linuxdebug/drivers/gpu/drm/i915/pxp/intel_pxp.c

320 lines
8.1 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: MIT
/*
* Copyright(c) 2020 Intel Corporation.
*/
#include <linux/workqueue.h>
#include "intel_pxp.h"
#include "intel_pxp_irq.h"
#include "intel_pxp_session.h"
#include "intel_pxp_tee.h"
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
#include "i915_drv.h"
/**
* DOC: PXP
*
* PXP (Protected Xe Path) is a feature available in Gen12 and newer platforms.
* It allows execution and flip to display of protected (i.e. encrypted)
* objects. The SW support is enabled via the CONFIG_DRM_I915_PXP kconfig.
*
* Objects can opt-in to PXP encryption at creation time via the
* I915_GEM_CREATE_EXT_PROTECTED_CONTENT create_ext flag. For objects to be
* correctly protected they must be used in conjunction with a context created
* with the I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. See the documentation
* of those two uapi flags for details and restrictions.
*
* Protected objects are tied to a pxp session; currently we only support one
* session, which i915 manages and whose index is available in the uapi
* (I915_PROTECTED_CONTENT_DEFAULT_SESSION) for use in instructions targeting
* protected objects.
* The session is invalidated by the HW when certain events occur (e.g.
* suspend/resume). When this happens, all the objects that were used with the
* session are marked as invalid and all contexts marked as using protected
* content are banned. Any further attempt at using them in an execbuf call is
* rejected, while flips are converted to black frames.
*
* Some of the PXP setup operations are performed by the Management Engine,
* which is handled by the mei driver; communication between i915 and mei is
* performed via the mei_pxp component module.
*/
struct intel_gt *pxp_to_gt(const struct intel_pxp *pxp)
{
return container_of(pxp, struct intel_gt, pxp);
}
bool intel_pxp_is_enabled(const struct intel_pxp *pxp)
{
return pxp->ce;
}
bool intel_pxp_is_active(const struct intel_pxp *pxp)
{
return pxp->arb_is_valid;
}
/* KCR register definitions */
#define KCR_INIT _MMIO(0x320f0)
/* Setting KCR Init bit is required after system boot */
#define KCR_INIT_ALLOW_DISPLAY_ME_WRITES REG_BIT(14)
static void kcr_pxp_enable(struct intel_gt *gt)
{
intel_uncore_write(gt->uncore, KCR_INIT,
_MASKED_BIT_ENABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES));
}
static void kcr_pxp_disable(struct intel_gt *gt)
{
intel_uncore_write(gt->uncore, KCR_INIT,
_MASKED_BIT_DISABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES));
}
static int create_vcs_context(struct intel_pxp *pxp)
{
static struct lock_class_key pxp_lock;
struct intel_gt *gt = pxp_to_gt(pxp);
struct intel_engine_cs *engine;
struct intel_context *ce;
int i;
/*
* Find the first VCS engine present. We're guaranteed there is one
* if we're in this function due to the check in has_pxp
*/
for (i = 0, engine = NULL; !engine; i++)
engine = gt->engine_class[VIDEO_DECODE_CLASS][i];
GEM_BUG_ON(!engine || engine->class != VIDEO_DECODE_CLASS);
ce = intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
I915_GEM_HWS_PXP_ADDR,
&pxp_lock, "pxp_context");
if (IS_ERR(ce)) {
drm_err(&gt->i915->drm, "failed to create VCS ctx for PXP\n");
return PTR_ERR(ce);
}
pxp->ce = ce;
return 0;
}
static void destroy_vcs_context(struct intel_pxp *pxp)
{
intel_engine_destroy_pinned_context(fetch_and_zero(&pxp->ce));
}
void intel_pxp_init(struct intel_pxp *pxp)
{
struct intel_gt *gt = pxp_to_gt(pxp);
int ret;
if (!HAS_PXP(gt->i915))
return;
mutex_init(&pxp->tee_mutex);
/*
* we'll use the completion to check if there is a termination pending,
* so we start it as completed and we reinit it when a termination
* is triggered.
*/
init_completion(&pxp->termination);
complete_all(&pxp->termination);
mutex_init(&pxp->arb_mutex);
INIT_WORK(&pxp->session_work, intel_pxp_session_work);
ret = create_vcs_context(pxp);
if (ret)
return;
ret = intel_pxp_tee_component_init(pxp);
if (ret)
goto out_context;
drm_info(&gt->i915->drm, "Protected Xe Path (PXP) protected content support initialized\n");
return;
out_context:
destroy_vcs_context(pxp);
}
void intel_pxp_fini(struct intel_pxp *pxp)
{
if (!intel_pxp_is_enabled(pxp))
return;
pxp->arb_is_valid = false;
intel_pxp_tee_component_fini(pxp);
destroy_vcs_context(pxp);
}
void intel_pxp_mark_termination_in_progress(struct intel_pxp *pxp)
{
pxp->arb_is_valid = false;
reinit_completion(&pxp->termination);
}
static void pxp_queue_termination(struct intel_pxp *pxp)
{
struct intel_gt *gt = pxp_to_gt(pxp);
/*
* We want to get the same effect as if we received a termination
* interrupt, so just pretend that we did.
*/
spin_lock_irq(gt->irq_lock);
intel_pxp_mark_termination_in_progress(pxp);
pxp->session_events |= PXP_TERMINATION_REQUEST;
queue_work(system_unbound_wq, &pxp->session_work);
spin_unlock_irq(gt->irq_lock);
}
static bool pxp_component_bound(struct intel_pxp *pxp)
{
bool bound = false;
mutex_lock(&pxp->tee_mutex);
if (pxp->pxp_component)
bound = true;
mutex_unlock(&pxp->tee_mutex);
return bound;
}
/*
* the arb session is restarted from the irq work when we receive the
* termination completion interrupt
*/
int intel_pxp_start(struct intel_pxp *pxp)
{
int ret = 0;
if (!intel_pxp_is_enabled(pxp))
return -ENODEV;
if (wait_for(pxp_component_bound(pxp), 250))
return -ENXIO;
mutex_lock(&pxp->arb_mutex);
if (pxp->arb_is_valid)
goto unlock;
pxp_queue_termination(pxp);
if (!wait_for_completion_timeout(&pxp->termination,
msecs_to_jiffies(250))) {
ret = -ETIMEDOUT;
goto unlock;
}
/* make sure the compiler doesn't optimize the double access */
barrier();
if (!pxp->arb_is_valid)
ret = -EIO;
unlock:
mutex_unlock(&pxp->arb_mutex);
return ret;
}
void intel_pxp_init_hw(struct intel_pxp *pxp)
{
kcr_pxp_enable(pxp_to_gt(pxp));
intel_pxp_irq_enable(pxp);
}
void intel_pxp_fini_hw(struct intel_pxp *pxp)
{
kcr_pxp_disable(pxp_to_gt(pxp));
intel_pxp_irq_disable(pxp);
}
int intel_pxp_key_check(struct intel_pxp *pxp,
struct drm_i915_gem_object *obj,
bool assign)
{
if (!intel_pxp_is_active(pxp))
return -ENODEV;
if (!i915_gem_object_is_protected(obj))
return -EINVAL;
GEM_BUG_ON(!pxp->key_instance);
/*
* If this is the first time we're using this object, it's not
* encrypted yet; it will be encrypted with the current key, so mark it
* as such. If the object is already encrypted, check instead if the
* used key is still valid.
*/
if (!obj->pxp_key_instance && assign)
obj->pxp_key_instance = pxp->key_instance;
if (obj->pxp_key_instance != pxp->key_instance)
return -ENOEXEC;
return 0;
}
void intel_pxp_invalidate(struct intel_pxp *pxp)
{
struct drm_i915_private *i915 = pxp_to_gt(pxp)->i915;
struct i915_gem_context *ctx, *cn;
/* ban all contexts marked as protected */
spin_lock_irq(&i915->gem.contexts.lock);
list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
struct i915_gem_engines_iter it;
struct intel_context *ce;
if (!kref_get_unless_zero(&ctx->ref))
continue;
if (likely(!i915_gem_context_uses_protected_content(ctx))) {
i915_gem_context_put(ctx);
continue;
}
spin_unlock_irq(&i915->gem.contexts.lock);
/*
* By the time we get here we are either going to suspend with
* quiesced execution or the HW keys are already long gone and
* in this case it is worthless to attempt to close the context
* and wait for its execution. It will hang the GPU if it has
* not already. So, as a fast mitigation, we can ban the
* context as quick as we can. That might race with the
* execbuffer, but currently this is the best that can be done.
*/
for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it)
intel_context_ban(ce, NULL);
i915_gem_context_unlock_engines(ctx);
/*
* The context has been banned, no need to keep the wakeref.
* This is safe from races because the only other place this
* is touched is context_release and we're holding a ctx ref
*/
if (ctx->pxp_wakeref) {
intel_runtime_pm_put(&i915->runtime_pm,
ctx->pxp_wakeref);
ctx->pxp_wakeref = 0;
}
spin_lock_irq(&i915->gem.contexts.lock);
list_safe_reset_next(ctx, cn, link);
i915_gem_context_put(ctx);
}
spin_unlock_irq(&i915->gem.contexts.lock);
}