ABS, dev->evbit))
|
||
|
input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
|
||
|
if (test_bit(EV_MSC, dev->evbit))
|
||
|
input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
|
||
|
if (test_bit(EV_LED, dev->evbit))
|
||
|
input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
|
||
|
if (test_bit(EV_SND, dev->evbit))
|
||
|
input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
|
||
|
if (test_bit(EV_FF, dev->evbit))
|
||
|
input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
|
||
|
if (test_bit(EV_SW, dev->evbit))
|
||
|
input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
|
||
|
|
||
|
seq_putc(seq, '\n');
|
||
|
|
||
|
kfree(path);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct seq_operations input_devices_seq_ops = {
|
||
|
.start = input_devices_seq_start,
|
||
|
.next = input_devices_seq_next,
|
||
|
.stop = input_seq_stop,
|
||
|
.show = input_devices_seq_show,
|
||
|
};
|
||
|
|
||
|
static int input_proc_devices_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
return seq_open(file, &input_devices_seq_ops);
|
||
|
}
|
||
|
|
||
|
static const struct proc_ops input_devices_proc_ops = {
|
||
|
.proc_open = input_proc_devices_open,
|
||
|
.proc_poll = input_proc_devices_poll,
|
||
|
.proc_read = seq_read,
|
||
|
.proc_lseek = seq_lseek,
|
||
|
.proc_release = seq_release,
|
||
|
};
|
||
|
|
||
|
static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
|
||
|
{
|
||
|
union input_seq_state *state = (union input_seq_state *)&seq->private;
|
||
|
int error;
|
||
|
|
||
|
/* We need to fit into seq->private pointer */
|
||
|
BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
|
||
|
|
||
|
error = mutex_lock_interruptible(&input_mutex);
|
||
|
if (error) {
|
||
|
state->mutex_acquired = false;
|
||
|
return ERR_PTR(error);
|
||
|
}
|
||
|
|
||
|
state->mutex_acquired = true;
|
||
|
state->pos = *pos;
|
||
|
|
||
|
return seq_list_start(&input_handler_list, *pos);
|
||
|
}
|
||
|
|
||
|
static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
||
|
{
|
||
|
union input_seq_state *state = (union input_seq_state *)&seq->private;
|
||
|
|
||
|
state->pos = *pos + 1;
|
||
|
return seq_list_next(v, &input_handler_list, pos);
|
||
|
}
|
||
|
|
||
|
static int input_handlers_seq_show(struct seq_file *seq, void *v)
|
||
|
{
|
||
|
struct input_handler *handler = container_of(v, struct input_handler, node);
|
||
|
union input_seq_state *state = (union input_seq_state *)&seq->private;
|
||
|
|
||
|
seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
|
||
|
if (handler->filter)
|
||
|
seq_puts(seq, " (filter)");
|
||
|
if (handler->legacy_minors)
|
||
|
seq_printf(seq, " Minor=%d", handler->minor);
|
||
|
seq_putc(seq, '\n');
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct seq_operations input_handlers_seq_ops = {
|
||
|
.start = input_handlers_seq_start,
|
||
|
.next = input_handlers_seq_next,
|
||
|
.stop = input_seq_stop,
|
||
|
.show = input_handlers_seq_show,
|
||
|
};
|
||
|
|
||
|
static int input_proc_handlers_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
return seq_open(file, &input_handlers_seq_ops);
|
||
|
}
|
||
|
|
||
|
static const struct proc_ops input_handlers_proc_ops = {
|
||
|
.proc_open = input_proc_handlers_open,
|
||
|
.proc_read = seq_read,
|
||
|
.proc_lseek = seq_lseek,
|
||
|
.proc_release = seq_release,
|
||
|
};
|
||
|
|
||
|
static int __init input_proc_init(void)
|
||
|
{
|
||
|
struct proc_dir_entry *entry;
|
||
|
|
||
|
proc_bus_input_dir = proc_mkdir("bus/input", NULL);
|
||
|
if (!proc_bus_input_dir)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
entry = proc_create("devices", 0, proc_bus_input_dir,
|
||
|
&input_devices_proc_ops);
|
||
|
if (!entry)
|
||
|
goto fail1;
|
||
|
|
||
|
entry = proc_create("handlers", 0, proc_bus_input_dir,
|
||
|
&input_handlers_proc_ops);
|
||
|
if (!entry)
|
||
|
goto fail2;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail2: remove_proc_entry("devices", proc_bus_input_dir);
|
||
|
fail1: remove_proc_entry("bus/input", NULL);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static void input_proc_exit(void)
|
||
|
{
|
||
|
remove_proc_entry("devices", proc_bus_input_dir);
|
||
|
remove_proc_entry("handlers", proc_bus_input_dir);
|
||
|
remove_proc_entry("bus/input", NULL);
|
||
|
}
|
||
|
|
||
|
#else /* !CONFIG_PROC_FS */
|
||
|
static inline void input_wakeup_procfs_readers(void) { }
|
||
|
static inline int input_proc_init(void) { return 0; }
|
||
|
static inline void input_proc_exit(void) { }
|
||
|
#endif
|
||
|
|
||
|
#define INPUT_DEV_STRING_ATTR_SHOW(name) \
|
||
|
static ssize_t input_dev_show_##name(struct device *dev, \
|
||
|
struct device_attribute *attr, \
|
||
|
char *buf) \
|
||
|
{ \
|
||
|
struct input_dev *input_dev = to_input_dev(dev); \
|
||
|
\
|
||
|
return scnprintf(buf, PAGE_SIZE, "%s\n", \
|
||
|
input_dev->name ? input_dev->name : ""); \
|
||
|
} \
|
||
|
static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
|
||
|
|
||
|
INPUT_DEV_STRING_ATTR_SHOW(name);
|
||
|
INPUT_DEV_STRING_ATTR_SHOW(phys);
|
||
|
INPUT_DEV_STRING_ATTR_SHOW(uniq);
|
||
|
|
||
|
static int input_print_modalias_bits(char *buf, int size,
|
||
|
char name, unsigned long *bm,
|
||
|
unsigned int min_bit, unsigned int max_bit)
|
||
|
{
|
||
|
int len = 0, i;
|
||
|
|
||
|
len += snprintf(buf, max(size, 0), "%c", name);
|
||
|
for (i = min_bit; i < max_bit; i++)
|
||
|
if (bm[BIT_WORD(i)] & BIT_MASK(i))
|
||
|
len += snprintf(buf + len, max(size - len, 0), "%X,", i);
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
static int input_print_modalias(char *buf, int size, struct input_dev *id,
|
||
|
int add_cr)
|
||
|
{
|
||
|
int len;
|
||
|
|
||
|
len = snprintf(buf, max(size, 0),
|
||
|
"input:b%04Xv%04Xp%04Xe%04X-",
|
||
|
id->id.bustype, id->id.vendor,
|
||
|
id->id.product, id->id.version);
|
||
|
|
||
|
len += input_print_modalias_bits(buf + len, size - len,
|
||
|
'e', id->evbit, 0, EV_MAX);
|
||
|
len += input_print_modalias_bits(buf + len, size - len,
|
||
|
'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
|
||
|
len += input_print_modalias_bits(buf + len, size - len,
|
||
|
'r', id->relbit, 0, REL_MAX);
|
||
|
len += input_print_modalias_bits(buf + len, size - len,
|
||
|
'a', id->absbit, 0, ABS_MAX);
|
||
|
len += input_print_modalias_bits(buf + len, size - len,
|
||
|
'm', id->mscbit, 0, MSC_MAX);
|
||
|
len += input_print_modalias_bits(buf + len, size - len,
|
||
|
'l', id->ledbit, 0, LED_MAX);
|
||
|
len += input_print_modalias_bits(buf + len, size - len,
|
||
|
's', id->sndbit, 0, SND_MAX);
|
||
|
len += input_print_modalias_bits(buf + len, size - len,
|
||
|
'f', id->ffbit, 0, FF_MAX);
|
||
|
len += input_print_modalias_bits(buf + len, size - len,
|
||
|
'w', id->swbit, 0, SW_MAX);
|
||
|
|
||
|
if (add_cr)
|
||
|
len += snprintf(buf + len, max(size - len, 0), "\n");
|
||
|
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
static ssize_t input_dev_show_modalias(struct device *dev,
|
||
|
struct device_attribute *attr,
|
||
|
char *buf)
|
||
|
{
|
||
|
struct input_dev *id = to_input_dev(dev);
|
||
|
ssize_t len;
|
||
|
|
||
|
len = input_print_modalias(buf, PAGE_SIZE, id, 1);
|
||
|
|
||
|
return min_t(int, len, PAGE_SIZE);
|
||
|
}
|
||
|
static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
|
||
|
|
||
|
static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
|
||
|
int max, int add_cr);
|
||
|
|
||
|
static ssize_t input_dev_show_properties(struct device *dev,
|
||
|
struct device_attribute *attr,
|
||
|
char *buf)
|
||
|
{
|
||
|
struct input_dev *input_dev = to_input_dev(dev);
|
||
|
int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
|
||
|
INPUT_PROP_MAX, true);
|
||
|
return min_t(int, len, PAGE_SIZE);
|
||
|
}
|
||
|
static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
|
||
|
|
||
|
static int input_inhibit_device(struct input_dev *dev);
|
||
|
static int input_uninhibit_device(struct input_dev *dev);
|
||
|
|
||
|
static ssize_t inhibited_show(struct device *dev,
|
||
|
struct device_attribute *attr,
|
||
|
char *buf)
|
||
|
{
|
||
|
struct input_dev *input_dev = to_input_dev(dev);
|
||
|
|
||
|
return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
|
||
|
}
|
||
|
|
||
|
static ssize_t inhibited_store(struct device *dev,
|
||
|
struct device_attribute *attr, const char *buf,
|
||
|
size_t len)
|
||
|
{
|
||
|
struct input_dev *input_dev = to_input_dev(dev);
|
||
|
ssize_t rv;
|
||
|
bool inhibited;
|
||
|
|
||
|
if (strtobool(buf, &inhibited))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (inhibited)
|
||
|
rv = input_inhibit_device(input_dev);
|
||
|
else
|
||
|
rv = input_uninhibit_device(input_dev);
|
||
|
|
||
|
if (rv != 0)
|
||
|
return rv;
|
||
|
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
static DEVICE_ATTR_RW(inhibited);
|
||
|
|
||
|
static struct attribute *input_dev_attrs[] = {
|
||
|
&dev_attr_name.attr,
|
||
|
&dev_attr_phys.attr,
|
||
|
&dev_attr_uniq.attr,
|
||
|
&dev_attr_modalias.attr,
|
||
|
&dev_attr_properties.attr,
|
||
|
&dev_attr_inhibited.attr,
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group input_dev_attr_group = {
|
||
|
.attrs = input_dev_attrs,
|
||
|
};
|
||
|
|
||
|
#define INPUT_DEV_ID_ATTR(name) \
|
||
|
static ssize_t input_dev_show_id_##name(struct device *dev, \
|
||
|
struct device_attribute *attr, \
|
||
|
char *buf) \
|
||
|
{ \
|
||
|
struct input_dev *input_dev = to_input_dev(dev); \
|
||
|
return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
|
||
|
} \
|
||
|
static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
|
||
|
|
||
|
INPUT_DEV_ID_ATTR(bustype);
|
||
|
INPUT_DEV_ID_ATTR(vendor);
|
||
|
INPUT_DEV_ID_ATTR(product);
|
||
|
INPUT_DEV_ID_ATTR(version);
|
||
|
|
||
|
static struct attribute *input_dev_id_attrs[] = {
|
||
|
&dev_attr_bustype.attr,
|
||
|
&dev_attr_vendor.attr,
|
||
|
&dev_attr_product.attr,
|
||
|
&dev_attr_version.attr,
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group input_dev_id_attr_group = {
|
||
|
.name = "id",
|
||
|
.attrs = input_dev_id_attrs,
|
||
|
};
|
||
|
|
||
|
static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
|
||
|
int max, int add_cr)
|
||
|
{
|
||
|
int i;
|
||
|
int len = 0;
|
||
|
bool skip_empty = true;
|
||
|
|
||
|
for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
|
||
|
len += input_bits_to_string(buf + len, max(buf_size - len, 0),
|
||
|
bitmap[i], skip_empty);
|
||
|
if (len) {
|
||
|
skip_empty = false;
|
||
|
if (i > 0)
|
||
|
len += snprintf(buf + len, max(buf_size - len, 0), " ");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If no output was produced print a single 0.
|
||
|
*/
|
||
|
if (len == 0)
|
||
|
len = snprintf(buf, buf_size, "%d", 0);
|
||
|
|
||
|
if (add_cr)
|
||
|
len += snprintf(buf + len, max(buf_size - len, 0), "\n");
|
||
|
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
#define INPUT_DEV_CAP_ATTR(ev, bm) \
|
||
|
static ssize_t input_dev_show_cap_##bm(struct device *dev, \
|
||
|
struct device_attribute *attr, \
|
||
|
char *buf) \
|
||
|
{ \
|
||
|
struct input_dev *input_dev = to_input_dev(dev); \
|
||
|
int len = input_print_bitmap(buf, PAGE_SIZE, \
|
||
|
input_dev->bm##bit, ev##_MAX, \
|
||
|
true); \
|
||
|
return min_t(int, len, PAGE_SIZE); \
|
||
|
} \
|
||
|
static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
|
||
|
|
||
|
INPUT_DEV_CAP_ATTR(EV, ev);
|
||
|
INPUT_DEV_CAP_ATTR(KEY, key);
|
||
|
INPUT_DEV_CAP_ATTR(REL, rel);
|
||
|
INPUT_DEV_CAP_ATTR(ABS, abs);
|
||
|
INPUT_DEV_CAP_ATTR(MSC, msc);
|
||
|
INPUT_DEV_CAP_ATTR(LED, led);
|
||
|
INPUT_DEV_CAP_ATTR(SND, snd);
|
||
|
INPUT_DEV_CAP_ATTR(FF, ff);
|
||
|
INPUT_DEV_CAP_ATTR(SW, sw);
|
||
|
|
||
|
static struct attribute *input_dev_caps_attrs[] = {
|
||
|
&dev_attr_ev.attr,
|
||
|
&dev_attr_key.attr,
|
||
|
&dev_attr_rel.attr,
|
||
|
&dev_attr_abs.attr,
|
||
|
&dev_attr_msc.attr,
|
||
|
&dev_attr_led.attr,
|
||
|
&dev_attr_snd.attr,
|
||
|
&dev_attr_ff.attr,
|
||
|
&dev_attr_sw.attr,
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group input_dev_caps_attr_group = {
|
||
|
.name = "capabilities",
|
||
|
.attrs = input_dev_caps_attrs,
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group *input_dev_attr_groups[] = {
|
||
|
&input_dev_attr_group,
|
||
|
&input_dev_id_attr_group,
|
||
|
&input_dev_caps_attr_group,
|
||
|
&input_poller_attribute_group,
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
static void input_dev_release(struct device *device)
|
||
|
{
|
||
|
struct input_dev *dev = to_input_dev(device);
|
||
|
|
||
|
input_ff_destroy(dev);
|
||
|
input_mt_destroy_slots(dev);
|
||
|
kfree(dev->poller);
|
||
|
kfree(dev->absinfo);
|
||
|
kfree(dev->vals);
|
||
|
kfree(dev);
|
||
|
|
||
|
module_put(THIS_MODULE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Input uevent interface - loading event handlers based on
|
||
|
* device bitfields.
|
||
|
*/
|
||
|
static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
|
||
|
const char *name, unsigned long *bitmap, int max)
|
||
|
{
|
||
|
int len;
|
||
|
|
||
|
if (add_uevent_var(env, "%s", name))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
len = input_print_bitmap(&env->buf[env->buflen - 1],
|
||
|
sizeof(env->buf) - env->buflen,
|
||
|
bitmap, max, false);
|
||
|
if (len >= (sizeof(env->buf) - env->buflen))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
env->buflen += len;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
|
||
|
struct input_dev *dev)
|
||
|
{
|
||
|
int len;
|
||
|
|
||
|
if (add_uevent_var(env, "MODALIAS="))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
len = input_print_modalias(&env->buf[env->buflen - 1],
|
||
|
sizeof(env->buf) - env->buflen,
|
||
|
dev, 0);
|
||
|
if (len >= (sizeof(env->buf) - env->buflen))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
env->buflen += len;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
|
||
|
do { \
|
||
|
int err = add_uevent_var(env, fmt, val); \
|
||
|
if (err) \
|
||
|
return err; \
|
||
|
} while (0)
|
||
|
|
||
|
#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
|
||
|
do { \
|
||
|
int err = input_add_uevent_bm_var(env, name, bm, max); \
|
||
|
if (err) \
|
||
|
return err; \
|
||
|
} while (0)
|
||
|
|
||
|
#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
|
||
|
do { \
|
||
|
int err = input_add_uevent_modalias_var(env, dev); \
|
||
|
if (err) \
|
||
|
return err; \
|
||
|
} while (0)
|
||
|
|
||
|
static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
|
||
|
{
|
||
|
struct input_dev *dev = to_input_dev(device);
|
||
|
|
||
|
INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
|
||
|
dev->id.bustype, dev->id.vendor,
|
||
|
dev->id.product, dev->id.version);
|
||
|
if (dev->name)
|
||
|
INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
|
||
|
if (dev->phys)
|
||
|
INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
|
||
|
if (dev->uniq)
|
||
|
INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
|
||
|
|
||
|
INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
|
||
|
|
||
|
INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
|
||
|
if (test_bit(EV_KEY, dev->evbit))
|
||
|
INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
|
||
|
if (test_bit(EV_REL, dev->evbit))
|
||
|
INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
|
||
|
if (test_bit(EV_ABS, dev->evbit))
|
||
|
INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
|
||
|
if (test_bit(EV_MSC, dev->evbit))
|
||
|
INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
|
||
|
if (test_bit(EV_LED, dev->evbit))
|
||
|
INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
|
||
|
if (test_bit(EV_SND, dev->evbit))
|
||
|
INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
|
||
|
if (test_bit(EV_FF, dev->evbit))
|
||
|
INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
|
||
|
if (test_bit(EV_SW, dev->evbit))
|
||
|
INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
|
||
|
|
||
|
INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define INPUT_DO_TOGGLE(dev, type, bits, on) \
|
||
|
do { \
|
||
|
int i; \
|
||
|
bool active; \
|
||
|
\
|
||
|
if (!test_bit(EV_##type, dev->evbit)) \
|
||
|
break; \
|
||
|
\
|
||
|
for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
|
||
|
active = test_bit(i, dev->bits); \
|
||
|
if (!active && !on) \
|
||
|
continue; \
|
||
|
\
|
||
|
dev->event(dev, EV_##type, i, on ? active : 0); \
|
||
|
} \
|
||
|
} while (0)
|
||
|
|
||
|
static void input_dev_toggle(struct input_dev *dev, bool activate)
|
||
|
{
|
||
|
if (!dev->event)
|
||
|
return;
|
||
|
|
||
|
INPUT_DO_TOGGLE(dev, LED, led, activate);
|
||
|
INPUT_DO_TOGGLE(dev, SND, snd, activate);
|
||
|
|
||
|
if (activate && test_bit(EV_REP, dev->evbit)) {
|
||
|
dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
|
||
|
dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* input_reset_device() - reset/restore the state of input device
|
||
|
* @dev: input device whose state needs to be reset
|
||
|
*
|
||
|
* This function tries to reset the state of an opened input device and
|
||
|
* bring internal state and state if the hardware in sync with each other.
|
||
|
* We mark all keys as released, restore LED state, repeat rate, etc.
|
||
|
*/
|
||
|
void input_reset_device(struct input_dev *dev)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
mutex_lock(&dev->mutex);
|
||
|
spin_lock_irqsave(&dev->event_lock, flags);
|
||
|
|
||
|
input_dev_toggle(dev, true);
|
||
|
if (input_dev_release_keys(dev))
|
||
|
input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
|
||
|
|
||
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
||
|
mutex_unlock(&dev->mutex);
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_reset_device);
|
||
|
|
||
|
static int input_inhibit_device(struct input_dev *dev)
|
||
|
{
|
||
|
mutex_lock(&dev->mutex);
|
||
|
|
||
|
if (dev->inhibited)
|
||
|
goto out;
|
||
|
|
||
|
if (dev->users) {
|
||
|
if (dev->close)
|
||
|
dev->close(dev);
|
||
|
if (dev->poller)
|
||
|
input_dev_poller_stop(dev->poller);
|
||
|
}
|
||
|
|
||
|
spin_lock_irq(&dev->event_lock);
|
||
|
input_mt_release_slots(dev);
|
||
|
input_dev_release_keys(dev);
|
||
|
input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
|
||
|
input_dev_toggle(dev, false);
|
||
|
spin_unlock_irq(&dev->event_lock);
|
||
|
|
||
|
dev->inhibited = true;
|
||
|
|
||
|
out:
|
||
|
mutex_unlock(&dev->mutex);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int input_uninhibit_device(struct input_dev *dev)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
mutex_lock(&dev->mutex);
|
||
|
|
||
|
if (!dev->inhibited)
|
||
|
goto out;
|
||
|
|
||
|
if (dev->users) {
|
||
|
if (dev->open) {
|
||
|
ret = dev->open(dev);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
}
|
||
|
if (dev->poller)
|
||
|
input_dev_poller_start(dev->poller);
|
||
|
}
|
||
|
|
||
|
dev->inhibited = false;
|
||
|
spin_lock_irq(&dev->event_lock);
|
||
|
input_dev_toggle(dev, true);
|
||
|
spin_unlock_irq(&dev->event_lock);
|
||
|
|
||
|
out:
|
||
|
mutex_unlock(&dev->mutex);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PM_SLEEP
|
||
|
static int input_dev_suspend(struct device *dev)
|
||
|
{
|
||
|
struct input_dev *input_dev = to_input_dev(dev);
|
||
|
|
||
|
spin_lock_irq(&input_dev->event_lock);
|
||
|
|
||
|
/*
|
||
|
* Keys that are pressed now are unlikely to be
|
||
|
* still pressed when we resume.
|
||
|
*/
|
||
|
if (input_dev_release_keys(input_dev))
|
||
|
input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
|
||
|
|
||
|
/* Turn off LEDs and sounds, if any are active. */
|
||
|
input_dev_toggle(input_dev, false);
|
||
|
|
||
|
spin_unlock_irq(&input_dev->event_lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int input_dev_resume(struct device *dev)
|
||
|
{
|
||
|
struct input_dev *input_dev = to_input_dev(dev);
|
||
|
|
||
|
spin_lock_irq(&input_dev->event_lock);
|
||
|
|
||
|
/* Restore state of LEDs and sounds, if any were active. */
|
||
|
input_dev_toggle(input_dev, true);
|
||
|
|
||
|
spin_unlock_irq(&input_dev->event_lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int input_dev_freeze(struct device *dev)
|
||
|
{
|
||
|
struct input_dev *input_dev = to_input_dev(dev);
|
||
|
|
||
|
spin_lock_irq(&input_dev->event_lock);
|
||
|
|
||
|
/*
|
||
|
* Keys that are pressed now are unlikely to be
|
||
|
* still pressed when we resume.
|
||
|
*/
|
||
|
if (input_dev_release_keys(input_dev))
|
||
|
input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
|
||
|
|
||
|
spin_unlock_irq(&input_dev->event_lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int input_dev_poweroff(struct device *dev)
|
||
|
{
|
||
|
struct input_dev *input_dev = to_input_dev(dev);
|
||
|
|
||
|
spin_lock_irq(&input_dev->event_lock);
|
||
|
|
||
|
/* Turn off LEDs and sounds, if any are active. */
|
||
|
input_dev_toggle(input_dev, false);
|
||
|
|
||
|
spin_unlock_irq(&input_dev->event_lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct dev_pm_ops input_dev_pm_ops = {
|
||
|
.suspend = input_dev_suspend,
|
||
|
.resume = input_dev_resume,
|
||
|
.freeze = input_dev_freeze,
|
||
|
.poweroff = input_dev_poweroff,
|
||
|
.restore = input_dev_resume,
|
||
|
};
|
||
|
#endif /* CONFIG_PM */
|
||
|
|
||
|
static const struct device_type input_dev_type = {
|
||
|
.groups = input_dev_attr_groups,
|
||
|
.release = input_dev_release,
|
||
|
.uevent = input_dev_uevent,
|
||
|
#ifdef CONFIG_PM_SLEEP
|
||
|
.pm = &input_dev_pm_ops,
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
static char *input_devnode(struct device *dev, umode_t *mode)
|
||
|
{
|
||
|
return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
|
||
|
}
|
||
|
|
||
|
struct class input_class = {
|
||
|
.name = "input",
|
||
|
.devnode = input_devnode,
|
||
|
};
|
||
|
EXPORT_SYMBOL_GPL(input_class);
|
||
|
|
||
|
/**
|
||
|
* input_allocate_device - allocate memory for new input device
|
||
|
*
|
||
|
* Returns prepared struct input_dev or %NULL.
|
||
|
*
|
||
|
* NOTE: Use input_free_device() to free devices that have not been
|
||
|
* registered; input_unregister_device() should be used for already
|
||
|
* registered devices.
|
||
|
*/
|
||
|
struct input_dev *input_allocate_device(void)
|
||
|
{
|
||
|
static atomic_t input_no = ATOMIC_INIT(-1);
|
||
|
struct input_dev *dev;
|
||
|
|
||
|
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
|
||
|
if (dev) {
|
||
|
dev->dev.type = &input_dev_type;
|
||
|
dev->dev.class = &input_class;
|
||
|
device_initialize(&dev->dev);
|
||
|
mutex_init(&dev->mutex);
|
||
|
spin_lock_init(&dev->event_lock);
|
||
|
timer_setup(&dev->timer, NULL, 0);
|
||
|
INIT_LIST_HEAD(&dev->h_list);
|
||
|
INIT_LIST_HEAD(&dev->node);
|
||
|
|
||
|
dev_set_name(&dev->dev, "input%lu",
|
||
|
(unsigned long)atomic_inc_return(&input_no));
|
||
|
|
||
|
__module_get(THIS_MODULE);
|
||
|
}
|
||
|
|
||
|
return dev;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_allocate_device);
|
||
|
|
||
|
struct input_devres {
|
||
|
struct input_dev *input;
|
||
|
};
|
||
|
|
||
|
static int devm_input_device_match(struct device *dev, void *res, void *data)
|
||
|
{
|
||
|
struct input_devres *devres = res;
|
||
|
|
||
|
return devres->input == data;
|
||
|
}
|
||
|
|
||
|
static void devm_input_device_release(struct device *dev, void *res)
|
||
|
{
|
||
|
struct input_devres *devres = res;
|
||
|
struct input_dev *input = devres->input;
|
||
|
|
||
|
dev_dbg(dev, "%s: dropping reference to %s\n",
|
||
|
__func__, dev_name(&input->dev));
|
||
|
input_put_device(input);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* devm_input_allocate_device - allocate managed input device
|
||
|
* @dev: device owning the input device being created
|
||
|
*
|
||
|
* Returns prepared struct input_dev or %NULL.
|
||
|
*
|
||
|
* Managed input devices do not need to be explicitly unregistered or
|
||
|
* freed as it will be done automatically when owner device unbinds from
|
||
|
* its driver (or binding fails). Once managed input device is allocated,
|
||
|
* it is ready to be set up and registered in the same fashion as regular
|
||
|
* input device. There are no special devm_input_device_[un]register()
|
||
|
* variants, regular ones work with both managed and unmanaged devices,
|
||
|
* should you need them. In most cases however, managed input device need
|
||
|
* not be explicitly unregistered or freed.
|
||
|
*
|
||
|
* NOTE: the owner device is set up as parent of input device and users
|
||
|
* should not override it.
|
||
|
*/
|
||
|
struct input_dev *devm_input_allocate_device(struct device *dev)
|
||
|
{
|
||
|
struct input_dev *input;
|
||
|
struct input_devres *devres;
|
||
|
|
||
|
devres = devres_alloc(devm_input_device_release,
|
||
|
sizeof(*devres), GFP_KERNEL);
|
||
|
if (!devres)
|
||
|
return NULL;
|
||
|
|
||
|
input = input_allocate_device();
|
||
|
if (!input) {
|
||
|
devres_free(devres);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
input->dev.parent = dev;
|
||
|
input->devres_managed = true;
|
||
|
|
||
|
devres->input = input;
|
||
|
devres_add(dev, devres);
|
||
|
|
||
|
return input;
|
||
|
}
|
||
|
EXPORT_SYMBOL(devm_input_allocate_device);
|
||
|
|
||
|
/**
|
||
|
* input_free_device - free memory occupied by input_dev structure
|
||
|
* @dev: input device to free
|
||
|
*
|
||
|
* This function should only be used if input_register_device()
|
||
|
* was not called yet or if it failed. Once device was registered
|
||
|
* use input_unregister_device() and memory will be freed once last
|
||
|
* reference to the device is dropped.
|
||
|
*
|
||
|
* Device should be allocated by input_allocate_device().
|
||
|
*
|
||
|
* NOTE: If there are references to the input device then memory
|
||
|
* will not be freed until last reference is dropped.
|
||
|
*/
|
||
|
void input_free_device(struct input_dev *dev)
|
||
|
{
|
||
|
if (dev) {
|
||
|
if (dev->devres_managed)
|
||
|
WARN_ON(devres_destroy(dev->dev.parent,
|
||
|
devm_input_device_release,
|
||
|
devm_input_device_match,
|
||
|
dev));
|
||
|
input_put_device(dev);
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_free_device);
|
||
|
|
||
|
/**
|
||
|
* input_set_timestamp - set timestamp for input events
|
||
|
* @dev: input device to set timestamp for
|
||
|
* @timestamp: the time at which the event has occurred
|
||
|
* in CLOCK_MONOTONIC
|
||
|
*
|
||
|
* This function is intended to provide to the input system a more
|
||
|
* accurate time of when an event actually occurred. The driver should
|
||
|
* call this function as soon as a timestamp is acquired ensuring
|
||
|
* clock conversions in input_set_timestamp are done correctly.
|
||
|
*
|
||
|
* The system entering suspend state between timestamp acquisition and
|
||
|
* calling input_set_timestamp can result in inaccurate conversions.
|
||
|
*/
|
||
|
void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
|
||
|
{
|
||
|
dev->timestamp[INPUT_CLK_MONO] = timestamp;
|
||
|
dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
|
||
|
dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
|
||
|
TK_OFFS_BOOT);
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_set_timestamp);
|
||
|
|
||
|
/**
|
||
|
* input_get_timestamp - get timestamp for input events
|
||
|
* @dev: input device to get timestamp from
|
||
|
*
|
||
|
* A valid timestamp is a timestamp of non-zero value.
|
||
|
*/
|
||
|
ktime_t *input_get_timestamp(struct input_dev *dev)
|
||
|
{
|
||
|
const ktime_t invalid_timestamp = ktime_set(0, 0);
|
||
|
|
||
|
if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
|
||
|
input_set_timestamp(dev, ktime_get());
|
||
|
|
||
|
return dev->timestamp;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_get_timestamp);
|
||
|
|
||
|
/**
|
||
|
* input_set_capability - mark device as capable of a certain event
|
||
|
* @dev: device that is capable of emitting or accepting event
|
||
|
* @type: type of the event (EV_KEY, EV_REL, etc...)
|
||
|
* @code: event code
|
||
|
*
|
||
|
* In addition to setting up corresponding bit in appropriate capability
|
||
|
* bitmap the function also adjusts dev->evbit.
|
||
|
*/
|
||
|
void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
|
||
|
{
|
||
|
if (type < EV_CNT && input_max_code[type] &&
|
||
|
code > input_max_code[type]) {
|
||
|
pr_err("%s: invalid code %u for type %u\n", __func__, code,
|
||
|
type);
|
||
|
dump_stack();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
switch (type) {
|
||
|
case EV_KEY:
|
||
|
__set_bit(code, dev->keybit);
|
||
|
break;
|
||
|
|
||
|
case EV_REL:
|
||
|
__set_bit(code, dev->relbit);
|
||
|
break;
|
||
|
|
||
|
case EV_ABS:
|
||
|
input_alloc_absinfo(dev);
|
||
|
__set_bit(code, dev->absbit);
|
||
|
break;
|
||
|
|
||
|
case EV_MSC:
|
||
|
__set_bit(code, dev->mscbit);
|
||
|
break;
|
||
|
|
||
|
case EV_SW:
|
||
|
__set_bit(code, dev->swbit);
|
||
|
break;
|
||
|
|
||
|
case EV_LED:
|
||
|
__set_bit(code, dev->ledbit);
|
||
|
break;
|
||
|
|
||
|
case EV_SND:
|
||
|
__set_bit(code, dev->sndbit);
|
||
|
break;
|
||
|
|
||
|
case EV_FF:
|
||
|
__set_bit(code, dev->ffbit);
|
||
|
break;
|
||
|
|
||
|
case EV_PWR:
|
||
|
/* do nothing */
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
|
||
|
dump_stack();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
__set_bit(type, dev->evbit);
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_set_capability);
|
||
|
|
||
|
static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
|
||
|
{
|
||
|
int mt_slots;
|
||
|
int i;
|
||
|
unsigned int events;
|
||
|
|
||
|
if (dev->mt) {
|
||
|
mt_slots = dev->mt->num_slots;
|
||
|
} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
|
||
|
mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
|
||
|
dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
|
||
|
mt_slots = clamp(mt_slots, 2, 32);
|
||
|
} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
|
||
|
mt_slots = 2;
|
||
|
} else {
|
||
|
mt_slots = 0;
|
||
|
}
|
||
|
|
||
|
events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
|
||
|
|
||
|
if (test_bit(EV_ABS, dev->evbit))
|
||
|
for_each_set_bit(i, dev->absbit, ABS_CNT)
|
||
|
events += input_is_mt_axis(i) ? mt_slots : 1;
|
||
|
|
||
|
if (test_bit(EV_REL, dev->evbit))
|
||
|
events += bitmap_weight(dev->relbit, REL_CNT);
|
||
|
|
||
|
/* Make room for KEY and MSC events */
|
||
|
events += 7;
|
||
|
|
||
|
return events;
|
||
|
}
|
||
|
|
||
|
#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
|
||
|
do { \
|
||
|
if (!test_bit(EV_##type, dev->evbit)) \
|
||
|
memset(dev->bits##bit, 0, \
|
||
|
sizeof(dev->bits##bit)); \
|
||
|
} while (0)
|
||
|
|
||
|
static void input_cleanse_bitmasks(struct input_dev *dev)
|
||
|
{
|
||
|
INPUT_CLEANSE_BITMASK(dev, KEY, key);
|
||
|
INPUT_CLEANSE_BITMASK(dev, REL, rel);
|
||
|
INPUT_CLEANSE_BITMASK(dev, ABS, abs);
|
||
|
INPUT_CLEANSE_BITMASK(dev, MSC, msc);
|
||
|
INPUT_CLEANSE_BITMASK(dev, LED, led);
|
||
|
INPUT_CLEANSE_BITMASK(dev, SND, snd);
|
||
|
INPUT_CLEANSE_BITMASK(dev, FF, ff);
|
||
|
INPUT_CLEANSE_BITMASK(dev, SW, sw);
|
||
|
}
|
||
|
|
||
|
static void __input_unregister_device(struct input_dev *dev)
|
||
|
{
|
||
|
struct input_handle *handle, *next;
|
||
|
|
||
|
input_disconnect_device(dev);
|
||
|
|
||
|
mutex_lock(&input_mutex);
|
||
|
|
||
|
list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
|
||
|
handle->handler->disconnect(handle);
|
||
|
WARN_ON(!list_empty(&dev->h_list));
|
||
|
|
||
|
del_timer_sync(&dev->timer);
|
||
|
list_del_init(&dev->node);
|
||
|
|
||
|
input_wakeup_procfs_readers();
|
||
|
|
||
|
mutex_unlock(&input_mutex);
|
||
|
|
||
|
device_del(&dev->dev);
|
||
|
}
|
||
|
|
||
|
static void devm_input_device_unregister(struct device *dev, void *res)
|
||
|
{
|
||
|
struct input_devres *devres = res;
|
||
|
struct input_dev *input = devres->input;
|
||
|
|
||
|
dev_dbg(dev, "%s: unregistering device %s\n",
|
||
|
__func__, dev_name(&input->dev));
|
||
|
__input_unregister_device(input);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Generate software autorepeat event. Note that we take
|
||
|
* dev->event_lock here to avoid racing with input_event
|
||
|
* which may cause keys get "stuck".
|
||
|
*/
|
||
|
static void input_repeat_key(struct timer_list *t)
|
||
|
{
|
||
|
struct input_dev *dev = from_timer(dev, t, timer);
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&dev->event_lock, flags);
|
||
|
|
||
|
if (!dev->inhibited &&
|
||
|
test_bit(dev->repeat_key, dev->key) &&
|
||
|
is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
|
||
|
|
||
|
input_set_timestamp(dev, ktime_get());
|
||
|
input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
|
||
|
input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
|
||
|
|
||
|
if (dev->rep[REP_PERIOD])
|
||
|
mod_timer(&dev->timer, jiffies +
|
||
|
msecs_to_jiffies(dev->rep[REP_PERIOD]));
|
||
|
}
|
||
|
|
||
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* input_enable_softrepeat - enable software autorepeat
|
||
|
* @dev: input device
|
||
|
* @delay: repeat delay
|
||
|
* @period: repeat period
|
||
|
*
|
||
|
* Enable software autorepeat on the input device.
|
||
|
*/
|
||
|
void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
|
||
|
{
|
||
|
dev->timer.function = input_repeat_key;
|
||
|
dev->rep[REP_DELAY] = delay;
|
||
|
dev->rep[REP_PERIOD] = period;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_enable_softrepeat);
|
||
|
|
||
|
bool input_device_enabled(struct input_dev *dev)
|
||
|
{
|
||
|
lockdep_assert_held(&dev->mutex);
|
||
|
|
||
|
return !dev->inhibited && dev->users > 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(input_device_enabled);
|
||
|
|
||
|
/**
|
||
|
* input_register_device - register device with input core
|
||
|
* @dev: device to be registered
|
||
|
*
|
||
|
* This function registers device with input core. The device must be
|
||
|
* allocated with input_allocate_device() and all it's capabilities
|
||
|
* set up before registering.
|
||
|
* If function fails the device must be freed with input_free_device().
|
||
|
* Once device has been successfully registered it can be unregistered
|
||
|
* with input_unregister_device(); input_free_device() should not be
|
||
|
* called in this case.
|
||
|
*
|
||
|
* Note that this function is also used to register managed input devices
|
||
|
* (ones allocated with devm_input_allocate_device()). Such managed input
|
||
|
* devices need not be explicitly unregistered or freed, their tear down
|
||
|
* is controlled by the devres infrastructure. It is also worth noting
|
||
|
* that tear down of managed input devices is internally a 2-step process:
|
||
|
* registered managed input device is first unregistered, but stays in
|
||
|
* memory and can still handle input_event() calls (although events will
|
||
|
* not be delivered anywhere). The freeing of managed input device will
|
||
|
* happen later, when devres stack is unwound to the point where device
|
||
|
* allocation was made.
|
||
|
*/
|
||
|
int input_register_device(struct input_dev *dev)
|
||
|
{
|
||
|
struct input_devres *devres = NULL;
|
||
|
struct input_handler *handler;
|
||
|
unsigned int packet_size;
|
||
|
const char *path;
|
||
|
int error;
|
||
|
|
||
|
if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
|
||
|
dev_err(&dev->dev,
|
||
|
"Absolute device without dev->absinfo, refusing to register\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (dev->devres_managed) {
|
||
|
devres = devres_alloc(devm_input_device_unregister,
|
||
|
sizeof(*devres), GFP_KERNEL);
|
||
|
if (!devres)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
devres->input = dev;
|
||
|
}
|
||
|
|
||
|
/* Every input device generates EV_SYN/SYN_REPORT events. */
|
||
|
__set_bit(EV_SYN, dev->evbit);
|
||
|
|
||
|
/* KEY_RESERVED is not supposed to be transmitted to userspace. */
|
||
|
__clear_bit(KEY_RESERVED, dev->keybit);
|
||
|
|
||
|
/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
|
||
|
input_cleanse_bitmasks(dev);
|
||
|
|
||
|
packet_size = input_estimate_events_per_packet(dev);
|
||
|
if (dev->hint_events_per_packet < packet_size)
|
||
|
dev->hint_events_per_packet = packet_size;
|
||
|
|
||
|
dev->max_vals = dev->hint_events_per_packet + 2;
|
||
|
dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
|
||
|
if (!dev->vals) {
|
||
|
error = -ENOMEM;
|
||
|
goto err_devres_free;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If delay and period are pre-set by the driver, then autorepeating
|
||
|
* is handled by the driver itself and we don't do it in input.c.
|
||
|
*/
|
||
|
if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
|
||
|
input_enable_softrepeat(dev, 250, 33);
|
||
|
|
||
|
if (!dev->getkeycode)
|
||
|
dev->getkeycode = input_default_getkeycode;
|
||
|
|
||
|
if (!dev->setkeycode)
|
||
|
dev->setkeycode = input_default_setkeycode;
|
||
|
|
||
|
if (dev->poller)
|
||
|
input_dev_poller_finalize(dev->poller);
|
||
|
|
||
|
error = device_add(&dev->dev);
|
||
|
if (error)
|
||
|
goto err_free_vals;
|
||
|
|
||
|
path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
|
||
|
pr_info("%s as %s\n",
|
||
|
dev->name ? dev->name : "Unspecified device",
|
||
|
path ? path : "N/A");
|
||
|
kfree(path);
|
||
|
|
||
|
error = mutex_lock_interruptible(&input_mutex);
|
||
|
if (error)
|
||
|
goto err_device_del;
|
||
|
|
||
|
list_add_tail(&dev->node, &input_dev_list);
|
||
|
|
||
|
list_for_each_entry(handler, &input_handler_list, node)
|
||
|
input_attach_handler(dev, handler);
|
||
|
|
||
|
input_wakeup_procfs_readers();
|
||
|
|
||
|
mutex_unlock(&input_mutex);
|
||
|
|
||
|
if (dev->devres_managed) {
|
||
|
dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
|
||
|
__func__, dev_name(&dev->dev));
|
||
|
devres_add(dev->dev.parent, devres);
|
||
|
}
|
||
|
return 0;
|
||
|
|
||
|
err_device_del:
|
||
|
device_del(&dev->dev);
|
||
|
err_free_vals:
|
||
|
kfree(dev->vals);
|
||
|
dev->vals = NULL;
|
||
|
err_devres_free:
|
||
|
devres_free(devres);
|
||
|
return error;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_register_device);
|
||
|
|
||
|
/**
|
||
|
* input_unregister_device - unregister previously registered device
|
||
|
* @dev: device to be unregistered
|
||
|
*
|
||
|
* This function unregisters an input device. Once device is unregistered
|
||
|
* the caller should not try to access it as it may get freed at any moment.
|
||
|
*/
|
||
|
void input_unregister_device(struct input_dev *dev)
|
||
|
{
|
||
|
if (dev->devres_managed) {
|
||
|
WARN_ON(devres_destroy(dev->dev.parent,
|
||
|
devm_input_device_unregister,
|
||
|
devm_input_device_match,
|
||
|
dev));
|
||
|
__input_unregister_device(dev);
|
||
|
/*
|
||
|
* We do not do input_put_device() here because it will be done
|
||
|
* when 2nd devres fires up.
|
||
|
*/
|
||
|
} else {
|
||
|
__input_unregister_device(dev);
|
||
|
input_put_device(dev);
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_unregister_device);
|
||
|
|
||
|
/**
|
||
|
* input_register_handler - register a new input handler
|
||
|
* @handler: handler to be registered
|
||
|
*
|
||
|
* This function registers a new input handler (interface) for input
|
||
|
* devices in the system and attaches it to all input devices that
|
||
|
* are compatible with the handler.
|
||
|
*/
|
||
|
int input_register_handler(struct input_handler *handler)
|
||
|
{
|
||
|
struct input_dev *dev;
|
||
|
int error;
|
||
|
|
||
|
error = mutex_lock_interruptible(&input_mutex);
|
||
|
if (error)
|
||
|
return error;
|
||
|
|
||
|
INIT_LIST_HEAD(&handler->h_list);
|
||
|
|
||
|
list_add_tail(&handler->node, &input_handler_list);
|
||
|
|
||
|
list_for_each_entry(dev, &input_dev_list, node)
|
||
|
input_attach_handler(dev, handler);
|
||
|
|
||
|
input_wakeup_procfs_readers();
|
||
|
|
||
|
mutex_unlock(&input_mutex);
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_register_handler);
|
||
|
|
||
|
/**
|
||
|
* input_unregister_handler - unregisters an input handler
|
||
|
* @handler: handler to be unregistered
|
||
|
*
|
||
|
* This function disconnects a handler from its input devices and
|
||
|
* removes it from lists of known handlers.
|
||
|
*/
|
||
|
void input_unregister_handler(struct input_handler *handler)
|
||
|
{
|
||
|
struct input_handle *handle, *next;
|
||
|
|
||
|
mutex_lock(&input_mutex);
|
||
|
|
||
|
list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
|
||
|
handler->disconnect(handle);
|
||
|
WARN_ON(!list_empty(&handler->h_list));
|
||
|
|
||
|
list_del_init(&handler->node);
|
||
|
|
||
|
input_wakeup_procfs_readers();
|
||
|
|
||
|
mutex_unlock(&input_mutex);
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_unregister_handler);
|
||
|
|
||
|
/**
|
||
|
* input_handler_for_each_handle - handle iterator
|
||
|
* @handler: input handler to iterate
|
||
|
* @data: data for the callback
|
||
|
* @fn: function to be called for each handle
|
||
|
*
|
||
|
* Iterate over @bus's list of devices, and call @fn for each, passing
|
||
|
* it @data and stop when @fn returns a non-zero value. The function is
|
||
|
* using RCU to traverse the list and therefore may be using in atomic
|
||
|
* contexts. The @fn callback is invoked from RCU critical section and
|
||
|
* thus must not sleep.
|
||
|
*/
|
||
|
int input_handler_for_each_handle(struct input_handler *handler, void *data,
|
||
|
int (*fn)(struct input_handle *, void *))
|
||
|
{
|
||
|
struct input_handle *handle;
|
||
|
int retval = 0;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
|
||
|
list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
|
||
|
retval = fn(handle, data);
|
||
|
if (retval)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_handler_for_each_handle);
|
||
|
|
||
|
/**
|
||
|
* input_register_handle - register a new input handle
|
||
|
* @handle: handle to register
|
||
|
*
|
||
|
* This function puts a new input handle onto device's
|
||
|
* and handler's lists so that events can flow through
|
||
|
* it once it is opened using input_open_device().
|
||
|
*
|
||
|
* This function is supposed to be called from handler's
|
||
|
* connect() method.
|
||
|
*/
|
||
|
int input_register_handle(struct input_handle *handle)
|
||
|
{
|
||
|
struct input_handler *handler = handle->handler;
|
||
|
struct input_dev *dev = handle->dev;
|
||
|
int error;
|
||
|
|
||
|
/*
|
||
|
* We take dev->mutex here to prevent race with
|
||
|
* input_release_device().
|
||
|
*/
|
||
|
error = mutex_lock_interruptible(&dev->mutex);
|
||
|
if (error)
|
||
|
return error;
|
||
|
|
||
|
/*
|
||
|
* Filters go to the head of the list, normal handlers
|
||
|
* to the tail.
|
||
|
*/
|
||
|
if (handler->filter)
|
||
|
list_add_rcu(&handle->d_node, &dev->h_list);
|
||
|
else
|
||
|
list_add_tail_rcu(&handle->d_node, &dev->h_list);
|
||
|
|
||
|
mutex_unlock(&dev->mutex);
|
||
|
|
||
|
/*
|
||
|
* Since we are supposed to be called from ->connect()
|
||
|
* which is mutually exclusive with ->disconnect()
|
||
|
* we can't be racing with input_unregister_handle()
|
||
|
* and so separate lock is not needed here.
|
||
|
*/
|
||
|
list_add_tail_rcu(&handle->h_node, &handler->h_list);
|
||
|
|
||
|
if (handler->start)
|
||
|
handler->start(handle);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_register_handle);
|
||
|
|
||
|
/**
|
||
|
* input_unregister_handle - unregister an input handle
|
||
|
* @handle: handle to unregister
|
||
|
*
|
||
|
* This function removes input handle from device's
|
||
|
* and handler's lists.
|
||
|
*
|
||
|
* This function is supposed to be called from handler's
|
||
|
* disconnect() method.
|
||
|
*/
|
||
|
void input_unregister_handle(struct input_handle *handle)
|
||
|
{
|
||
|
struct input_dev *dev = handle->dev;
|
||
|
|
||
|
list_del_rcu(&handle->h_node);
|
||
|
|
||
|
/*
|
||
|
* Take dev->mutex to prevent race with input_release_device().
|
||
|
*/
|
||
|
mutex_lock(&dev->mutex);
|
||
|
list_del_rcu(&handle->d_node);
|
||
|
mutex_unlock(&dev->mutex);
|
||
|
|
||
|
synchronize_rcu();
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_unregister_handle);
|
||
|
|
||
|
/**
|
||
|
* input_get_new_minor - allocates a new input minor number
|
||
|
* @legacy_base: beginning or the legacy range to be searched
|
||
|
* @legacy_num: size of legacy range
|
||
|
* @allow_dynamic: whether we can also take ID from the dynamic range
|
||
|
*
|
||
|
* This function allocates a new device minor for from input major namespace.
|
||
|
* Caller can request legacy minor by specifying @legacy_base and @legacy_num
|
||
|
* parameters and whether ID can be allocated from dynamic range if there are
|
||
|
* no free IDs in legacy range.
|
||
|
*/
|
||
|
int input_get_new_minor(int legacy_base, unsigned int legacy_num,
|
||
|
bool allow_dynamic)
|
||
|
{
|
||
|
/*
|
||
|
* This function should be called from input handler's ->connect()
|
||
|
* methods, which are serialized with input_mutex, so no additional
|
||
|
* locking is needed here.
|
||
|
*/
|
||
|
if (legacy_base >= 0) {
|
||
|
int minor = ida_simple_get(&input_ida,
|
||
|
legacy_base,
|
||
|
legacy_base + legacy_num,
|
||
|
GFP_KERNEL);
|
||
|
if (minor >= 0 || !allow_dynamic)
|
||
|
return minor;
|
||
|
}
|
||
|
|
||
|
return ida_simple_get(&input_ida,
|
||
|
INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
|
||
|
GFP_KERNEL);
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_get_new_minor);
|
||
|
|
||
|
/**
|
||
|
* input_free_minor - release previously allocated minor
|
||
|
* @minor: minor to be released
|
||
|
*
|
||
|
* This function releases previously allocated input minor so that it can be
|
||
|
* reused later.
|
||
|
*/
|
||
|
void input_free_minor(unsigned int minor)
|
||
|
{
|
||
|
ida_simple_remove(&input_ida, minor);
|
||
|
}
|
||
|
EXPORT_SYMBOL(input_free_minor);
|
||
|
|
||
|
static int __init input_init(void)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
err = class_register(&input_class);
|
||
|
if (err) {
|
||
|
pr_err("unable to register input_dev class\n");
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
err = input_proc_init();
|
||
|
if (err)
|
||
|
goto fail1;
|
||
|
|
||
|
err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
|
||
|
INPUT_MAX_CHAR_DEVICES, "input");
|
||
|
if (err) {
|
||
|
pr_err("unable to register char major %d", INPUT_MAJOR);
|
||
|
goto fail2;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail2: input_proc_exit();
|
||
|
fail1: class_unregister(&input_class);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static void __exit input_exit(void)
|
||
|
{
|
||
|
input_proc_exit();
|
||
|
unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
|
||
|
INPUT_MAX_CHAR_DEVICES);
|
||
|
class_unregister(&input_class);
|
||
|
}
|
||
|
|
||
|
subsys_initcall(input_init);
|
||
|
module_exit(input_exit);
|