linuxdebug/drivers/gpu/drm/nouveau/nvkm/subdev/mmu/vmm.c

1870 lines
48 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
/*
* Copyright 2017 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#define NVKM_VMM_LEVELS_MAX 5
#include "vmm.h"
#include <subdev/fb.h>
static void
nvkm_vmm_pt_del(struct nvkm_vmm_pt **ppgt)
{
struct nvkm_vmm_pt *pgt = *ppgt;
if (pgt) {
kvfree(pgt->pde);
kfree(pgt);
*ppgt = NULL;
}
}
static struct nvkm_vmm_pt *
nvkm_vmm_pt_new(const struct nvkm_vmm_desc *desc, bool sparse,
const struct nvkm_vmm_page *page)
{
const u32 pten = 1 << desc->bits;
struct nvkm_vmm_pt *pgt;
u32 lpte = 0;
if (desc->type > PGT) {
if (desc->type == SPT) {
const struct nvkm_vmm_desc *pair = page[-1].desc;
lpte = pten >> (desc->bits - pair->bits);
} else {
lpte = pten;
}
}
if (!(pgt = kzalloc(sizeof(*pgt) + lpte, GFP_KERNEL)))
return NULL;
pgt->page = page ? page->shift : 0;
pgt->sparse = sparse;
if (desc->type == PGD) {
pgt->pde = kvcalloc(pten, sizeof(*pgt->pde), GFP_KERNEL);
if (!pgt->pde) {
kfree(pgt);
return NULL;
}
}
return pgt;
}
struct nvkm_vmm_iter {
const struct nvkm_vmm_page *page;
const struct nvkm_vmm_desc *desc;
struct nvkm_vmm *vmm;
u64 cnt;
u16 max, lvl;
u32 pte[NVKM_VMM_LEVELS_MAX];
struct nvkm_vmm_pt *pt[NVKM_VMM_LEVELS_MAX];
int flush;
};
#ifdef CONFIG_NOUVEAU_DEBUG_MMU
static const char *
nvkm_vmm_desc_type(const struct nvkm_vmm_desc *desc)
{
switch (desc->type) {
case PGD: return "PGD";
case PGT: return "PGT";
case SPT: return "SPT";
case LPT: return "LPT";
default:
return "UNKNOWN";
}
}
static void
nvkm_vmm_trace(struct nvkm_vmm_iter *it, char *buf)
{
int lvl;
for (lvl = it->max; lvl >= 0; lvl--) {
if (lvl >= it->lvl)
buf += sprintf(buf, "%05x:", it->pte[lvl]);
else
buf += sprintf(buf, "xxxxx:");
}
}
#define TRA(i,f,a...) do { \
char _buf[NVKM_VMM_LEVELS_MAX * 7]; \
struct nvkm_vmm_iter *_it = (i); \
nvkm_vmm_trace(_it, _buf); \
VMM_TRACE(_it->vmm, "%s "f, _buf, ##a); \
} while(0)
#else
#define TRA(i,f,a...)
#endif
static inline void
nvkm_vmm_flush_mark(struct nvkm_vmm_iter *it)
{
it->flush = min(it->flush, it->max - it->lvl);
}
static inline void
nvkm_vmm_flush(struct nvkm_vmm_iter *it)
{
if (it->flush != NVKM_VMM_LEVELS_MAX) {
if (it->vmm->func->flush) {
TRA(it, "flush: %d", it->flush);
it->vmm->func->flush(it->vmm, it->flush);
}
it->flush = NVKM_VMM_LEVELS_MAX;
}
}
static void
nvkm_vmm_unref_pdes(struct nvkm_vmm_iter *it)
{
const struct nvkm_vmm_desc *desc = it->desc;
const int type = desc[it->lvl].type == SPT;
struct nvkm_vmm_pt *pgd = it->pt[it->lvl + 1];
struct nvkm_vmm_pt *pgt = it->pt[it->lvl];
struct nvkm_mmu_pt *pt = pgt->pt[type];
struct nvkm_vmm *vmm = it->vmm;
u32 pdei = it->pte[it->lvl + 1];
/* Recurse up the tree, unreferencing/destroying unneeded PDs. */
it->lvl++;
if (--pgd->refs[0]) {
const struct nvkm_vmm_desc_func *func = desc[it->lvl].func;
/* PD has other valid PDEs, so we need a proper update. */
TRA(it, "PDE unmap %s", nvkm_vmm_desc_type(&desc[it->lvl - 1]));
pgt->pt[type] = NULL;
if (!pgt->refs[!type]) {
/* PDE no longer required. */
if (pgd->pt[0]) {
if (pgt->sparse) {
func->sparse(vmm, pgd->pt[0], pdei, 1);
pgd->pde[pdei] = NVKM_VMM_PDE_SPARSE;
} else {
func->unmap(vmm, pgd->pt[0], pdei, 1);
pgd->pde[pdei] = NULL;
}
} else {
/* Special handling for Tesla-class GPUs,
* where there's no central PD, but each
* instance has its own embedded PD.
*/
func->pde(vmm, pgd, pdei);
pgd->pde[pdei] = NULL;
}
} else {
/* PDE was pointing at dual-PTs and we're removing
* one of them, leaving the other in place.
*/
func->pde(vmm, pgd, pdei);
}
/* GPU may have cached the PTs, flush before freeing. */
nvkm_vmm_flush_mark(it);
nvkm_vmm_flush(it);
} else {
/* PD has no valid PDEs left, so we can just destroy it. */
nvkm_vmm_unref_pdes(it);
}
/* Destroy PD/PT. */
TRA(it, "PDE free %s", nvkm_vmm_desc_type(&desc[it->lvl - 1]));
nvkm_mmu_ptc_put(vmm->mmu, vmm->bootstrapped, &pt);
if (!pgt->refs[!type])
nvkm_vmm_pt_del(&pgt);
it->lvl--;
}
static void
nvkm_vmm_unref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt,
const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes)
{
const struct nvkm_vmm_desc *pair = it->page[-1].desc;
const u32 sptb = desc->bits - pair->bits;
const u32 sptn = 1 << sptb;
struct nvkm_vmm *vmm = it->vmm;
u32 spti = ptei & (sptn - 1), lpti, pteb;
/* Determine how many SPTEs are being touched under each LPTE,
* and drop reference counts.
*/
for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) {
const u32 pten = min(sptn - spti, ptes);
pgt->pte[lpti] -= pten;
ptes -= pten;
}
/* We're done here if there's no corresponding LPT. */
if (!pgt->refs[0])
return;
for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) {
/* Skip over any LPTEs that still have valid SPTEs. */
if (pgt->pte[pteb] & NVKM_VMM_PTE_SPTES) {
for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
if (!(pgt->pte[ptei] & NVKM_VMM_PTE_SPTES))
break;
}
continue;
}
/* As there's no more non-UNMAPPED SPTEs left in the range
* covered by a number of LPTEs, the LPTEs once again take
* control over their address range.
*
* Determine how many LPTEs need to transition state.
*/
pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID;
for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
if (pgt->pte[ptei] & NVKM_VMM_PTE_SPTES)
break;
pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID;
}
if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) {
TRA(it, "LPTE %05x: U -> S %d PTEs", pteb, ptes);
pair->func->sparse(vmm, pgt->pt[0], pteb, ptes);
} else
if (pair->func->invalid) {
/* If the MMU supports it, restore the LPTE to the
* INVALID state to tell the MMU there is no point
* trying to fetch the corresponding SPTEs.
*/
TRA(it, "LPTE %05x: U -> I %d PTEs", pteb, ptes);
pair->func->invalid(vmm, pgt->pt[0], pteb, ptes);
}
}
}
static bool
nvkm_vmm_unref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
{
const struct nvkm_vmm_desc *desc = it->desc;
const int type = desc->type == SPT;
struct nvkm_vmm_pt *pgt = it->pt[0];
bool dma;
if (pfn) {
/* Need to clear PTE valid bits before we dma_unmap_page(). */
dma = desc->func->pfn_clear(it->vmm, pgt->pt[type], ptei, ptes);
if (dma) {
/* GPU may have cached the PT, flush before unmap. */
nvkm_vmm_flush_mark(it);
nvkm_vmm_flush(it);
desc->func->pfn_unmap(it->vmm, pgt->pt[type], ptei, ptes);
}
}
/* Drop PTE references. */
pgt->refs[type] -= ptes;
/* Dual-PTs need special handling, unless PDE becoming invalid. */
if (desc->type == SPT && (pgt->refs[0] || pgt->refs[1]))
nvkm_vmm_unref_sptes(it, pgt, desc, ptei, ptes);
/* PT no longer needed? Destroy it. */
if (!pgt->refs[type]) {
it->lvl++;
TRA(it, "%s empty", nvkm_vmm_desc_type(desc));
it->lvl--;
nvkm_vmm_unref_pdes(it);
return false; /* PTE writes for unmap() not necessary. */
}
return true;
}
static void
nvkm_vmm_ref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt,
const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes)
{
const struct nvkm_vmm_desc *pair = it->page[-1].desc;
const u32 sptb = desc->bits - pair->bits;
const u32 sptn = 1 << sptb;
struct nvkm_vmm *vmm = it->vmm;
u32 spti = ptei & (sptn - 1), lpti, pteb;
/* Determine how many SPTEs are being touched under each LPTE,
* and increase reference counts.
*/
for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) {
const u32 pten = min(sptn - spti, ptes);
pgt->pte[lpti] += pten;
ptes -= pten;
}
/* We're done here if there's no corresponding LPT. */
if (!pgt->refs[0])
return;
for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) {
/* Skip over any LPTEs that already have valid SPTEs. */
if (pgt->pte[pteb] & NVKM_VMM_PTE_VALID) {
for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
if (!(pgt->pte[ptei] & NVKM_VMM_PTE_VALID))
break;
}
continue;
}
/* As there are now non-UNMAPPED SPTEs in the range covered
* by a number of LPTEs, we need to transfer control of the
* address range to the SPTEs.
*
* Determine how many LPTEs need to transition state.
*/
pgt->pte[ptei] |= NVKM_VMM_PTE_VALID;
for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
if (pgt->pte[ptei] & NVKM_VMM_PTE_VALID)
break;
pgt->pte[ptei] |= NVKM_VMM_PTE_VALID;
}
if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) {
const u32 spti = pteb * sptn;
const u32 sptc = ptes * sptn;
/* The entire LPTE is marked as sparse, we need
* to make sure that the SPTEs are too.
*/
TRA(it, "SPTE %05x: U -> S %d PTEs", spti, sptc);
desc->func->sparse(vmm, pgt->pt[1], spti, sptc);
/* Sparse LPTEs prevent SPTEs from being accessed. */
TRA(it, "LPTE %05x: S -> U %d PTEs", pteb, ptes);
pair->func->unmap(vmm, pgt->pt[0], pteb, ptes);
} else
if (pair->func->invalid) {
/* MMU supports blocking SPTEs by marking an LPTE
* as INVALID. We need to reverse that here.
*/
TRA(it, "LPTE %05x: I -> U %d PTEs", pteb, ptes);
pair->func->unmap(vmm, pgt->pt[0], pteb, ptes);
}
}
}
static bool
nvkm_vmm_ref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
{
const struct nvkm_vmm_desc *desc = it->desc;
const int type = desc->type == SPT;
struct nvkm_vmm_pt *pgt = it->pt[0];
/* Take PTE references. */
pgt->refs[type] += ptes;
/* Dual-PTs need special handling. */
if (desc->type == SPT)
nvkm_vmm_ref_sptes(it, pgt, desc, ptei, ptes);
return true;
}
static void
nvkm_vmm_sparse_ptes(const struct nvkm_vmm_desc *desc,
struct nvkm_vmm_pt *pgt, u32 ptei, u32 ptes)
{
if (desc->type == PGD) {
while (ptes--)
pgt->pde[ptei++] = NVKM_VMM_PDE_SPARSE;
} else
if (desc->type == LPT) {
memset(&pgt->pte[ptei], NVKM_VMM_PTE_SPARSE, ptes);
}
}
static bool
nvkm_vmm_sparse_unref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
{
struct nvkm_vmm_pt *pt = it->pt[0];
if (it->desc->type == PGD)
memset(&pt->pde[ptei], 0x00, sizeof(pt->pde[0]) * ptes);
else
if (it->desc->type == LPT)
memset(&pt->pte[ptei], 0x00, sizeof(pt->pte[0]) * ptes);
return nvkm_vmm_unref_ptes(it, pfn, ptei, ptes);
}
static bool
nvkm_vmm_sparse_ref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
{
nvkm_vmm_sparse_ptes(it->desc, it->pt[0], ptei, ptes);
return nvkm_vmm_ref_ptes(it, pfn, ptei, ptes);
}
static bool
nvkm_vmm_ref_hwpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei)
{
const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1];
const int type = desc->type == SPT;
struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
const bool zero = !pgt->sparse && !desc->func->invalid;
struct nvkm_vmm *vmm = it->vmm;
struct nvkm_mmu *mmu = vmm->mmu;
struct nvkm_mmu_pt *pt;
u32 pten = 1 << desc->bits;
u32 pteb, ptei, ptes;
u32 size = desc->size * pten;
pgd->refs[0]++;
pgt->pt[type] = nvkm_mmu_ptc_get(mmu, size, desc->align, zero);
if (!pgt->pt[type]) {
it->lvl--;
nvkm_vmm_unref_pdes(it);
return false;
}
if (zero)
goto done;
pt = pgt->pt[type];
if (desc->type == LPT && pgt->refs[1]) {
/* SPT already exists covering the same range as this LPT,
* which means we need to be careful that any LPTEs which
* overlap valid SPTEs are unmapped as opposed to invalid
* or sparse, which would prevent the MMU from looking at
* the SPTEs on some GPUs.
*/
for (ptei = pteb = 0; ptei < pten; pteb = ptei) {
bool spte = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES;
for (ptes = 1, ptei++; ptei < pten; ptes++, ptei++) {
bool next = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES;
if (spte != next)
break;
}
if (!spte) {
if (pgt->sparse)
desc->func->sparse(vmm, pt, pteb, ptes);
else
desc->func->invalid(vmm, pt, pteb, ptes);
memset(&pgt->pte[pteb], 0x00, ptes);
} else {
desc->func->unmap(vmm, pt, pteb, ptes);
while (ptes--)
pgt->pte[pteb++] |= NVKM_VMM_PTE_VALID;
}
}
} else {
if (pgt->sparse) {
nvkm_vmm_sparse_ptes(desc, pgt, 0, pten);
desc->func->sparse(vmm, pt, 0, pten);
} else {
desc->func->invalid(vmm, pt, 0, pten);
}
}
done:
TRA(it, "PDE write %s", nvkm_vmm_desc_type(desc));
it->desc[it->lvl].func->pde(it->vmm, pgd, pdei);
nvkm_vmm_flush_mark(it);
return true;
}
static bool
nvkm_vmm_ref_swpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei)
{
const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1];
struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
pgt = nvkm_vmm_pt_new(desc, NVKM_VMM_PDE_SPARSED(pgt), it->page);
if (!pgt) {
if (!pgd->refs[0])
nvkm_vmm_unref_pdes(it);
return false;
}
pgd->pde[pdei] = pgt;
return true;
}
static inline u64
nvkm_vmm_iter(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size, const char *name, bool ref, bool pfn,
bool (*REF_PTES)(struct nvkm_vmm_iter *, bool pfn, u32, u32),
nvkm_vmm_pte_func MAP_PTES, struct nvkm_vmm_map *map,
nvkm_vmm_pxe_func CLR_PTES)
{
const struct nvkm_vmm_desc *desc = page->desc;
struct nvkm_vmm_iter it;
u64 bits = addr >> page->shift;
it.page = page;
it.desc = desc;
it.vmm = vmm;
it.cnt = size >> page->shift;
it.flush = NVKM_VMM_LEVELS_MAX;
/* Deconstruct address into PTE indices for each mapping level. */
for (it.lvl = 0; desc[it.lvl].bits; it.lvl++) {
it.pte[it.lvl] = bits & ((1 << desc[it.lvl].bits) - 1);
bits >>= desc[it.lvl].bits;
}
it.max = --it.lvl;
it.pt[it.max] = vmm->pd;
it.lvl = 0;
TRA(&it, "%s: %016llx %016llx %d %lld PTEs", name,
addr, size, page->shift, it.cnt);
it.lvl = it.max;
/* Depth-first traversal of page tables. */
while (it.cnt) {
struct nvkm_vmm_pt *pgt = it.pt[it.lvl];
const int type = desc->type == SPT;
const u32 pten = 1 << desc->bits;
const u32 ptei = it.pte[0];
const u32 ptes = min_t(u64, it.cnt, pten - ptei);
/* Walk down the tree, finding page tables for each level. */
for (; it.lvl; it.lvl--) {
const u32 pdei = it.pte[it.lvl];
struct nvkm_vmm_pt *pgd = pgt;
/* Software PT. */
if (ref && NVKM_VMM_PDE_INVALID(pgd->pde[pdei])) {
if (!nvkm_vmm_ref_swpt(&it, pgd, pdei))
goto fail;
}
it.pt[it.lvl - 1] = pgt = pgd->pde[pdei];
/* Hardware PT.
*
* This is a separate step from above due to GF100 and
* newer having dual page tables at some levels, which
* are refcounted independently.
*/
if (ref && !pgt->refs[desc[it.lvl - 1].type == SPT]) {
if (!nvkm_vmm_ref_hwpt(&it, pgd, pdei))
goto fail;
}
}
/* Handle PTE updates. */
if (!REF_PTES || REF_PTES(&it, pfn, ptei, ptes)) {
struct nvkm_mmu_pt *pt = pgt->pt[type];
if (MAP_PTES || CLR_PTES) {
if (MAP_PTES)
MAP_PTES(vmm, pt, ptei, ptes, map);
else
CLR_PTES(vmm, pt, ptei, ptes);
nvkm_vmm_flush_mark(&it);
}
}
/* Walk back up the tree to the next position. */
it.pte[it.lvl] += ptes;
it.cnt -= ptes;
if (it.cnt) {
while (it.pte[it.lvl] == (1 << desc[it.lvl].bits)) {
it.pte[it.lvl++] = 0;
it.pte[it.lvl]++;
}
}
}
nvkm_vmm_flush(&it);
return ~0ULL;
fail:
/* Reconstruct the failure address so the caller is able to
* reverse any partially completed operations.
*/
addr = it.pte[it.max--];
do {
addr = addr << desc[it.max].bits;
addr |= it.pte[it.max];
} while (it.max--);
return addr << page->shift;
}
static void
nvkm_vmm_ptes_sparse_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size)
{
nvkm_vmm_iter(vmm, page, addr, size, "sparse unref", false, false,
nvkm_vmm_sparse_unref_ptes, NULL, NULL,
page->desc->func->invalid ?
page->desc->func->invalid : page->desc->func->unmap);
}
static int
nvkm_vmm_ptes_sparse_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size)
{
if ((page->type & NVKM_VMM_PAGE_SPARSE)) {
u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "sparse ref",
true, false, nvkm_vmm_sparse_ref_ptes,
NULL, NULL, page->desc->func->sparse);
if (fail != ~0ULL) {
if ((size = fail - addr))
nvkm_vmm_ptes_sparse_put(vmm, page, addr, size);
return -ENOMEM;
}
return 0;
}
return -EINVAL;
}
static int
nvkm_vmm_ptes_sparse(struct nvkm_vmm *vmm, u64 addr, u64 size, bool ref)
{
const struct nvkm_vmm_page *page = vmm->func->page;
int m = 0, i;
u64 start = addr;
u64 block;
while (size) {
/* Limit maximum page size based on remaining size. */
while (size < (1ULL << page[m].shift))
m++;
i = m;
/* Find largest page size suitable for alignment. */
while (!IS_ALIGNED(addr, 1ULL << page[i].shift))
i++;
/* Determine number of PTEs at this page size. */
if (i != m) {
/* Limited to alignment boundary of next page size. */
u64 next = 1ULL << page[i - 1].shift;
u64 part = ALIGN(addr, next) - addr;
if (size - part >= next)
block = (part >> page[i].shift) << page[i].shift;
else
block = (size >> page[i].shift) << page[i].shift;
} else {
block = (size >> page[i].shift) << page[i].shift;
}
/* Perform operation. */
if (ref) {
int ret = nvkm_vmm_ptes_sparse_get(vmm, &page[i], addr, block);
if (ret) {
if ((size = addr - start))
nvkm_vmm_ptes_sparse(vmm, start, size, false);
return ret;
}
} else {
nvkm_vmm_ptes_sparse_put(vmm, &page[i], addr, block);
}
size -= block;
addr += block;
}
return 0;
}
static void
nvkm_vmm_ptes_unmap_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size, bool sparse, bool pfn)
{
const struct nvkm_vmm_desc_func *func = page->desc->func;
nvkm_vmm_iter(vmm, page, addr, size, "unmap + unref",
false, pfn, nvkm_vmm_unref_ptes, NULL, NULL,
sparse ? func->sparse : func->invalid ? func->invalid :
func->unmap);
}
static int
nvkm_vmm_ptes_get_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size, struct nvkm_vmm_map *map,
nvkm_vmm_pte_func func)
{
u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref + map", true,
false, nvkm_vmm_ref_ptes, func, map, NULL);
if (fail != ~0ULL) {
if ((size = fail - addr))
nvkm_vmm_ptes_unmap_put(vmm, page, addr, size, false, false);
return -ENOMEM;
}
return 0;
}
static void
nvkm_vmm_ptes_unmap(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size, bool sparse, bool pfn)
{
const struct nvkm_vmm_desc_func *func = page->desc->func;
nvkm_vmm_iter(vmm, page, addr, size, "unmap", false, pfn,
NULL, NULL, NULL,
sparse ? func->sparse : func->invalid ? func->invalid :
func->unmap);
}
static void
nvkm_vmm_ptes_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size, struct nvkm_vmm_map *map,
nvkm_vmm_pte_func func)
{
nvkm_vmm_iter(vmm, page, addr, size, "map", false, false,
NULL, func, map, NULL);
}
static void
nvkm_vmm_ptes_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size)
{
nvkm_vmm_iter(vmm, page, addr, size, "unref", false, false,
nvkm_vmm_unref_ptes, NULL, NULL, NULL);
}
static int
nvkm_vmm_ptes_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size)
{
u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref", true, false,
nvkm_vmm_ref_ptes, NULL, NULL, NULL);
if (fail != ~0ULL) {
if (fail != addr)
nvkm_vmm_ptes_put(vmm, page, addr, fail - addr);
return -ENOMEM;
}
return 0;
}
static inline struct nvkm_vma *
nvkm_vma_new(u64 addr, u64 size)
{
struct nvkm_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
if (vma) {
vma->addr = addr;
vma->size = size;
vma->page = NVKM_VMA_PAGE_NONE;
vma->refd = NVKM_VMA_PAGE_NONE;
}
return vma;
}
struct nvkm_vma *
nvkm_vma_tail(struct nvkm_vma *vma, u64 tail)
{
struct nvkm_vma *new;
BUG_ON(vma->size == tail);
if (!(new = nvkm_vma_new(vma->addr + (vma->size - tail), tail)))
return NULL;
vma->size -= tail;
new->mapref = vma->mapref;
new->sparse = vma->sparse;
new->page = vma->page;
new->refd = vma->refd;
new->used = vma->used;
new->part = vma->part;
new->busy = vma->busy;
new->mapped = vma->mapped;
list_add(&new->head, &vma->head);
return new;
}
static inline void
nvkm_vmm_free_remove(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
rb_erase(&vma->tree, &vmm->free);
}
static inline void
nvkm_vmm_free_delete(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
nvkm_vmm_free_remove(vmm, vma);
list_del(&vma->head);
kfree(vma);
}
static void
nvkm_vmm_free_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
struct rb_node **ptr = &vmm->free.rb_node;
struct rb_node *parent = NULL;
while (*ptr) {
struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree);
parent = *ptr;
if (vma->size < this->size)
ptr = &parent->rb_left;
else
if (vma->size > this->size)
ptr = &parent->rb_right;
else
if (vma->addr < this->addr)
ptr = &parent->rb_left;
else
if (vma->addr > this->addr)
ptr = &parent->rb_right;
else
BUG();
}
rb_link_node(&vma->tree, parent, ptr);
rb_insert_color(&vma->tree, &vmm->free);
}
static inline void
nvkm_vmm_node_remove(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
rb_erase(&vma->tree, &vmm->root);
}
static inline void
nvkm_vmm_node_delete(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
nvkm_vmm_node_remove(vmm, vma);
list_del(&vma->head);
kfree(vma);
}
static void
nvkm_vmm_node_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
struct rb_node **ptr = &vmm->root.rb_node;
struct rb_node *parent = NULL;
while (*ptr) {
struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree);
parent = *ptr;
if (vma->addr < this->addr)
ptr = &parent->rb_left;
else
if (vma->addr > this->addr)
ptr = &parent->rb_right;
else
BUG();
}
rb_link_node(&vma->tree, parent, ptr);
rb_insert_color(&vma->tree, &vmm->root);
}
struct nvkm_vma *
nvkm_vmm_node_search(struct nvkm_vmm *vmm, u64 addr)
{
struct rb_node *node = vmm->root.rb_node;
while (node) {
struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree);
if (addr < vma->addr)
node = node->rb_left;
else
if (addr >= vma->addr + vma->size)
node = node->rb_right;
else
return vma;
}
return NULL;
}
#define node(root, dir) (((root)->head.dir == &vmm->list) ? NULL : \
list_entry((root)->head.dir, struct nvkm_vma, head))
static struct nvkm_vma *
nvkm_vmm_node_merge(struct nvkm_vmm *vmm, struct nvkm_vma *prev,
struct nvkm_vma *vma, struct nvkm_vma *next, u64 size)
{
if (next) {
if (vma->size == size) {
vma->size += next->size;
nvkm_vmm_node_delete(vmm, next);
if (prev) {
prev->size += vma->size;
nvkm_vmm_node_delete(vmm, vma);
return prev;
}
return vma;
}
BUG_ON(prev);
nvkm_vmm_node_remove(vmm, next);
vma->size -= size;
next->addr -= size;
next->size += size;
nvkm_vmm_node_insert(vmm, next);
return next;
}
if (prev) {
if (vma->size != size) {
nvkm_vmm_node_remove(vmm, vma);
prev->size += size;
vma->addr += size;
vma->size -= size;
nvkm_vmm_node_insert(vmm, vma);
} else {
prev->size += vma->size;
nvkm_vmm_node_delete(vmm, vma);
}
return prev;
}
return vma;
}
struct nvkm_vma *
nvkm_vmm_node_split(struct nvkm_vmm *vmm,
struct nvkm_vma *vma, u64 addr, u64 size)
{
struct nvkm_vma *prev = NULL;
if (vma->addr != addr) {
prev = vma;
if (!(vma = nvkm_vma_tail(vma, vma->size + vma->addr - addr)))
return NULL;
vma->part = true;
nvkm_vmm_node_insert(vmm, vma);
}
if (vma->size != size) {
struct nvkm_vma *tmp;
if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) {
nvkm_vmm_node_merge(vmm, prev, vma, NULL, vma->size);
return NULL;
}
tmp->part = true;
nvkm_vmm_node_insert(vmm, tmp);
}
return vma;
}
static void
nvkm_vma_dump(struct nvkm_vma *vma)
{
printk(KERN_ERR "%016llx %016llx %c%c%c%c%c%c%c%c %p\n",
vma->addr, (u64)vma->size,
vma->used ? '-' : 'F',
vma->mapref ? 'R' : '-',
vma->sparse ? 'S' : '-',
vma->page != NVKM_VMA_PAGE_NONE ? '0' + vma->page : '-',
vma->refd != NVKM_VMA_PAGE_NONE ? '0' + vma->refd : '-',
vma->part ? 'P' : '-',
vma->busy ? 'B' : '-',
vma->mapped ? 'M' : '-',
vma->memory);
}
static void
nvkm_vmm_dump(struct nvkm_vmm *vmm)
{
struct nvkm_vma *vma;
list_for_each_entry(vma, &vmm->list, head) {
nvkm_vma_dump(vma);
}
}
static void
nvkm_vmm_dtor(struct nvkm_vmm *vmm)
{
struct nvkm_vma *vma;
struct rb_node *node;
if (0)
nvkm_vmm_dump(vmm);
while ((node = rb_first(&vmm->root))) {
struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree);
nvkm_vmm_put(vmm, &vma);
}
if (vmm->bootstrapped) {
const struct nvkm_vmm_page *page = vmm->func->page;
const u64 limit = vmm->limit - vmm->start;
while (page[1].shift)
page++;
nvkm_mmu_ptc_dump(vmm->mmu);
nvkm_vmm_ptes_put(vmm, page, vmm->start, limit);
}
vma = list_first_entry(&vmm->list, typeof(*vma), head);
list_del(&vma->head);
kfree(vma);
WARN_ON(!list_empty(&vmm->list));
if (vmm->nullp) {
dma_free_coherent(vmm->mmu->subdev.device->dev, 16 * 1024,
vmm->nullp, vmm->null);
}
if (vmm->pd) {
nvkm_mmu_ptc_put(vmm->mmu, true, &vmm->pd->pt[0]);
nvkm_vmm_pt_del(&vmm->pd);
}
}
static int
nvkm_vmm_ctor_managed(struct nvkm_vmm *vmm, u64 addr, u64 size)
{
struct nvkm_vma *vma;
if (!(vma = nvkm_vma_new(addr, size)))
return -ENOMEM;
vma->mapref = true;
vma->sparse = false;
vma->used = true;
nvkm_vmm_node_insert(vmm, vma);
list_add_tail(&vma->head, &vmm->list);
return 0;
}
static int
nvkm_vmm_ctor(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
u32 pd_header, bool managed, u64 addr, u64 size,
struct lock_class_key *key, const char *name,
struct nvkm_vmm *vmm)
{
static struct lock_class_key _key;
const struct nvkm_vmm_page *page = func->page;
const struct nvkm_vmm_desc *desc;
struct nvkm_vma *vma;
int levels, bits = 0, ret;
vmm->func = func;
vmm->mmu = mmu;
vmm->name = name;
vmm->debug = mmu->subdev.debug;
kref_init(&vmm->kref);
__mutex_init(&vmm->mutex, "&vmm->mutex", key ? key : &_key);
/* Locate the smallest page size supported by the backend, it will
* have the deepest nesting of page tables.
*/
while (page[1].shift)
page++;
/* Locate the structure that describes the layout of the top-level
* page table, and determine the number of valid bits in a virtual
* address.
*/
for (levels = 0, desc = page->desc; desc->bits; desc++, levels++)
bits += desc->bits;
bits += page->shift;
desc--;
if (WARN_ON(levels > NVKM_VMM_LEVELS_MAX))
return -EINVAL;
/* Allocate top-level page table. */
vmm->pd = nvkm_vmm_pt_new(desc, false, NULL);
if (!vmm->pd)
return -ENOMEM;
vmm->pd->refs[0] = 1;
INIT_LIST_HEAD(&vmm->join);
/* ... and the GPU storage for it, except on Tesla-class GPUs that
* have the PD embedded in the instance structure.
*/
if (desc->size) {
const u32 size = pd_header + desc->size * (1 << desc->bits);
vmm->pd->pt[0] = nvkm_mmu_ptc_get(mmu, size, desc->align, true);
if (!vmm->pd->pt[0])
return -ENOMEM;
}
/* Initialise address-space MM. */
INIT_LIST_HEAD(&vmm->list);
vmm->free = RB_ROOT;
vmm->root = RB_ROOT;
if (managed) {
/* Address-space will be managed by the client for the most
* part, except for a specified area where NVKM allocations
* are allowed to be placed.
*/
vmm->start = 0;
vmm->limit = 1ULL << bits;
if (addr + size < addr || addr + size > vmm->limit)
return -EINVAL;
/* Client-managed area before the NVKM-managed area. */
if (addr && (ret = nvkm_vmm_ctor_managed(vmm, 0, addr)))
return ret;
/* NVKM-managed area. */
if (size) {
if (!(vma = nvkm_vma_new(addr, size)))
return -ENOMEM;
nvkm_vmm_free_insert(vmm, vma);
list_add_tail(&vma->head, &vmm->list);
}
/* Client-managed area after the NVKM-managed area. */
addr = addr + size;
size = vmm->limit - addr;
if (size && (ret = nvkm_vmm_ctor_managed(vmm, addr, size)))
return ret;
} else {
/* Address-space fully managed by NVKM, requiring calls to
* nvkm_vmm_get()/nvkm_vmm_put() to allocate address-space.
*/
vmm->start = addr;
vmm->limit = size ? (addr + size) : (1ULL << bits);
if (vmm->start > vmm->limit || vmm->limit > (1ULL << bits))
return -EINVAL;
if (!(vma = nvkm_vma_new(vmm->start, vmm->limit - vmm->start)))
return -ENOMEM;
nvkm_vmm_free_insert(vmm, vma);
list_add(&vma->head, &vmm->list);
}
return 0;
}
int
nvkm_vmm_new_(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
u32 hdr, bool managed, u64 addr, u64 size,
struct lock_class_key *key, const char *name,
struct nvkm_vmm **pvmm)
{
if (!(*pvmm = kzalloc(sizeof(**pvmm), GFP_KERNEL)))
return -ENOMEM;
return nvkm_vmm_ctor(func, mmu, hdr, managed, addr, size, key, name, *pvmm);
}
static struct nvkm_vma *
nvkm_vmm_pfn_split_merge(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
u64 addr, u64 size, u8 page, bool map)
{
struct nvkm_vma *prev = NULL;
struct nvkm_vma *next = NULL;
if (vma->addr == addr && vma->part && (prev = node(vma, prev))) {
if (prev->memory || prev->mapped != map)
prev = NULL;
}
if (vma->addr + vma->size == addr + size && (next = node(vma, next))) {
if (!next->part ||
next->memory || next->mapped != map)
next = NULL;
}
if (prev || next)
return nvkm_vmm_node_merge(vmm, prev, vma, next, size);
return nvkm_vmm_node_split(vmm, vma, addr, size);
}
int
nvkm_vmm_pfn_unmap(struct nvkm_vmm *vmm, u64 addr, u64 size)
{
struct nvkm_vma *vma = nvkm_vmm_node_search(vmm, addr);
struct nvkm_vma *next;
u64 limit = addr + size;
u64 start = addr;
if (!vma)
return -EINVAL;
do {
if (!vma->mapped || vma->memory)
continue;
size = min(limit - start, vma->size - (start - vma->addr));
nvkm_vmm_ptes_unmap_put(vmm, &vmm->func->page[vma->refd],
start, size, false, true);
next = nvkm_vmm_pfn_split_merge(vmm, vma, start, size, 0, false);
if (!WARN_ON(!next)) {
vma = next;
vma->refd = NVKM_VMA_PAGE_NONE;
vma->mapped = false;
}
} while ((vma = node(vma, next)) && (start = vma->addr) < limit);
return 0;
}
/*TODO:
* - Avoid PT readback (for dma_unmap etc), this might end up being dealt
* with inside HMM, which would be a lot nicer for us to deal with.
* - Support for systems without a 4KiB page size.
*/
int
nvkm_vmm_pfn_map(struct nvkm_vmm *vmm, u8 shift, u64 addr, u64 size, u64 *pfn)
{
const struct nvkm_vmm_page *page = vmm->func->page;
struct nvkm_vma *vma, *tmp;
u64 limit = addr + size;
u64 start = addr;
int pm = size >> shift;
int pi = 0;
/* Only support mapping where the page size of the incoming page
* array matches a page size available for direct mapping.
*/
while (page->shift && (page->shift != shift ||
page->desc->func->pfn == NULL))
page++;
if (!page->shift || !IS_ALIGNED(addr, 1ULL << shift) ||
!IS_ALIGNED(size, 1ULL << shift) ||
addr + size < addr || addr + size > vmm->limit) {
VMM_DEBUG(vmm, "paged map %d %d %016llx %016llx\n",
shift, page->shift, addr, size);
return -EINVAL;
}
if (!(vma = nvkm_vmm_node_search(vmm, addr)))
return -ENOENT;
do {
bool map = !!(pfn[pi] & NVKM_VMM_PFN_V);
bool mapped = vma->mapped;
u64 size = limit - start;
u64 addr = start;
int pn, ret = 0;
/* Narrow the operation window to cover a single action (page
* should be mapped or not) within a single VMA.
*/
for (pn = 0; pi + pn < pm; pn++) {
if (map != !!(pfn[pi + pn] & NVKM_VMM_PFN_V))
break;
}
size = min_t(u64, size, pn << page->shift);
size = min_t(u64, size, vma->size + vma->addr - addr);
/* Reject any operation to unmanaged regions, and areas that
* have nvkm_memory objects mapped in them already.
*/
if (!vma->mapref || vma->memory) {
ret = -EINVAL;
goto next;
}
/* In order to both properly refcount GPU page tables, and
* prevent "normal" mappings and these direct mappings from
* interfering with each other, we need to track contiguous
* ranges that have been mapped with this interface.
*
* Here we attempt to either split an existing VMA so we're
* able to flag the region as either unmapped/mapped, or to
* merge with adjacent VMAs that are already compatible.
*
* If the region is already compatible, nothing is required.
*/
if (map != mapped) {
tmp = nvkm_vmm_pfn_split_merge(vmm, vma, addr, size,
page -
vmm->func->page, map);
if (WARN_ON(!tmp)) {
ret = -ENOMEM;
goto next;
}
if ((tmp->mapped = map))
tmp->refd = page - vmm->func->page;
else
tmp->refd = NVKM_VMA_PAGE_NONE;
vma = tmp;
}
/* Update HW page tables. */
if (map) {
struct nvkm_vmm_map args;
args.page = page;
args.pfn = &pfn[pi];
if (!mapped) {
ret = nvkm_vmm_ptes_get_map(vmm, page, addr,
size, &args, page->
desc->func->pfn);
} else {
nvkm_vmm_ptes_map(vmm, page, addr, size, &args,
page->desc->func->pfn);
}
} else {
if (mapped) {
nvkm_vmm_ptes_unmap_put(vmm, page, addr, size,
false, true);
}
}
next:
/* Iterate to next operation. */
if (vma->addr + vma->size == addr + size)
vma = node(vma, next);
start += size;
if (ret) {
/* Failure is signalled by clearing the valid bit on
* any PFN that couldn't be modified as requested.
*/
while (size) {
pfn[pi++] = NVKM_VMM_PFN_NONE;
size -= 1 << page->shift;
}
} else {
pi += size >> page->shift;
}
} while (vma && start < limit);
return 0;
}
void
nvkm_vmm_unmap_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
struct nvkm_vma *prev = NULL;
struct nvkm_vma *next;
nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags);
nvkm_memory_unref(&vma->memory);
vma->mapped = false;
if (vma->part && (prev = node(vma, prev)) && prev->mapped)
prev = NULL;
if ((next = node(vma, next)) && (!next->part || next->mapped))
next = NULL;
nvkm_vmm_node_merge(vmm, prev, vma, next, vma->size);
}
void
nvkm_vmm_unmap_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma, bool pfn)
{
const struct nvkm_vmm_page *page = &vmm->func->page[vma->refd];
if (vma->mapref) {
nvkm_vmm_ptes_unmap_put(vmm, page, vma->addr, vma->size, vma->sparse, pfn);
vma->refd = NVKM_VMA_PAGE_NONE;
} else {
nvkm_vmm_ptes_unmap(vmm, page, vma->addr, vma->size, vma->sparse, pfn);
}
nvkm_vmm_unmap_region(vmm, vma);
}
void
nvkm_vmm_unmap(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
if (vma->memory) {
mutex_lock(&vmm->mutex);
nvkm_vmm_unmap_locked(vmm, vma, false);
mutex_unlock(&vmm->mutex);
}
}
static int
nvkm_vmm_map_valid(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
void *argv, u32 argc, struct nvkm_vmm_map *map)
{
switch (nvkm_memory_target(map->memory)) {
case NVKM_MEM_TARGET_VRAM:
if (!(map->page->type & NVKM_VMM_PAGE_VRAM)) {
VMM_DEBUG(vmm, "%d !VRAM", map->page->shift);
return -EINVAL;
}
break;
case NVKM_MEM_TARGET_HOST:
case NVKM_MEM_TARGET_NCOH:
if (!(map->page->type & NVKM_VMM_PAGE_HOST)) {
VMM_DEBUG(vmm, "%d !HOST", map->page->shift);
return -EINVAL;
}
break;
default:
WARN_ON(1);
return -ENOSYS;
}
if (!IS_ALIGNED( vma->addr, 1ULL << map->page->shift) ||
!IS_ALIGNED((u64)vma->size, 1ULL << map->page->shift) ||
!IS_ALIGNED( map->offset, 1ULL << map->page->shift) ||
nvkm_memory_page(map->memory) < map->page->shift) {
VMM_DEBUG(vmm, "alignment %016llx %016llx %016llx %d %d",
vma->addr, (u64)vma->size, map->offset, map->page->shift,
nvkm_memory_page(map->memory));
return -EINVAL;
}
return vmm->func->valid(vmm, argv, argc, map);
}
static int
nvkm_vmm_map_choose(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
void *argv, u32 argc, struct nvkm_vmm_map *map)
{
for (map->page = vmm->func->page; map->page->shift; map->page++) {
VMM_DEBUG(vmm, "trying %d", map->page->shift);
if (!nvkm_vmm_map_valid(vmm, vma, argv, argc, map))
return 0;
}
return -EINVAL;
}
static int
nvkm_vmm_map_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
void *argv, u32 argc, struct nvkm_vmm_map *map)
{
nvkm_vmm_pte_func func;
int ret;
/* Make sure we won't overrun the end of the memory object. */
if (unlikely(nvkm_memory_size(map->memory) < map->offset + vma->size)) {
VMM_DEBUG(vmm, "overrun %016llx %016llx %016llx",
nvkm_memory_size(map->memory),
map->offset, (u64)vma->size);
return -EINVAL;
}
/* Check remaining arguments for validity. */
if (vma->page == NVKM_VMA_PAGE_NONE &&
vma->refd == NVKM_VMA_PAGE_NONE) {
/* Find the largest page size we can perform the mapping at. */
const u32 debug = vmm->debug;
vmm->debug = 0;
ret = nvkm_vmm_map_choose(vmm, vma, argv, argc, map);
vmm->debug = debug;
if (ret) {
VMM_DEBUG(vmm, "invalid at any page size");
nvkm_vmm_map_choose(vmm, vma, argv, argc, map);
return -EINVAL;
}
} else {
/* Page size of the VMA is already pre-determined. */
if (vma->refd != NVKM_VMA_PAGE_NONE)
map->page = &vmm->func->page[vma->refd];
else
map->page = &vmm->func->page[vma->page];
ret = nvkm_vmm_map_valid(vmm, vma, argv, argc, map);
if (ret) {
VMM_DEBUG(vmm, "invalid %d\n", ret);
return ret;
}
}
/* Deal with the 'offset' argument, and fetch the backend function. */
map->off = map->offset;
if (map->mem) {
for (; map->off; map->mem = map->mem->next) {
u64 size = (u64)map->mem->length << NVKM_RAM_MM_SHIFT;
if (size > map->off)
break;
map->off -= size;
}
func = map->page->desc->func->mem;
} else
if (map->sgl) {
for (; map->off; map->sgl = sg_next(map->sgl)) {
u64 size = sg_dma_len(map->sgl);
if (size > map->off)
break;
map->off -= size;
}
func = map->page->desc->func->sgl;
} else {
map->dma += map->offset >> PAGE_SHIFT;
map->off = map->offset & PAGE_MASK;
func = map->page->desc->func->dma;
}
/* Perform the map. */
if (vma->refd == NVKM_VMA_PAGE_NONE) {
ret = nvkm_vmm_ptes_get_map(vmm, map->page, vma->addr, vma->size, map, func);
if (ret)
return ret;
vma->refd = map->page - vmm->func->page;
} else {
nvkm_vmm_ptes_map(vmm, map->page, vma->addr, vma->size, map, func);
}
nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags);
nvkm_memory_unref(&vma->memory);
vma->memory = nvkm_memory_ref(map->memory);
vma->mapped = true;
vma->tags = map->tags;
return 0;
}
int
nvkm_vmm_map(struct nvkm_vmm *vmm, struct nvkm_vma *vma, void *argv, u32 argc,
struct nvkm_vmm_map *map)
{
int ret;
mutex_lock(&vmm->mutex);
ret = nvkm_vmm_map_locked(vmm, vma, argv, argc, map);
vma->busy = false;
mutex_unlock(&vmm->mutex);
return ret;
}
static void
nvkm_vmm_put_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
struct nvkm_vma *prev, *next;
if ((prev = node(vma, prev)) && !prev->used) {
vma->addr = prev->addr;
vma->size += prev->size;
nvkm_vmm_free_delete(vmm, prev);
}
if ((next = node(vma, next)) && !next->used) {
vma->size += next->size;
nvkm_vmm_free_delete(vmm, next);
}
nvkm_vmm_free_insert(vmm, vma);
}
void
nvkm_vmm_put_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
const struct nvkm_vmm_page *page = vmm->func->page;
struct nvkm_vma *next = vma;
BUG_ON(vma->part);
if (vma->mapref || !vma->sparse) {
do {
const bool mem = next->memory != NULL;
const bool map = next->mapped;
const u8 refd = next->refd;
const u64 addr = next->addr;
u64 size = next->size;
/* Merge regions that are in the same state. */
while ((next = node(next, next)) && next->part &&
(next->mapped == map) &&
(next->memory != NULL) == mem &&
(next->refd == refd))
size += next->size;
if (map) {
/* Region(s) are mapped, merge the unmap
* and dereference into a single walk of
* the page tree.
*/
nvkm_vmm_ptes_unmap_put(vmm, &page[refd], addr,
size, vma->sparse,
!mem);
} else
if (refd != NVKM_VMA_PAGE_NONE) {
/* Drop allocation-time PTE references. */
nvkm_vmm_ptes_put(vmm, &page[refd], addr, size);
}
} while (next && next->part);
}
/* Merge any mapped regions that were split from the initial
* address-space allocation back into the allocated VMA, and
* release memory/compression resources.
*/
next = vma;
do {
if (next->mapped)
nvkm_vmm_unmap_region(vmm, next);
} while ((next = node(vma, next)) && next->part);
if (vma->sparse && !vma->mapref) {
/* Sparse region that was allocated with a fixed page size,
* meaning all relevant PTEs were referenced once when the
* region was allocated, and remained that way, regardless
* of whether memory was mapped into it afterwards.
*
* The process of unmapping, unsparsing, and dereferencing
* PTEs can be done in a single page tree walk.
*/
nvkm_vmm_ptes_sparse_put(vmm, &page[vma->refd], vma->addr, vma->size);
} else
if (vma->sparse) {
/* Sparse region that wasn't allocated with a fixed page size,
* PTE references were taken both at allocation time (to make
* the GPU see the region as sparse), and when mapping memory
* into the region.
*
* The latter was handled above, and the remaining references
* are dealt with here.
*/
nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, false);
}
/* Remove VMA from the list of allocated nodes. */
nvkm_vmm_node_remove(vmm, vma);
/* Merge VMA back into the free list. */
vma->page = NVKM_VMA_PAGE_NONE;
vma->refd = NVKM_VMA_PAGE_NONE;
vma->used = false;
nvkm_vmm_put_region(vmm, vma);
}
void
nvkm_vmm_put(struct nvkm_vmm *vmm, struct nvkm_vma **pvma)
{
struct nvkm_vma *vma = *pvma;
if (vma) {
mutex_lock(&vmm->mutex);
nvkm_vmm_put_locked(vmm, vma);
mutex_unlock(&vmm->mutex);
*pvma = NULL;
}
}
int
nvkm_vmm_get_locked(struct nvkm_vmm *vmm, bool getref, bool mapref, bool sparse,
u8 shift, u8 align, u64 size, struct nvkm_vma **pvma)
{
const struct nvkm_vmm_page *page = &vmm->func->page[NVKM_VMA_PAGE_NONE];
struct rb_node *node = NULL, *temp;
struct nvkm_vma *vma = NULL, *tmp;
u64 addr, tail;
int ret;
VMM_TRACE(vmm, "getref %d mapref %d sparse %d "
"shift: %d align: %d size: %016llx",
getref, mapref, sparse, shift, align, size);
/* Zero-sized, or lazily-allocated sparse VMAs, make no sense. */
if (unlikely(!size || (!getref && !mapref && sparse))) {
VMM_DEBUG(vmm, "args %016llx %d %d %d",
size, getref, mapref, sparse);
return -EINVAL;
}
/* Tesla-class GPUs can only select page size per-PDE, which means
* we're required to know the mapping granularity up-front to find
* a suitable region of address-space.
*
* The same goes if we're requesting up-front allocation of PTES.
*/
if (unlikely((getref || vmm->func->page_block) && !shift)) {
VMM_DEBUG(vmm, "page size required: %d %016llx",
getref, vmm->func->page_block);
return -EINVAL;
}
/* If a specific page size was requested, determine its index and
* make sure the requested size is a multiple of the page size.
*/
if (shift) {
for (page = vmm->func->page; page->shift; page++) {
if (shift == page->shift)
break;
}
if (!page->shift || !IS_ALIGNED(size, 1ULL << page->shift)) {
VMM_DEBUG(vmm, "page %d %016llx", shift, size);
return -EINVAL;
}
align = max_t(u8, align, shift);
} else {
align = max_t(u8, align, 12);
}
/* Locate smallest block that can possibly satisfy the allocation. */
temp = vmm->free.rb_node;
while (temp) {
struct nvkm_vma *this = rb_entry(temp, typeof(*this), tree);
if (this->size < size) {
temp = temp->rb_right;
} else {
node = temp;
temp = temp->rb_left;
}
}
if (unlikely(!node))
return -ENOSPC;
/* Take into account alignment restrictions, trying larger blocks
* in turn until we find a suitable free block.
*/
do {
struct nvkm_vma *this = rb_entry(node, typeof(*this), tree);
struct nvkm_vma *prev = node(this, prev);
struct nvkm_vma *next = node(this, next);
const int p = page - vmm->func->page;
addr = this->addr;
if (vmm->func->page_block && prev && prev->page != p)
addr = ALIGN(addr, vmm->func->page_block);
addr = ALIGN(addr, 1ULL << align);
tail = this->addr + this->size;
if (vmm->func->page_block && next && next->page != p)
tail = ALIGN_DOWN(tail, vmm->func->page_block);
if (addr <= tail && tail - addr >= size) {
nvkm_vmm_free_remove(vmm, this);
vma = this;
break;
}
} while ((node = rb_next(node)));
if (unlikely(!vma))
return -ENOSPC;
/* If the VMA we found isn't already exactly the requested size,
* it needs to be split, and the remaining free blocks returned.
*/
if (addr != vma->addr) {
if (!(tmp = nvkm_vma_tail(vma, vma->size + vma->addr - addr))) {
nvkm_vmm_put_region(vmm, vma);
return -ENOMEM;
}
nvkm_vmm_free_insert(vmm, vma);
vma = tmp;
}
if (size != vma->size) {
if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) {
nvkm_vmm_put_region(vmm, vma);
return -ENOMEM;
}
nvkm_vmm_free_insert(vmm, tmp);
}
/* Pre-allocate page tables and/or setup sparse mappings. */
if (sparse && getref)
ret = nvkm_vmm_ptes_sparse_get(vmm, page, vma->addr, vma->size);
else if (sparse)
ret = nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, true);
else if (getref)
ret = nvkm_vmm_ptes_get(vmm, page, vma->addr, vma->size);
else
ret = 0;
if (ret) {
nvkm_vmm_put_region(vmm, vma);
return ret;
}
vma->mapref = mapref && !getref;
vma->sparse = sparse;
vma->page = page - vmm->func->page;
vma->refd = getref ? vma->page : NVKM_VMA_PAGE_NONE;
vma->used = true;
nvkm_vmm_node_insert(vmm, vma);
*pvma = vma;
return 0;
}
int
nvkm_vmm_get(struct nvkm_vmm *vmm, u8 page, u64 size, struct nvkm_vma **pvma)
{
int ret;
mutex_lock(&vmm->mutex);
ret = nvkm_vmm_get_locked(vmm, false, true, false, page, 0, size, pvma);
mutex_unlock(&vmm->mutex);
return ret;
}
void
nvkm_vmm_part(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
{
if (inst && vmm && vmm->func->part) {
mutex_lock(&vmm->mutex);
vmm->func->part(vmm, inst);
mutex_unlock(&vmm->mutex);
}
}
int
nvkm_vmm_join(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
{
int ret = 0;
if (vmm->func->join) {
mutex_lock(&vmm->mutex);
ret = vmm->func->join(vmm, inst);
mutex_unlock(&vmm->mutex);
}
return ret;
}
static bool
nvkm_vmm_boot_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
{
const struct nvkm_vmm_desc *desc = it->desc;
const int type = desc->type == SPT;
nvkm_memory_boot(it->pt[0]->pt[type]->memory, it->vmm);
return false;
}
int
nvkm_vmm_boot(struct nvkm_vmm *vmm)
{
const struct nvkm_vmm_page *page = vmm->func->page;
const u64 limit = vmm->limit - vmm->start;
int ret;
while (page[1].shift)
page++;
ret = nvkm_vmm_ptes_get(vmm, page, vmm->start, limit);
if (ret)
return ret;
nvkm_vmm_iter(vmm, page, vmm->start, limit, "bootstrap", false, false,
nvkm_vmm_boot_ptes, NULL, NULL, NULL);
vmm->bootstrapped = true;
return 0;
}
static void
nvkm_vmm_del(struct kref *kref)
{
struct nvkm_vmm *vmm = container_of(kref, typeof(*vmm), kref);
nvkm_vmm_dtor(vmm);
kfree(vmm);
}
void
nvkm_vmm_unref(struct nvkm_vmm **pvmm)
{
struct nvkm_vmm *vmm = *pvmm;
if (vmm) {
kref_put(&vmm->kref, nvkm_vmm_del);
*pvmm = NULL;
}
}
struct nvkm_vmm *
nvkm_vmm_ref(struct nvkm_vmm *vmm)
{
if (vmm)
kref_get(&vmm->kref);
return vmm;
}
int
nvkm_vmm_new(struct nvkm_device *device, u64 addr, u64 size, void *argv,
u32 argc, struct lock_class_key *key, const char *name,
struct nvkm_vmm **pvmm)
{
struct nvkm_mmu *mmu = device->mmu;
struct nvkm_vmm *vmm = NULL;
int ret;
ret = mmu->func->vmm.ctor(mmu, false, addr, size, argv, argc,
key, name, &vmm);
if (ret)
nvkm_vmm_unref(&vmm);
*pvmm = vmm;
return ret;
}