linuxdebug/drivers/gpu/drm/amd/pm/amdgpu_pm.c

3649 lines
102 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Rafał Miłecki <zajec5@gmail.com>
* Alex Deucher <alexdeucher@gmail.com>
*/
#include "amdgpu.h"
#include "amdgpu_drv.h"
#include "amdgpu_pm.h"
#include "amdgpu_dpm.h"
#include "atom.h"
#include <linux/pci.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/nospec.h>
#include <linux/pm_runtime.h>
#include <asm/processor.h>
static const struct cg_flag_name clocks[] = {
{AMD_CG_SUPPORT_GFX_FGCG, "Graphics Fine Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_MGCG, "Graphics Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_MGLS, "Graphics Medium Grain memory Light Sleep"},
{AMD_CG_SUPPORT_GFX_CGCG, "Graphics Coarse Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_CGLS, "Graphics Coarse Grain memory Light Sleep"},
{AMD_CG_SUPPORT_GFX_CGTS, "Graphics Coarse Grain Tree Shader Clock Gating"},
{AMD_CG_SUPPORT_GFX_CGTS_LS, "Graphics Coarse Grain Tree Shader Light Sleep"},
{AMD_CG_SUPPORT_GFX_CP_LS, "Graphics Command Processor Light Sleep"},
{AMD_CG_SUPPORT_GFX_RLC_LS, "Graphics Run List Controller Light Sleep"},
{AMD_CG_SUPPORT_GFX_3D_CGCG, "Graphics 3D Coarse Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_3D_CGLS, "Graphics 3D Coarse Grain memory Light Sleep"},
{AMD_CG_SUPPORT_MC_LS, "Memory Controller Light Sleep"},
{AMD_CG_SUPPORT_MC_MGCG, "Memory Controller Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_SDMA_LS, "System Direct Memory Access Light Sleep"},
{AMD_CG_SUPPORT_SDMA_MGCG, "System Direct Memory Access Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_BIF_MGCG, "Bus Interface Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_BIF_LS, "Bus Interface Light Sleep"},
{AMD_CG_SUPPORT_UVD_MGCG, "Unified Video Decoder Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_VCE_MGCG, "Video Compression Engine Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_HDP_LS, "Host Data Path Light Sleep"},
{AMD_CG_SUPPORT_HDP_MGCG, "Host Data Path Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DRM_MGCG, "Digital Right Management Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DRM_LS, "Digital Right Management Light Sleep"},
{AMD_CG_SUPPORT_ROM_MGCG, "Rom Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DF_MGCG, "Data Fabric Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_VCN_MGCG, "VCN Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_HDP_DS, "Host Data Path Deep Sleep"},
{AMD_CG_SUPPORT_HDP_SD, "Host Data Path Shutdown"},
{AMD_CG_SUPPORT_IH_CG, "Interrupt Handler Clock Gating"},
{AMD_CG_SUPPORT_JPEG_MGCG, "JPEG Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_REPEATER_FGCG, "Repeater Fine Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_PERF_CLK, "Perfmon Clock Gating"},
{AMD_CG_SUPPORT_ATHUB_MGCG, "Address Translation Hub Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_ATHUB_LS, "Address Translation Hub Light Sleep"},
{0, NULL},
};
static const struct hwmon_temp_label {
enum PP_HWMON_TEMP channel;
const char *label;
} temp_label[] = {
{PP_TEMP_EDGE, "edge"},
{PP_TEMP_JUNCTION, "junction"},
{PP_TEMP_MEM, "mem"},
};
const char * const amdgpu_pp_profile_name[] = {
"BOOTUP_DEFAULT",
"3D_FULL_SCREEN",
"POWER_SAVING",
"VIDEO",
"VR",
"COMPUTE",
"CUSTOM",
"WINDOW_3D",
};
/**
* DOC: power_dpm_state
*
* The power_dpm_state file is a legacy interface and is only provided for
* backwards compatibility. The amdgpu driver provides a sysfs API for adjusting
* certain power related parameters. The file power_dpm_state is used for this.
* It accepts the following arguments:
*
* - battery
*
* - balanced
*
* - performance
*
* battery
*
* On older GPUs, the vbios provided a special power state for battery
* operation. Selecting battery switched to this state. This is no
* longer provided on newer GPUs so the option does nothing in that case.
*
* balanced
*
* On older GPUs, the vbios provided a special power state for balanced
* operation. Selecting balanced switched to this state. This is no
* longer provided on newer GPUs so the option does nothing in that case.
*
* performance
*
* On older GPUs, the vbios provided a special power state for performance
* operation. Selecting performance switched to this state. This is no
* longer provided on newer GPUs so the option does nothing in that case.
*
*/
static ssize_t amdgpu_get_power_dpm_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amd_pm_state_type pm;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
amdgpu_dpm_get_current_power_state(adev, &pm);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%s\n",
(pm == POWER_STATE_TYPE_BATTERY) ? "battery" :
(pm == POWER_STATE_TYPE_BALANCED) ? "balanced" : "performance");
}
static ssize_t amdgpu_set_power_dpm_state(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amd_pm_state_type state;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (strncmp("battery", buf, strlen("battery")) == 0)
state = POWER_STATE_TYPE_BATTERY;
else if (strncmp("balanced", buf, strlen("balanced")) == 0)
state = POWER_STATE_TYPE_BALANCED;
else if (strncmp("performance", buf, strlen("performance")) == 0)
state = POWER_STATE_TYPE_PERFORMANCE;
else
return -EINVAL;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
amdgpu_dpm_set_power_state(adev, state);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
/**
* DOC: power_dpm_force_performance_level
*
* The amdgpu driver provides a sysfs API for adjusting certain power
* related parameters. The file power_dpm_force_performance_level is
* used for this. It accepts the following arguments:
*
* - auto
*
* - low
*
* - high
*
* - manual
*
* - profile_standard
*
* - profile_min_sclk
*
* - profile_min_mclk
*
* - profile_peak
*
* auto
*
* When auto is selected, the driver will attempt to dynamically select
* the optimal power profile for current conditions in the driver.
*
* low
*
* When low is selected, the clocks are forced to the lowest power state.
*
* high
*
* When high is selected, the clocks are forced to the highest power state.
*
* manual
*
* When manual is selected, the user can manually adjust which power states
* are enabled for each clock domain via the sysfs pp_dpm_mclk, pp_dpm_sclk,
* and pp_dpm_pcie files and adjust the power state transition heuristics
* via the pp_power_profile_mode sysfs file.
*
* profile_standard
* profile_min_sclk
* profile_min_mclk
* profile_peak
*
* When the profiling modes are selected, clock and power gating are
* disabled and the clocks are set for different profiling cases. This
* mode is recommended for profiling specific work loads where you do
* not want clock or power gating for clock fluctuation to interfere
* with your results. profile_standard sets the clocks to a fixed clock
* level which varies from asic to asic. profile_min_sclk forces the sclk
* to the lowest level. profile_min_mclk forces the mclk to the lowest level.
* profile_peak sets all clocks (mclk, sclk, pcie) to the highest levels.
*
*/
static ssize_t amdgpu_get_power_dpm_force_performance_level(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amd_dpm_forced_level level = 0xff;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
level = amdgpu_dpm_get_performance_level(adev);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%s\n",
(level == AMD_DPM_FORCED_LEVEL_AUTO) ? "auto" :
(level == AMD_DPM_FORCED_LEVEL_LOW) ? "low" :
(level == AMD_DPM_FORCED_LEVEL_HIGH) ? "high" :
(level == AMD_DPM_FORCED_LEVEL_MANUAL) ? "manual" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) ? "profile_standard" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) ? "profile_min_sclk" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) ? "profile_min_mclk" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) ? "profile_peak" :
(level == AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) ? "perf_determinism" :
"unknown");
}
static ssize_t amdgpu_set_power_dpm_force_performance_level(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amd_dpm_forced_level level;
int ret = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (strncmp("low", buf, strlen("low")) == 0) {
level = AMD_DPM_FORCED_LEVEL_LOW;
} else if (strncmp("high", buf, strlen("high")) == 0) {
level = AMD_DPM_FORCED_LEVEL_HIGH;
} else if (strncmp("auto", buf, strlen("auto")) == 0) {
level = AMD_DPM_FORCED_LEVEL_AUTO;
} else if (strncmp("manual", buf, strlen("manual")) == 0) {
level = AMD_DPM_FORCED_LEVEL_MANUAL;
} else if (strncmp("profile_exit", buf, strlen("profile_exit")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_EXIT;
} else if (strncmp("profile_standard", buf, strlen("profile_standard")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD;
} else if (strncmp("profile_min_sclk", buf, strlen("profile_min_sclk")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK;
} else if (strncmp("profile_min_mclk", buf, strlen("profile_min_mclk")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK;
} else if (strncmp("profile_peak", buf, strlen("profile_peak")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
} else if (strncmp("perf_determinism", buf, strlen("perf_determinism")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM;
} else {
return -EINVAL;
}
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
mutex_lock(&adev->pm.stable_pstate_ctx_lock);
if (amdgpu_dpm_force_performance_level(adev, level)) {
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
mutex_unlock(&adev->pm.stable_pstate_ctx_lock);
return -EINVAL;
}
/* override whatever a user ctx may have set */
adev->pm.stable_pstate_ctx = NULL;
mutex_unlock(&adev->pm.stable_pstate_ctx_lock);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
static ssize_t amdgpu_get_pp_num_states(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
struct pp_states_info data;
uint32_t i;
int buf_len, ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (amdgpu_dpm_get_pp_num_states(adev, &data))
memset(&data, 0, sizeof(data));
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
buf_len = sysfs_emit(buf, "states: %d\n", data.nums);
for (i = 0; i < data.nums; i++)
buf_len += sysfs_emit_at(buf, buf_len, "%d %s\n", i,
(data.states[i] == POWER_STATE_TYPE_INTERNAL_BOOT) ? "boot" :
(data.states[i] == POWER_STATE_TYPE_BATTERY) ? "battery" :
(data.states[i] == POWER_STATE_TYPE_BALANCED) ? "balanced" :
(data.states[i] == POWER_STATE_TYPE_PERFORMANCE) ? "performance" : "default");
return buf_len;
}
static ssize_t amdgpu_get_pp_cur_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
struct pp_states_info data = {0};
enum amd_pm_state_type pm = 0;
int i = 0, ret = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
amdgpu_dpm_get_current_power_state(adev, &pm);
ret = amdgpu_dpm_get_pp_num_states(adev, &data);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (ret)
return ret;
for (i = 0; i < data.nums; i++) {
if (pm == data.states[i])
break;
}
if (i == data.nums)
i = -EINVAL;
return sysfs_emit(buf, "%d\n", i);
}
static ssize_t amdgpu_get_pp_force_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (adev->pm.pp_force_state_enabled)
return amdgpu_get_pp_cur_state(dev, attr, buf);
else
return sysfs_emit(buf, "\n");
}
static ssize_t amdgpu_set_pp_force_state(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amd_pm_state_type state = 0;
struct pp_states_info data;
unsigned long idx;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
adev->pm.pp_force_state_enabled = false;
if (strlen(buf) == 1)
return count;
ret = kstrtoul(buf, 0, &idx);
if (ret || idx >= ARRAY_SIZE(data.states))
return -EINVAL;
idx = array_index_nospec(idx, ARRAY_SIZE(data.states));
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
ret = amdgpu_dpm_get_pp_num_states(adev, &data);
if (ret)
goto err_out;
state = data.states[idx];
/* only set user selected power states */
if (state != POWER_STATE_TYPE_INTERNAL_BOOT &&
state != POWER_STATE_TYPE_DEFAULT) {
ret = amdgpu_dpm_dispatch_task(adev,
AMD_PP_TASK_ENABLE_USER_STATE, &state);
if (ret)
goto err_out;
adev->pm.pp_force_state_enabled = true;
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
err_out:
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
/**
* DOC: pp_table
*
* The amdgpu driver provides a sysfs API for uploading new powerplay
* tables. The file pp_table is used for this. Reading the file
* will dump the current power play table. Writing to the file
* will attempt to upload a new powerplay table and re-initialize
* powerplay using that new table.
*
*/
static ssize_t amdgpu_get_pp_table(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
char *table = NULL;
int size, ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
size = amdgpu_dpm_get_pp_table(adev, &table);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (size <= 0)
return size;
if (size >= PAGE_SIZE)
size = PAGE_SIZE - 1;
memcpy(buf, table, size);
return size;
}
static ssize_t amdgpu_set_pp_table(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
ret = amdgpu_dpm_set_pp_table(adev, buf, count);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (ret)
return ret;
return count;
}
/**
* DOC: pp_od_clk_voltage
*
* The amdgpu driver provides a sysfs API for adjusting the clocks and voltages
* in each power level within a power state. The pp_od_clk_voltage is used for
* this.
*
* Note that the actual memory controller clock rate are exposed, not
* the effective memory clock of the DRAMs. To translate it, use the
* following formula:
*
* Clock conversion (Mhz):
*
* HBM: effective_memory_clock = memory_controller_clock * 1
*
* G5: effective_memory_clock = memory_controller_clock * 1
*
* G6: effective_memory_clock = memory_controller_clock * 2
*
* DRAM data rate (MT/s):
*
* HBM: effective_memory_clock * 2 = data_rate
*
* G5: effective_memory_clock * 4 = data_rate
*
* G6: effective_memory_clock * 8 = data_rate
*
* Bandwidth (MB/s):
*
* data_rate * vram_bit_width / 8 = memory_bandwidth
*
* Some examples:
*
* G5 on RX460:
*
* memory_controller_clock = 1750 Mhz
*
* effective_memory_clock = 1750 Mhz * 1 = 1750 Mhz
*
* data rate = 1750 * 4 = 7000 MT/s
*
* memory_bandwidth = 7000 * 128 bits / 8 = 112000 MB/s
*
* G6 on RX5700:
*
* memory_controller_clock = 875 Mhz
*
* effective_memory_clock = 875 Mhz * 2 = 1750 Mhz
*
* data rate = 1750 * 8 = 14000 MT/s
*
* memory_bandwidth = 14000 * 256 bits / 8 = 448000 MB/s
*
* < For Vega10 and previous ASICs >
*
* Reading the file will display:
*
* - a list of engine clock levels and voltages labeled OD_SCLK
*
* - a list of memory clock levels and voltages labeled OD_MCLK
*
* - a list of valid ranges for sclk, mclk, and voltage labeled OD_RANGE
*
* To manually adjust these settings, first select manual using
* power_dpm_force_performance_level. Enter a new value for each
* level by writing a string that contains "s/m level clock voltage" to
* the file. E.g., "s 1 500 820" will update sclk level 1 to be 500 MHz
* at 820 mV; "m 0 350 810" will update mclk level 0 to be 350 MHz at
* 810 mV. When you have edited all of the states as needed, write
* "c" (commit) to the file to commit your changes. If you want to reset to the
* default power levels, write "r" (reset) to the file to reset them.
*
*
* < For Vega20 and newer ASICs >
*
* Reading the file will display:
*
* - minimum and maximum engine clock labeled OD_SCLK
*
* - minimum(not available for Vega20 and Navi1x) and maximum memory
* clock labeled OD_MCLK
*
* - three <frequency, voltage> points labeled OD_VDDC_CURVE.
* They can be used to calibrate the sclk voltage curve.
*
* - voltage offset(in mV) applied on target voltage calculation.
* This is available for Sienna Cichlid, Navy Flounder and Dimgrey
* Cavefish. For these ASICs, the target voltage calculation can be
* illustrated by "voltage = voltage calculated from v/f curve +
* overdrive vddgfx offset"
*
* - a list of valid ranges for sclk, mclk, and voltage curve points
* labeled OD_RANGE
*
* < For APUs >
*
* Reading the file will display:
*
* - minimum and maximum engine clock labeled OD_SCLK
*
* - a list of valid ranges for sclk labeled OD_RANGE
*
* < For VanGogh >
*
* Reading the file will display:
*
* - minimum and maximum engine clock labeled OD_SCLK
* - minimum and maximum core clocks labeled OD_CCLK
*
* - a list of valid ranges for sclk and cclk labeled OD_RANGE
*
* To manually adjust these settings:
*
* - First select manual using power_dpm_force_performance_level
*
* - For clock frequency setting, enter a new value by writing a
* string that contains "s/m index clock" to the file. The index
* should be 0 if to set minimum clock. And 1 if to set maximum
* clock. E.g., "s 0 500" will update minimum sclk to be 500 MHz.
* "m 1 800" will update maximum mclk to be 800Mhz. For core
* clocks on VanGogh, the string contains "p core index clock".
* E.g., "p 2 0 800" would set the minimum core clock on core
* 2 to 800Mhz.
*
* For sclk voltage curve, enter the new values by writing a
* string that contains "vc point clock voltage" to the file. The
* points are indexed by 0, 1 and 2. E.g., "vc 0 300 600" will
* update point1 with clock set as 300Mhz and voltage as
* 600mV. "vc 2 1000 1000" will update point3 with clock set
* as 1000Mhz and voltage 1000mV.
*
* To update the voltage offset applied for gfxclk/voltage calculation,
* enter the new value by writing a string that contains "vo offset".
* This is supported by Sienna Cichlid, Navy Flounder and Dimgrey Cavefish.
* And the offset can be a positive or negative value.
*
* - When you have edited all of the states as needed, write "c" (commit)
* to the file to commit your changes
*
* - If you want to reset to the default power levels, write "r" (reset)
* to the file to reset them
*
*/
static ssize_t amdgpu_set_pp_od_clk_voltage(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret;
uint32_t parameter_size = 0;
long parameter[64];
char buf_cpy[128];
char *tmp_str;
char *sub_str;
const char delimiter[3] = {' ', '\n', '\0'};
uint32_t type;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (count > 127)
return -EINVAL;
if (*buf == 's')
type = PP_OD_EDIT_SCLK_VDDC_TABLE;
else if (*buf == 'p')
type = PP_OD_EDIT_CCLK_VDDC_TABLE;
else if (*buf == 'm')
type = PP_OD_EDIT_MCLK_VDDC_TABLE;
else if(*buf == 'r')
type = PP_OD_RESTORE_DEFAULT_TABLE;
else if (*buf == 'c')
type = PP_OD_COMMIT_DPM_TABLE;
else if (!strncmp(buf, "vc", 2))
type = PP_OD_EDIT_VDDC_CURVE;
else if (!strncmp(buf, "vo", 2))
type = PP_OD_EDIT_VDDGFX_OFFSET;
else
return -EINVAL;
memcpy(buf_cpy, buf, count+1);
tmp_str = buf_cpy;
if ((type == PP_OD_EDIT_VDDC_CURVE) ||
(type == PP_OD_EDIT_VDDGFX_OFFSET))
tmp_str++;
while (isspace(*++tmp_str));
while ((sub_str = strsep(&tmp_str, delimiter)) != NULL) {
if (strlen(sub_str) == 0)
continue;
ret = kstrtol(sub_str, 0, &parameter[parameter_size]);
if (ret)
return -EINVAL;
parameter_size++;
while (isspace(*tmp_str))
tmp_str++;
}
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (amdgpu_dpm_set_fine_grain_clk_vol(adev,
type,
parameter,
parameter_size))
goto err_out;
if (amdgpu_dpm_odn_edit_dpm_table(adev, type,
parameter, parameter_size))
goto err_out;
if (type == PP_OD_COMMIT_DPM_TABLE) {
if (amdgpu_dpm_dispatch_task(adev,
AMD_PP_TASK_READJUST_POWER_STATE,
NULL))
goto err_out;
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
err_out:
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return -EINVAL;
}
static ssize_t amdgpu_get_pp_od_clk_voltage(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int size = 0;
int ret;
enum pp_clock_type od_clocks[6] = {
OD_SCLK,
OD_MCLK,
OD_VDDC_CURVE,
OD_RANGE,
OD_VDDGFX_OFFSET,
OD_CCLK,
};
uint clk_index;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
for (clk_index = 0 ; clk_index < 6 ; clk_index++) {
ret = amdgpu_dpm_emit_clock_levels(adev, od_clocks[clk_index], buf, &size);
if (ret)
break;
}
if (ret == -ENOENT) {
size = amdgpu_dpm_print_clock_levels(adev, OD_SCLK, buf);
size += amdgpu_dpm_print_clock_levels(adev, OD_MCLK, buf + size);
size += amdgpu_dpm_print_clock_levels(adev, OD_VDDC_CURVE, buf + size);
size += amdgpu_dpm_print_clock_levels(adev, OD_VDDGFX_OFFSET, buf + size);
size += amdgpu_dpm_print_clock_levels(adev, OD_RANGE, buf + size);
size += amdgpu_dpm_print_clock_levels(adev, OD_CCLK, buf + size);
}
if (size == 0)
size = sysfs_emit(buf, "\n");
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
/**
* DOC: pp_features
*
* The amdgpu driver provides a sysfs API for adjusting what powerplay
* features to be enabled. The file pp_features is used for this. And
* this is only available for Vega10 and later dGPUs.
*
* Reading back the file will show you the followings:
* - Current ppfeature masks
* - List of the all supported powerplay features with their naming,
* bitmasks and enablement status('Y'/'N' means "enabled"/"disabled").
*
* To manually enable or disable a specific feature, just set or clear
* the corresponding bit from original ppfeature masks and input the
* new ppfeature masks.
*/
static ssize_t amdgpu_set_pp_features(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint64_t featuremask;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = kstrtou64(buf, 0, &featuremask);
if (ret)
return -EINVAL;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
ret = amdgpu_dpm_set_ppfeature_status(adev, featuremask);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (ret)
return -EINVAL;
return count;
}
static ssize_t amdgpu_get_pp_features(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
ssize_t size;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
size = amdgpu_dpm_get_ppfeature_status(adev, buf);
if (size <= 0)
size = sysfs_emit(buf, "\n");
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
/**
* DOC: pp_dpm_sclk pp_dpm_mclk pp_dpm_socclk pp_dpm_fclk pp_dpm_dcefclk pp_dpm_pcie
*
* The amdgpu driver provides a sysfs API for adjusting what power levels
* are enabled for a given power state. The files pp_dpm_sclk, pp_dpm_mclk,
* pp_dpm_socclk, pp_dpm_fclk, pp_dpm_dcefclk and pp_dpm_pcie are used for
* this.
*
* pp_dpm_socclk and pp_dpm_dcefclk interfaces are only available for
* Vega10 and later ASICs.
* pp_dpm_fclk interface is only available for Vega20 and later ASICs.
*
* Reading back the files will show you the available power levels within
* the power state and the clock information for those levels.
*
* To manually adjust these states, first select manual using
* power_dpm_force_performance_level.
* Secondly, enter a new value for each level by inputing a string that
* contains " echo xx xx xx > pp_dpm_sclk/mclk/pcie"
* E.g.,
*
* .. code-block:: bash
*
* echo "4 5 6" > pp_dpm_sclk
*
* will enable sclk levels 4, 5, and 6.
*
* NOTE: change to the dcefclk max dpm level is not supported now
*/
static ssize_t amdgpu_get_pp_dpm_clock(struct device *dev,
enum pp_clock_type type,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int size = 0;
int ret = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
ret = amdgpu_dpm_emit_clock_levels(adev, type, buf, &size);
if (ret == -ENOENT)
size = amdgpu_dpm_print_clock_levels(adev, type, buf);
if (size == 0)
size = sysfs_emit(buf, "\n");
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
/*
* Worst case: 32 bits individually specified, in octal at 12 characters
* per line (+1 for \n).
*/
#define AMDGPU_MASK_BUF_MAX (32 * 13)
static ssize_t amdgpu_read_mask(const char *buf, size_t count, uint32_t *mask)
{
int ret;
unsigned long level;
char *sub_str = NULL;
char *tmp;
char buf_cpy[AMDGPU_MASK_BUF_MAX + 1];
const char delimiter[3] = {' ', '\n', '\0'};
size_t bytes;
*mask = 0;
bytes = min(count, sizeof(buf_cpy) - 1);
memcpy(buf_cpy, buf, bytes);
buf_cpy[bytes] = '\0';
tmp = buf_cpy;
while ((sub_str = strsep(&tmp, delimiter)) != NULL) {
if (strlen(sub_str)) {
ret = kstrtoul(sub_str, 0, &level);
if (ret || level > 31)
return -EINVAL;
*mask |= 1 << level;
} else
break;
}
return 0;
}
static ssize_t amdgpu_set_pp_dpm_clock(struct device *dev,
enum pp_clock_type type,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret;
uint32_t mask = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = amdgpu_read_mask(buf, count, &mask);
if (ret)
return ret;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
ret = amdgpu_dpm_force_clock_level(adev, type, mask);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (ret)
return -EINVAL;
return count;
}
static ssize_t amdgpu_get_pp_dpm_sclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_SCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_sclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_SCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_mclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_MCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_mclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_MCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_socclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_SOCCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_socclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_SOCCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_fclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_FCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_fclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_FCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_vclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_VCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_vclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_VCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_dclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_DCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_dclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_DCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_dcefclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_DCEFCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_dcefclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_DCEFCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_pcie(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_PCIE, buf);
}
static ssize_t amdgpu_set_pp_dpm_pcie(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_PCIE, buf, count);
}
static ssize_t amdgpu_get_pp_sclk_od(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint32_t value = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
value = amdgpu_dpm_get_sclk_od(adev);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%d\n", value);
}
static ssize_t amdgpu_set_pp_sclk_od(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret;
long int value;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = kstrtol(buf, 0, &value);
if (ret)
return -EINVAL;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
amdgpu_dpm_set_sclk_od(adev, (uint32_t)value);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
static ssize_t amdgpu_get_pp_mclk_od(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint32_t value = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
value = amdgpu_dpm_get_mclk_od(adev);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%d\n", value);
}
static ssize_t amdgpu_set_pp_mclk_od(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret;
long int value;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = kstrtol(buf, 0, &value);
if (ret)
return -EINVAL;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
amdgpu_dpm_set_mclk_od(adev, (uint32_t)value);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
/**
* DOC: pp_power_profile_mode
*
* The amdgpu driver provides a sysfs API for adjusting the heuristics
* related to switching between power levels in a power state. The file
* pp_power_profile_mode is used for this.
*
* Reading this file outputs a list of all of the predefined power profiles
* and the relevant heuristics settings for that profile.
*
* To select a profile or create a custom profile, first select manual using
* power_dpm_force_performance_level. Writing the number of a predefined
* profile to pp_power_profile_mode will enable those heuristics. To
* create a custom set of heuristics, write a string of numbers to the file
* starting with the number of the custom profile along with a setting
* for each heuristic parameter. Due to differences across asic families
* the heuristic parameters vary from family to family.
*
*/
static ssize_t amdgpu_get_pp_power_profile_mode(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
ssize_t size;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
size = amdgpu_dpm_get_power_profile_mode(adev, buf);
if (size <= 0)
size = sysfs_emit(buf, "\n");
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
static ssize_t amdgpu_set_pp_power_profile_mode(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
int ret;
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint32_t parameter_size = 0;
long parameter[64];
char *sub_str, buf_cpy[128];
char *tmp_str;
uint32_t i = 0;
char tmp[2];
long int profile_mode = 0;
const char delimiter[3] = {' ', '\n', '\0'};
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
tmp[0] = *(buf);
tmp[1] = '\0';
ret = kstrtol(tmp, 0, &profile_mode);
if (ret)
return -EINVAL;
if (profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
if (count < 2 || count > 127)
return -EINVAL;
while (isspace(*++buf))
i++;
memcpy(buf_cpy, buf, count-i);
tmp_str = buf_cpy;
while ((sub_str = strsep(&tmp_str, delimiter)) != NULL) {
if (strlen(sub_str) == 0)
continue;
ret = kstrtol(sub_str, 0, &parameter[parameter_size]);
if (ret)
return -EINVAL;
parameter_size++;
while (isspace(*tmp_str))
tmp_str++;
}
}
parameter[parameter_size] = profile_mode;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
ret = amdgpu_dpm_set_power_profile_mode(adev, parameter, parameter_size);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (!ret)
return count;
return -EINVAL;
}
/**
* DOC: gpu_busy_percent
*
* The amdgpu driver provides a sysfs API for reading how busy the GPU
* is as a percentage. The file gpu_busy_percent is used for this.
* The SMU firmware computes a percentage of load based on the
* aggregate activity level in the IP cores.
*/
static ssize_t amdgpu_get_gpu_busy_percent(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int r, value, size = sizeof(value);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(ddev->dev);
if (r < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
/* read the IP busy sensor */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD,
(void *)&value, &size);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (r)
return r;
return sysfs_emit(buf, "%d\n", value);
}
/**
* DOC: mem_busy_percent
*
* The amdgpu driver provides a sysfs API for reading how busy the VRAM
* is as a percentage. The file mem_busy_percent is used for this.
* The SMU firmware computes a percentage of load based on the
* aggregate activity level in the IP cores.
*/
static ssize_t amdgpu_get_mem_busy_percent(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int r, value, size = sizeof(value);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(ddev->dev);
if (r < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
/* read the IP busy sensor */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_LOAD,
(void *)&value, &size);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (r)
return r;
return sysfs_emit(buf, "%d\n", value);
}
/**
* DOC: pcie_bw
*
* The amdgpu driver provides a sysfs API for estimating how much data
* has been received and sent by the GPU in the last second through PCIe.
* The file pcie_bw is used for this.
* The Perf counters count the number of received and sent messages and return
* those values, as well as the maximum payload size of a PCIe packet (mps).
* Note that it is not possible to easily and quickly obtain the size of each
* packet transmitted, so we output the max payload size (mps) to allow for
* quick estimation of the PCIe bandwidth usage
*/
static ssize_t amdgpu_get_pcie_bw(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint64_t count0 = 0, count1 = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (adev->flags & AMD_IS_APU)
return -ENODATA;
if (!adev->asic_funcs->get_pcie_usage)
return -ENODATA;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
amdgpu_asic_get_pcie_usage(adev, &count0, &count1);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%llu %llu %i\n",
count0, count1, pcie_get_mps(adev->pdev));
}
/**
* DOC: unique_id
*
* The amdgpu driver provides a sysfs API for providing a unique ID for the GPU
* The file unique_id is used for this.
* This will provide a Unique ID that will persist from machine to machine
*
* NOTE: This will only work for GFX9 and newer. This file will be absent
* on unsupported ASICs (GFX8 and older)
*/
static ssize_t amdgpu_get_unique_id(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (adev->unique_id)
return sysfs_emit(buf, "%016llx\n", adev->unique_id);
return 0;
}
/**
* DOC: thermal_throttling_logging
*
* Thermal throttling pulls down the clock frequency and thus the performance.
* It's an useful mechanism to protect the chip from overheating. Since it
* impacts performance, the user controls whether it is enabled and if so,
* the log frequency.
*
* Reading back the file shows you the status(enabled or disabled) and
* the interval(in seconds) between each thermal logging.
*
* Writing an integer to the file, sets a new logging interval, in seconds.
* The value should be between 1 and 3600. If the value is less than 1,
* thermal logging is disabled. Values greater than 3600 are ignored.
*/
static ssize_t amdgpu_get_thermal_throttling_logging(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
return sysfs_emit(buf, "%s: thermal throttling logging %s, with interval %d seconds\n",
adev_to_drm(adev)->unique,
atomic_read(&adev->throttling_logging_enabled) ? "enabled" : "disabled",
adev->throttling_logging_rs.interval / HZ + 1);
}
static ssize_t amdgpu_set_thermal_throttling_logging(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
long throttling_logging_interval;
unsigned long flags;
int ret = 0;
ret = kstrtol(buf, 0, &throttling_logging_interval);
if (ret)
return ret;
if (throttling_logging_interval > 3600)
return -EINVAL;
if (throttling_logging_interval > 0) {
raw_spin_lock_irqsave(&adev->throttling_logging_rs.lock, flags);
/*
* Reset the ratelimit timer internals.
* This can effectively restart the timer.
*/
adev->throttling_logging_rs.interval =
(throttling_logging_interval - 1) * HZ;
adev->throttling_logging_rs.begin = 0;
adev->throttling_logging_rs.printed = 0;
adev->throttling_logging_rs.missed = 0;
raw_spin_unlock_irqrestore(&adev->throttling_logging_rs.lock, flags);
atomic_set(&adev->throttling_logging_enabled, 1);
} else {
atomic_set(&adev->throttling_logging_enabled, 0);
}
return count;
}
/**
* DOC: gpu_metrics
*
* The amdgpu driver provides a sysfs API for retrieving current gpu
* metrics data. The file gpu_metrics is used for this. Reading the
* file will dump all the current gpu metrics data.
*
* These data include temperature, frequency, engines utilization,
* power consume, throttler status, fan speed and cpu core statistics(
* available for APU only). That's it will give a snapshot of all sensors
* at the same time.
*/
static ssize_t amdgpu_get_gpu_metrics(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
void *gpu_metrics;
ssize_t size = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
size = amdgpu_dpm_get_gpu_metrics(adev, &gpu_metrics);
if (size <= 0)
goto out;
if (size >= PAGE_SIZE)
size = PAGE_SIZE - 1;
memcpy(buf, gpu_metrics, size);
out:
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
static int amdgpu_device_read_powershift(struct amdgpu_device *adev,
uint32_t *ss_power, bool dgpu_share)
{
struct drm_device *ddev = adev_to_drm(adev);
uint32_t size;
int r = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(ddev->dev);
if (r < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
if (dgpu_share)
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_SS_DGPU_SHARE,
(void *)ss_power, &size);
else
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_SS_APU_SHARE,
(void *)ss_power, &size);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
static int amdgpu_show_powershift_percent(struct device *dev,
char *buf, bool dgpu_share)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint32_t ss_power;
int r = 0, i;
r = amdgpu_device_read_powershift(adev, &ss_power, dgpu_share);
if (r == -EOPNOTSUPP) {
/* sensor not available on dGPU, try to read from APU */
adev = NULL;
mutex_lock(&mgpu_info.mutex);
for (i = 0; i < mgpu_info.num_gpu; i++) {
if (mgpu_info.gpu_ins[i].adev->flags & AMD_IS_APU) {
adev = mgpu_info.gpu_ins[i].adev;
break;
}
}
mutex_unlock(&mgpu_info.mutex);
if (adev)
r = amdgpu_device_read_powershift(adev, &ss_power, dgpu_share);
}
if (!r)
r = sysfs_emit(buf, "%u%%\n", ss_power);
return r;
}
/**
* DOC: smartshift_apu_power
*
* The amdgpu driver provides a sysfs API for reporting APU power
* shift in percentage if platform supports smartshift. Value 0 means that
* there is no powershift and values between [1-100] means that the power
* is shifted to APU, the percentage of boost is with respect to APU power
* limit on the platform.
*/
static ssize_t amdgpu_get_smartshift_apu_power(struct device *dev, struct device_attribute *attr,
char *buf)
{
return amdgpu_show_powershift_percent(dev, buf, false);
}
/**
* DOC: smartshift_dgpu_power
*
* The amdgpu driver provides a sysfs API for reporting dGPU power
* shift in percentage if platform supports smartshift. Value 0 means that
* there is no powershift and values between [1-100] means that the power is
* shifted to dGPU, the percentage of boost is with respect to dGPU power
* limit on the platform.
*/
static ssize_t amdgpu_get_smartshift_dgpu_power(struct device *dev, struct device_attribute *attr,
char *buf)
{
return amdgpu_show_powershift_percent(dev, buf, true);
}
/**
* DOC: smartshift_bias
*
* The amdgpu driver provides a sysfs API for reporting the
* smartshift(SS2.0) bias level. The value ranges from -100 to 100
* and the default is 0. -100 sets maximum preference to APU
* and 100 sets max perference to dGPU.
*/
static ssize_t amdgpu_get_smartshift_bias(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int r = 0;
r = sysfs_emit(buf, "%d\n", amdgpu_smartshift_bias);
return r;
}
static ssize_t amdgpu_set_smartshift_bias(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int r = 0;
int bias = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(ddev->dev);
if (r < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
r = kstrtoint(buf, 10, &bias);
if (r)
goto out;
if (bias > AMDGPU_SMARTSHIFT_MAX_BIAS)
bias = AMDGPU_SMARTSHIFT_MAX_BIAS;
else if (bias < AMDGPU_SMARTSHIFT_MIN_BIAS)
bias = AMDGPU_SMARTSHIFT_MIN_BIAS;
amdgpu_smartshift_bias = bias;
r = count;
/* TODO: update bias level with SMU message */
out:
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
static int ss_power_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states)
{
if (!amdgpu_device_supports_smart_shift(adev_to_drm(adev)))
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
static int ss_bias_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states)
{
uint32_t ss_power, size;
if (!amdgpu_device_supports_smart_shift(adev_to_drm(adev)))
*states = ATTR_STATE_UNSUPPORTED;
else if (amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_SS_APU_SHARE,
(void *)&ss_power, &size))
*states = ATTR_STATE_UNSUPPORTED;
else if (amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_SS_DGPU_SHARE,
(void *)&ss_power, &size))
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
static struct amdgpu_device_attr amdgpu_device_attrs[] = {
AMDGPU_DEVICE_ATTR_RW(power_dpm_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(power_dpm_force_performance_level, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(pp_num_states, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(pp_cur_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_force_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_table, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_sclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_mclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_socclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_fclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_vclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_dclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_dcefclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_pcie, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_sclk_od, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RW(pp_mclk_od, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RW(pp_power_profile_mode, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_od_clk_voltage, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RO(gpu_busy_percent, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(mem_busy_percent, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(pcie_bw, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RW(pp_features, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(unique_id, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(thermal_throttling_logging, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(gpu_metrics, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(smartshift_apu_power, ATTR_FLAG_BASIC,
.attr_update = ss_power_attr_update),
AMDGPU_DEVICE_ATTR_RO(smartshift_dgpu_power, ATTR_FLAG_BASIC,
.attr_update = ss_power_attr_update),
AMDGPU_DEVICE_ATTR_RW(smartshift_bias, ATTR_FLAG_BASIC,
.attr_update = ss_bias_attr_update),
};
static int default_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states)
{
struct device_attribute *dev_attr = &attr->dev_attr;
uint32_t mp1_ver = adev->ip_versions[MP1_HWIP][0];
uint32_t gc_ver = adev->ip_versions[GC_HWIP][0];
const char *attr_name = dev_attr->attr.name;
if (!(attr->flags & mask)) {
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
#define DEVICE_ATTR_IS(_name) (!strcmp(attr_name, #_name))
if (DEVICE_ATTR_IS(pp_dpm_socclk)) {
if (gc_ver < IP_VERSION(9, 0, 0))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_dpm_dcefclk)) {
if (gc_ver < IP_VERSION(9, 0, 0) ||
gc_ver == IP_VERSION(9, 4, 1) ||
gc_ver == IP_VERSION(9, 4, 2))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_dpm_fclk)) {
if (mp1_ver < IP_VERSION(10, 0, 0))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_od_clk_voltage)) {
*states = ATTR_STATE_UNSUPPORTED;
if (amdgpu_dpm_is_overdrive_supported(adev))
*states = ATTR_STATE_SUPPORTED;
} else if (DEVICE_ATTR_IS(mem_busy_percent)) {
if (adev->flags & AMD_IS_APU || gc_ver == IP_VERSION(9, 0, 1))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pcie_bw)) {
/* PCIe Perf counters won't work on APU nodes */
if (adev->flags & AMD_IS_APU)
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(unique_id)) {
switch (gc_ver) {
case IP_VERSION(9, 0, 1):
case IP_VERSION(9, 4, 0):
case IP_VERSION(9, 4, 1):
case IP_VERSION(9, 4, 2):
case IP_VERSION(10, 3, 0):
case IP_VERSION(11, 0, 0):
case IP_VERSION(11, 0, 1):
case IP_VERSION(11, 0, 2):
*states = ATTR_STATE_SUPPORTED;
break;
default:
*states = ATTR_STATE_UNSUPPORTED;
}
} else if (DEVICE_ATTR_IS(pp_features)) {
if (adev->flags & AMD_IS_APU || gc_ver < IP_VERSION(9, 0, 0))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(gpu_metrics)) {
if (gc_ver < IP_VERSION(9, 1, 0))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_dpm_vclk)) {
if (!(gc_ver == IP_VERSION(10, 3, 1) ||
gc_ver == IP_VERSION(10, 3, 0) ||
gc_ver == IP_VERSION(10, 1, 2) ||
gc_ver == IP_VERSION(11, 0, 0) ||
gc_ver == IP_VERSION(11, 0, 2) ||
gc_ver == IP_VERSION(11, 0, 3)))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_dpm_dclk)) {
if (!(gc_ver == IP_VERSION(10, 3, 1) ||
gc_ver == IP_VERSION(10, 3, 0) ||
gc_ver == IP_VERSION(10, 1, 2) ||
gc_ver == IP_VERSION(11, 0, 0) ||
gc_ver == IP_VERSION(11, 0, 2) ||
gc_ver == IP_VERSION(11, 0, 3)))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_power_profile_mode)) {
if (amdgpu_dpm_get_power_profile_mode(adev, NULL) == -EOPNOTSUPP)
*states = ATTR_STATE_UNSUPPORTED;
else if (gc_ver == IP_VERSION(10, 3, 0) && amdgpu_sriov_vf(adev))
*states = ATTR_STATE_UNSUPPORTED;
}
switch (gc_ver) {
case IP_VERSION(9, 4, 1):
case IP_VERSION(9, 4, 2):
/* the Mi series card does not support standalone mclk/socclk/fclk level setting */
if (DEVICE_ATTR_IS(pp_dpm_mclk) ||
DEVICE_ATTR_IS(pp_dpm_socclk) ||
DEVICE_ATTR_IS(pp_dpm_fclk)) {
dev_attr->attr.mode &= ~S_IWUGO;
dev_attr->store = NULL;
}
break;
case IP_VERSION(10, 3, 0):
if (DEVICE_ATTR_IS(power_dpm_force_performance_level) &&
amdgpu_sriov_vf(adev)) {
dev_attr->attr.mode &= ~0222;
dev_attr->store = NULL;
}
break;
default:
break;
}
if (DEVICE_ATTR_IS(pp_dpm_dcefclk)) {
/* SMU MP1 does not support dcefclk level setting */
if (gc_ver >= IP_VERSION(10, 0, 0)) {
dev_attr->attr.mode &= ~S_IWUGO;
dev_attr->store = NULL;
}
}
/* setting should not be allowed from VF if not in one VF mode */
if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) {
dev_attr->attr.mode &= ~S_IWUGO;
dev_attr->store = NULL;
}
#undef DEVICE_ATTR_IS
return 0;
}
static int amdgpu_device_attr_create(struct amdgpu_device *adev,
struct amdgpu_device_attr *attr,
uint32_t mask, struct list_head *attr_list)
{
int ret = 0;
enum amdgpu_device_attr_states attr_states = ATTR_STATE_SUPPORTED;
struct amdgpu_device_attr_entry *attr_entry;
struct device_attribute *dev_attr;
const char *name;
int (*attr_update)(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states) = default_attr_update;
if (!attr)
return -EINVAL;
dev_attr = &attr->dev_attr;
name = dev_attr->attr.name;
attr_update = attr->attr_update ? attr->attr_update : default_attr_update;
ret = attr_update(adev, attr, mask, &attr_states);
if (ret) {
dev_err(adev->dev, "failed to update device file %s, ret = %d\n",
name, ret);
return ret;
}
if (attr_states == ATTR_STATE_UNSUPPORTED)
return 0;
ret = device_create_file(adev->dev, dev_attr);
if (ret) {
dev_err(adev->dev, "failed to create device file %s, ret = %d\n",
name, ret);
}
attr_entry = kmalloc(sizeof(*attr_entry), GFP_KERNEL);
if (!attr_entry)
return -ENOMEM;
attr_entry->attr = attr;
INIT_LIST_HEAD(&attr_entry->entry);
list_add_tail(&attr_entry->entry, attr_list);
return ret;
}
static void amdgpu_device_attr_remove(struct amdgpu_device *adev, struct amdgpu_device_attr *attr)
{
struct device_attribute *dev_attr = &attr->dev_attr;
device_remove_file(adev->dev, dev_attr);
}
static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev,
struct list_head *attr_list);
static int amdgpu_device_attr_create_groups(struct amdgpu_device *adev,
struct amdgpu_device_attr *attrs,
uint32_t counts,
uint32_t mask,
struct list_head *attr_list)
{
int ret = 0;
uint32_t i = 0;
for (i = 0; i < counts; i++) {
ret = amdgpu_device_attr_create(adev, &attrs[i], mask, attr_list);
if (ret)
goto failed;
}
return 0;
failed:
amdgpu_device_attr_remove_groups(adev, attr_list);
return ret;
}
static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev,
struct list_head *attr_list)
{
struct amdgpu_device_attr_entry *entry, *entry_tmp;
if (list_empty(attr_list))
return ;
list_for_each_entry_safe(entry, entry_tmp, attr_list, entry) {
amdgpu_device_attr_remove(adev, entry->attr);
list_del(&entry->entry);
kfree(entry);
}
}
static ssize_t amdgpu_hwmon_show_temp(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int channel = to_sensor_dev_attr(attr)->index;
int r, temp = 0, size = sizeof(temp);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (channel >= PP_TEMP_MAX)
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
switch (channel) {
case PP_TEMP_JUNCTION:
/* get current junction temperature */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_HOTSPOT_TEMP,
(void *)&temp, &size);
break;
case PP_TEMP_EDGE:
/* get current edge temperature */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_EDGE_TEMP,
(void *)&temp, &size);
break;
case PP_TEMP_MEM:
/* get current memory temperature */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_TEMP,
(void *)&temp, &size);
break;
default:
r = -EINVAL;
break;
}
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (r)
return r;
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_temp_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int hyst = to_sensor_dev_attr(attr)->index;
int temp;
if (hyst)
temp = adev->pm.dpm.thermal.min_temp;
else
temp = adev->pm.dpm.thermal.max_temp;
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_hotspot_temp_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int hyst = to_sensor_dev_attr(attr)->index;
int temp;
if (hyst)
temp = adev->pm.dpm.thermal.min_hotspot_temp;
else
temp = adev->pm.dpm.thermal.max_hotspot_crit_temp;
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_mem_temp_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int hyst = to_sensor_dev_attr(attr)->index;
int temp;
if (hyst)
temp = adev->pm.dpm.thermal.min_mem_temp;
else
temp = adev->pm.dpm.thermal.max_mem_crit_temp;
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_temp_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int channel = to_sensor_dev_attr(attr)->index;
if (channel >= PP_TEMP_MAX)
return -EINVAL;
return sysfs_emit(buf, "%s\n", temp_label[channel].label);
}
static ssize_t amdgpu_hwmon_show_temp_emergency(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int channel = to_sensor_dev_attr(attr)->index;
int temp = 0;
if (channel >= PP_TEMP_MAX)
return -EINVAL;
switch (channel) {
case PP_TEMP_JUNCTION:
temp = adev->pm.dpm.thermal.max_hotspot_emergency_temp;
break;
case PP_TEMP_EDGE:
temp = adev->pm.dpm.thermal.max_edge_emergency_temp;
break;
case PP_TEMP_MEM:
temp = adev->pm.dpm.thermal.max_mem_emergency_temp;
break;
}
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_get_pwm1_enable(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 pwm_mode = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return ret;
}
ret = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (ret)
return -EINVAL;
return sysfs_emit(buf, "%u\n", pwm_mode);
}
static ssize_t amdgpu_hwmon_set_pwm1_enable(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err, ret;
int value;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = kstrtoint(buf, 10, &value);
if (err)
return err;
ret = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return ret;
}
ret = amdgpu_dpm_set_fan_control_mode(adev, value);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (ret)
return -EINVAL;
return count;
}
static ssize_t amdgpu_hwmon_get_pwm1_min(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%i\n", 0);
}
static ssize_t amdgpu_hwmon_get_pwm1_max(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%i\n", 255);
}
static ssize_t amdgpu_hwmon_set_pwm1(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 value;
u32 pwm_mode;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = kstrtou32(buf, 10, &value);
if (err)
return err;
err = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (err < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return err;
}
err = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode);
if (err)
goto out;
if (pwm_mode != AMD_FAN_CTRL_MANUAL) {
pr_info("manual fan speed control should be enabled first\n");
err = -EINVAL;
goto out;
}
err = amdgpu_dpm_set_fan_speed_pwm(adev, value);
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return count;
}
static ssize_t amdgpu_hwmon_get_pwm1(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 speed = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (err < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return err;
}
err = amdgpu_dpm_get_fan_speed_pwm(adev, &speed);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return sysfs_emit(buf, "%i\n", speed);
}
static ssize_t amdgpu_hwmon_get_fan1_input(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 speed = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (err < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return err;
}
err = amdgpu_dpm_get_fan_speed_rpm(adev, &speed);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return sysfs_emit(buf, "%i\n", speed);
}
static ssize_t amdgpu_hwmon_get_fan1_min(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 min_rpm = 0;
u32 size = sizeof(min_rpm);
int r;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MIN_FAN_RPM,
(void *)&min_rpm, &size);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (r)
return r;
return sysfs_emit(buf, "%d\n", min_rpm);
}
static ssize_t amdgpu_hwmon_get_fan1_max(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 max_rpm = 0;
u32 size = sizeof(max_rpm);
int r;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MAX_FAN_RPM,
(void *)&max_rpm, &size);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (r)
return r;
return sysfs_emit(buf, "%d\n", max_rpm);
}
static ssize_t amdgpu_hwmon_get_fan1_target(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 rpm = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (err < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return err;
}
err = amdgpu_dpm_get_fan_speed_rpm(adev, &rpm);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return sysfs_emit(buf, "%i\n", rpm);
}
static ssize_t amdgpu_hwmon_set_fan1_target(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 value;
u32 pwm_mode;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = kstrtou32(buf, 10, &value);
if (err)
return err;
err = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (err < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return err;
}
err = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode);
if (err)
goto out;
if (pwm_mode != AMD_FAN_CTRL_MANUAL) {
err = -ENODATA;
goto out;
}
err = amdgpu_dpm_set_fan_speed_rpm(adev, value);
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return count;
}
static ssize_t amdgpu_hwmon_get_fan1_enable(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 pwm_mode = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return ret;
}
ret = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (ret)
return -EINVAL;
return sysfs_emit(buf, "%i\n", pwm_mode == AMD_FAN_CTRL_AUTO ? 0 : 1);
}
static ssize_t amdgpu_hwmon_set_fan1_enable(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
int value;
u32 pwm_mode;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = kstrtoint(buf, 10, &value);
if (err)
return err;
if (value == 0)
pwm_mode = AMD_FAN_CTRL_AUTO;
else if (value == 1)
pwm_mode = AMD_FAN_CTRL_MANUAL;
else
return -EINVAL;
err = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (err < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return err;
}
err = amdgpu_dpm_set_fan_control_mode(adev, pwm_mode);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return -EINVAL;
return count;
}
static ssize_t amdgpu_hwmon_show_vddgfx(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 vddgfx;
int r, size = sizeof(vddgfx);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
/* get the voltage */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX,
(void *)&vddgfx, &size);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (r)
return r;
return sysfs_emit(buf, "%d\n", vddgfx);
}
static ssize_t amdgpu_hwmon_show_vddgfx_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "vddgfx\n");
}
static ssize_t amdgpu_hwmon_show_vddnb(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 vddnb;
int r, size = sizeof(vddnb);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
/* only APUs have vddnb */
if (!(adev->flags & AMD_IS_APU))
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
/* get the voltage */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB,
(void *)&vddnb, &size);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (r)
return r;
return sysfs_emit(buf, "%d\n", vddnb);
}
static ssize_t amdgpu_hwmon_show_vddnb_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "vddnb\n");
}
static ssize_t amdgpu_hwmon_show_power_avg(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 query = 0;
int r, size = sizeof(u32);
unsigned uw;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
/* get the voltage */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_POWER,
(void *)&query, &size);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (r)
return r;
/* convert to microwatts */
uw = (query >> 8) * 1000000 + (query & 0xff) * 1000;
return sysfs_emit(buf, "%u\n", uw);
}
static ssize_t amdgpu_hwmon_show_power_cap_min(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%i\n", 0);
}
static ssize_t amdgpu_hwmon_show_power_cap_generic(struct device *dev,
struct device_attribute *attr,
char *buf,
enum pp_power_limit_level pp_limit_level)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
enum pp_power_type power_type = to_sensor_dev_attr(attr)->index;
uint32_t limit;
ssize_t size;
int r;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_dpm_get_power_limit(adev, &limit,
pp_limit_level, power_type);
if (!r)
size = sysfs_emit(buf, "%u\n", limit * 1000000);
else
size = sysfs_emit(buf, "\n");
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return size;
}
static ssize_t amdgpu_hwmon_show_power_cap_max(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_MAX);
}
static ssize_t amdgpu_hwmon_show_power_cap(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_CURRENT);
}
static ssize_t amdgpu_hwmon_show_power_cap_default(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_DEFAULT);
}
static ssize_t amdgpu_hwmon_show_power_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
uint32_t gc_ver = adev->ip_versions[GC_HWIP][0];
if (gc_ver == IP_VERSION(10, 3, 1))
return sysfs_emit(buf, "%s\n",
to_sensor_dev_attr(attr)->index == PP_PWR_TYPE_FAST ?
"fastPPT" : "slowPPT");
else
return sysfs_emit(buf, "PPT\n");
}
static ssize_t amdgpu_hwmon_set_power_cap(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int limit_type = to_sensor_dev_attr(attr)->index;
int err;
u32 value;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (amdgpu_sriov_vf(adev))
return -EINVAL;
err = kstrtou32(buf, 10, &value);
if (err)
return err;
value = value / 1000000; /* convert to Watt */
value |= limit_type << 24;
err = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (err < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return err;
}
err = amdgpu_dpm_set_power_limit(adev, value);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return count;
}
static ssize_t amdgpu_hwmon_show_sclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
uint32_t sclk;
int r, size = sizeof(sclk);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
/* get the sclk */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK,
(void *)&sclk, &size);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (r)
return r;
return sysfs_emit(buf, "%u\n", sclk * 10 * 1000);
}
static ssize_t amdgpu_hwmon_show_sclk_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "sclk\n");
}
static ssize_t amdgpu_hwmon_show_mclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
uint32_t mclk;
int r, size = sizeof(mclk);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
/* get the sclk */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK,
(void *)&mclk, &size);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (r)
return r;
return sysfs_emit(buf, "%u\n", mclk * 10 * 1000);
}
static ssize_t amdgpu_hwmon_show_mclk_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "mclk\n");
}
/**
* DOC: hwmon
*
* The amdgpu driver exposes the following sensor interfaces:
*
* - GPU temperature (via the on-die sensor)
*
* - GPU voltage
*
* - Northbridge voltage (APUs only)
*
* - GPU power
*
* - GPU fan
*
* - GPU gfx/compute engine clock
*
* - GPU memory clock (dGPU only)
*
* hwmon interfaces for GPU temperature:
*
* - temp[1-3]_input: the on die GPU temperature in millidegrees Celsius
* - temp2_input and temp3_input are supported on SOC15 dGPUs only
*
* - temp[1-3]_label: temperature channel label
* - temp2_label and temp3_label are supported on SOC15 dGPUs only
*
* - temp[1-3]_crit: temperature critical max value in millidegrees Celsius
* - temp2_crit and temp3_crit are supported on SOC15 dGPUs only
*
* - temp[1-3]_crit_hyst: temperature hysteresis for critical limit in millidegrees Celsius
* - temp2_crit_hyst and temp3_crit_hyst are supported on SOC15 dGPUs only
*
* - temp[1-3]_emergency: temperature emergency max value(asic shutdown) in millidegrees Celsius
* - these are supported on SOC15 dGPUs only
*
* hwmon interfaces for GPU voltage:
*
* - in0_input: the voltage on the GPU in millivolts
*
* - in1_input: the voltage on the Northbridge in millivolts
*
* hwmon interfaces for GPU power:
*
* - power1_average: average power used by the GPU in microWatts
*
* - power1_cap_min: minimum cap supported in microWatts
*
* - power1_cap_max: maximum cap supported in microWatts
*
* - power1_cap: selected power cap in microWatts
*
* hwmon interfaces for GPU fan:
*
* - pwm1: pulse width modulation fan level (0-255)
*
* - pwm1_enable: pulse width modulation fan control method (0: no fan speed control, 1: manual fan speed control using pwm interface, 2: automatic fan speed control)
*
* - pwm1_min: pulse width modulation fan control minimum level (0)
*
* - pwm1_max: pulse width modulation fan control maximum level (255)
*
* - fan1_min: a minimum value Unit: revolution/min (RPM)
*
* - fan1_max: a maximum value Unit: revolution/max (RPM)
*
* - fan1_input: fan speed in RPM
*
* - fan[1-\*]_target: Desired fan speed Unit: revolution/min (RPM)
*
* - fan[1-\*]_enable: Enable or disable the sensors.1: Enable 0: Disable
*
* NOTE: DO NOT set the fan speed via "pwm1" and "fan[1-\*]_target" interfaces at the same time.
* That will get the former one overridden.
*
* hwmon interfaces for GPU clocks:
*
* - freq1_input: the gfx/compute clock in hertz
*
* - freq2_input: the memory clock in hertz
*
* You can use hwmon tools like sensors to view this information on your system.
*
*/
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_EDGE);
static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 1);
static SENSOR_DEVICE_ATTR(temp1_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_EDGE);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_JUNCTION);
static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_JUNCTION);
static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_MEM);
static SENSOR_DEVICE_ATTR(temp3_crit, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 0);
static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 1);
static SENSOR_DEVICE_ATTR(temp3_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_MEM);
static SENSOR_DEVICE_ATTR(temp1_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_EDGE);
static SENSOR_DEVICE_ATTR(temp2_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_JUNCTION);
static SENSOR_DEVICE_ATTR(temp3_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_MEM);
static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1, amdgpu_hwmon_set_pwm1, 0);
static SENSOR_DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1_enable, amdgpu_hwmon_set_pwm1_enable, 0);
static SENSOR_DEVICE_ATTR(pwm1_min, S_IRUGO, amdgpu_hwmon_get_pwm1_min, NULL, 0);
static SENSOR_DEVICE_ATTR(pwm1_max, S_IRUGO, amdgpu_hwmon_get_pwm1_max, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, amdgpu_hwmon_get_fan1_input, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_min, S_IRUGO, amdgpu_hwmon_get_fan1_min, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_max, S_IRUGO, amdgpu_hwmon_get_fan1_max, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_target, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_target, amdgpu_hwmon_set_fan1_target, 0);
static SENSOR_DEVICE_ATTR(fan1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_enable, amdgpu_hwmon_set_fan1_enable, 0);
static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, amdgpu_hwmon_show_vddgfx, NULL, 0);
static SENSOR_DEVICE_ATTR(in0_label, S_IRUGO, amdgpu_hwmon_show_vddgfx_label, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, amdgpu_hwmon_show_vddnb, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_label, S_IRUGO, amdgpu_hwmon_show_vddnb_label, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_average, S_IRUGO, amdgpu_hwmon_show_power_avg, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_cap_max, S_IRUGO, amdgpu_hwmon_show_power_cap_max, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_cap_min, S_IRUGO, amdgpu_hwmon_show_power_cap_min, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_cap, S_IRUGO | S_IWUSR, amdgpu_hwmon_show_power_cap, amdgpu_hwmon_set_power_cap, 0);
static SENSOR_DEVICE_ATTR(power1_cap_default, S_IRUGO, amdgpu_hwmon_show_power_cap_default, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_label, S_IRUGO, amdgpu_hwmon_show_power_label, NULL, 0);
static SENSOR_DEVICE_ATTR(power2_average, S_IRUGO, amdgpu_hwmon_show_power_avg, NULL, 1);
static SENSOR_DEVICE_ATTR(power2_cap_max, S_IRUGO, amdgpu_hwmon_show_power_cap_max, NULL, 1);
static SENSOR_DEVICE_ATTR(power2_cap_min, S_IRUGO, amdgpu_hwmon_show_power_cap_min, NULL, 1);
static SENSOR_DEVICE_ATTR(power2_cap, S_IRUGO | S_IWUSR, amdgpu_hwmon_show_power_cap, amdgpu_hwmon_set_power_cap, 1);
static SENSOR_DEVICE_ATTR(power2_cap_default, S_IRUGO, amdgpu_hwmon_show_power_cap_default, NULL, 1);
static SENSOR_DEVICE_ATTR(power2_label, S_IRUGO, amdgpu_hwmon_show_power_label, NULL, 1);
static SENSOR_DEVICE_ATTR(freq1_input, S_IRUGO, amdgpu_hwmon_show_sclk, NULL, 0);
static SENSOR_DEVICE_ATTR(freq1_label, S_IRUGO, amdgpu_hwmon_show_sclk_label, NULL, 0);
static SENSOR_DEVICE_ATTR(freq2_input, S_IRUGO, amdgpu_hwmon_show_mclk, NULL, 0);
static SENSOR_DEVICE_ATTR(freq2_label, S_IRUGO, amdgpu_hwmon_show_mclk_label, NULL, 0);
static struct attribute *hwmon_attributes[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_emergency.dev_attr.attr,
&sensor_dev_attr_temp2_emergency.dev_attr.attr,
&sensor_dev_attr_temp3_emergency.dev_attr.attr,
&sensor_dev_attr_temp1_label.dev_attr.attr,
&sensor_dev_attr_temp2_label.dev_attr.attr,
&sensor_dev_attr_temp3_label.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_min.dev_attr.attr,
&sensor_dev_attr_pwm1_max.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_max.dev_attr.attr,
&sensor_dev_attr_fan1_target.dev_attr.attr,
&sensor_dev_attr_fan1_enable.dev_attr.attr,
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_label.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_label.dev_attr.attr,
&sensor_dev_attr_power1_average.dev_attr.attr,
&sensor_dev_attr_power1_cap_max.dev_attr.attr,
&sensor_dev_attr_power1_cap_min.dev_attr.attr,
&sensor_dev_attr_power1_cap.dev_attr.attr,
&sensor_dev_attr_power1_cap_default.dev_attr.attr,
&sensor_dev_attr_power1_label.dev_attr.attr,
&sensor_dev_attr_power2_average.dev_attr.attr,
&sensor_dev_attr_power2_cap_max.dev_attr.attr,
&sensor_dev_attr_power2_cap_min.dev_attr.attr,
&sensor_dev_attr_power2_cap.dev_attr.attr,
&sensor_dev_attr_power2_cap_default.dev_attr.attr,
&sensor_dev_attr_power2_label.dev_attr.attr,
&sensor_dev_attr_freq1_input.dev_attr.attr,
&sensor_dev_attr_freq1_label.dev_attr.attr,
&sensor_dev_attr_freq2_input.dev_attr.attr,
&sensor_dev_attr_freq2_label.dev_attr.attr,
NULL
};
static umode_t hwmon_attributes_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct amdgpu_device *adev = dev_get_drvdata(dev);
umode_t effective_mode = attr->mode;
uint32_t gc_ver = adev->ip_versions[GC_HWIP][0];
/* under multi-vf mode, the hwmon attributes are all not supported */
if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev))
return 0;
/* under pp one vf mode manage of hwmon attributes is not supported */
if (amdgpu_sriov_is_pp_one_vf(adev))
effective_mode &= ~S_IWUSR;
/* Skip fan attributes if fan is not present */
if (adev->pm.no_fan && (attr == &sensor_dev_attr_pwm1.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_input.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_max.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_target.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_enable.dev_attr.attr))
return 0;
/* Skip fan attributes on APU */
if ((adev->flags & AMD_IS_APU) &&
(attr == &sensor_dev_attr_pwm1.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_input.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_max.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_target.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_enable.dev_attr.attr))
return 0;
/* Skip crit temp on APU */
if ((adev->flags & AMD_IS_APU) && (adev->family >= AMDGPU_FAMILY_CZ) &&
(attr == &sensor_dev_attr_temp1_crit.dev_attr.attr ||
attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr))
return 0;
/* Skip limit attributes if DPM is not enabled */
if (!adev->pm.dpm_enabled &&
(attr == &sensor_dev_attr_temp1_crit.dev_attr.attr ||
attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_input.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_max.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_target.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_enable.dev_attr.attr))
return 0;
/* mask fan attributes if we have no bindings for this asic to expose */
if (((amdgpu_dpm_get_fan_speed_pwm(adev, NULL) == -EOPNOTSUPP) &&
attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't query fan */
((amdgpu_dpm_get_fan_control_mode(adev, NULL) == -EOPNOTSUPP) &&
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't query state */
effective_mode &= ~S_IRUGO;
if (((amdgpu_dpm_set_fan_speed_pwm(adev, U32_MAX) == -EOPNOTSUPP) &&
attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't manage fan */
((amdgpu_dpm_set_fan_control_mode(adev, U32_MAX) == -EOPNOTSUPP) &&
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't manage state */
effective_mode &= ~S_IWUSR;
/* not implemented yet for GC 10.3.1 APUs */
if (((adev->family == AMDGPU_FAMILY_SI) ||
((adev->flags & AMD_IS_APU) && (gc_ver != IP_VERSION(10, 3, 1)))) &&
(attr == &sensor_dev_attr_power1_cap_max.dev_attr.attr ||
attr == &sensor_dev_attr_power1_cap_min.dev_attr.attr ||
attr == &sensor_dev_attr_power1_cap.dev_attr.attr ||
attr == &sensor_dev_attr_power1_cap_default.dev_attr.attr))
return 0;
/* not implemented yet for APUs having <= GC 9.3.0 */
if (((adev->family == AMDGPU_FAMILY_SI) ||
((adev->flags & AMD_IS_APU) && (gc_ver < IP_VERSION(9, 3, 0)))) &&
(attr == &sensor_dev_attr_power1_average.dev_attr.attr))
return 0;
/* hide max/min values if we can't both query and manage the fan */
if (((amdgpu_dpm_set_fan_speed_pwm(adev, U32_MAX) == -EOPNOTSUPP) &&
(amdgpu_dpm_get_fan_speed_pwm(adev, NULL) == -EOPNOTSUPP) &&
(amdgpu_dpm_set_fan_speed_rpm(adev, U32_MAX) == -EOPNOTSUPP) &&
(amdgpu_dpm_get_fan_speed_rpm(adev, NULL) == -EOPNOTSUPP)) &&
(attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr))
return 0;
if ((amdgpu_dpm_set_fan_speed_rpm(adev, U32_MAX) == -EOPNOTSUPP) &&
(amdgpu_dpm_get_fan_speed_rpm(adev, NULL) == -EOPNOTSUPP) &&
(attr == &sensor_dev_attr_fan1_max.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_min.dev_attr.attr))
return 0;
if ((adev->family == AMDGPU_FAMILY_SI || /* not implemented yet */
adev->family == AMDGPU_FAMILY_KV) && /* not implemented yet */
(attr == &sensor_dev_attr_in0_input.dev_attr.attr ||
attr == &sensor_dev_attr_in0_label.dev_attr.attr))
return 0;
/* only APUs have vddnb */
if (!(adev->flags & AMD_IS_APU) &&
(attr == &sensor_dev_attr_in1_input.dev_attr.attr ||
attr == &sensor_dev_attr_in1_label.dev_attr.attr))
return 0;
/* no mclk on APUs */
if ((adev->flags & AMD_IS_APU) &&
(attr == &sensor_dev_attr_freq2_input.dev_attr.attr ||
attr == &sensor_dev_attr_freq2_label.dev_attr.attr))
return 0;
/* only SOC15 dGPUs support hotspot and mem temperatures */
if (((adev->flags & AMD_IS_APU) || gc_ver < IP_VERSION(9, 0, 0)) &&
(attr == &sensor_dev_attr_temp2_crit.dev_attr.attr ||
attr == &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_crit.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr ||
attr == &sensor_dev_attr_temp1_emergency.dev_attr.attr ||
attr == &sensor_dev_attr_temp2_emergency.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_emergency.dev_attr.attr ||
attr == &sensor_dev_attr_temp2_input.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_input.dev_attr.attr ||
attr == &sensor_dev_attr_temp2_label.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_label.dev_attr.attr))
return 0;
/* only Vangogh has fast PPT limit and power labels */
if (!(gc_ver == IP_VERSION(10, 3, 1)) &&
(attr == &sensor_dev_attr_power2_average.dev_attr.attr ||
attr == &sensor_dev_attr_power2_cap_max.dev_attr.attr ||
attr == &sensor_dev_attr_power2_cap_min.dev_attr.attr ||
attr == &sensor_dev_attr_power2_cap.dev_attr.attr ||
attr == &sensor_dev_attr_power2_cap_default.dev_attr.attr ||
attr == &sensor_dev_attr_power2_label.dev_attr.attr))
return 0;
return effective_mode;
}
static const struct attribute_group hwmon_attrgroup = {
.attrs = hwmon_attributes,
.is_visible = hwmon_attributes_visible,
};
static const struct attribute_group *hwmon_groups[] = {
&hwmon_attrgroup,
NULL
};
int amdgpu_pm_sysfs_init(struct amdgpu_device *adev)
{
int ret;
uint32_t mask = 0;
if (adev->pm.sysfs_initialized)
return 0;
INIT_LIST_HEAD(&adev->pm.pm_attr_list);
if (adev->pm.dpm_enabled == 0)
return 0;
adev->pm.int_hwmon_dev = hwmon_device_register_with_groups(adev->dev,
DRIVER_NAME, adev,
hwmon_groups);
if (IS_ERR(adev->pm.int_hwmon_dev)) {
ret = PTR_ERR(adev->pm.int_hwmon_dev);
dev_err(adev->dev,
"Unable to register hwmon device: %d\n", ret);
return ret;
}
switch (amdgpu_virt_get_sriov_vf_mode(adev)) {
case SRIOV_VF_MODE_ONE_VF:
mask = ATTR_FLAG_ONEVF;
break;
case SRIOV_VF_MODE_MULTI_VF:
mask = 0;
break;
case SRIOV_VF_MODE_BARE_METAL:
default:
mask = ATTR_FLAG_MASK_ALL;
break;
}
ret = amdgpu_device_attr_create_groups(adev,
amdgpu_device_attrs,
ARRAY_SIZE(amdgpu_device_attrs),
mask,
&adev->pm.pm_attr_list);
if (ret)
return ret;
adev->pm.sysfs_initialized = true;
return 0;
}
void amdgpu_pm_sysfs_fini(struct amdgpu_device *adev)
{
if (adev->pm.int_hwmon_dev)
hwmon_device_unregister(adev->pm.int_hwmon_dev);
amdgpu_device_attr_remove_groups(adev, &adev->pm.pm_attr_list);
}
/*
* Debugfs info
*/
#if defined(CONFIG_DEBUG_FS)
static void amdgpu_debugfs_prints_cpu_info(struct seq_file *m,
struct amdgpu_device *adev) {
uint16_t *p_val;
uint32_t size;
int i;
uint32_t num_cpu_cores = amdgpu_dpm_get_num_cpu_cores(adev);
if (amdgpu_dpm_is_cclk_dpm_supported(adev)) {
p_val = kcalloc(num_cpu_cores, sizeof(uint16_t),
GFP_KERNEL);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_CPU_CLK,
(void *)p_val, &size)) {
for (i = 0; i < num_cpu_cores; i++)
seq_printf(m, "\t%u MHz (CPU%d)\n",
*(p_val + i), i);
}
kfree(p_val);
}
}
static int amdgpu_debugfs_pm_info_pp(struct seq_file *m, struct amdgpu_device *adev)
{
uint32_t mp1_ver = adev->ip_versions[MP1_HWIP][0];
uint32_t gc_ver = adev->ip_versions[GC_HWIP][0];
uint32_t value;
uint64_t value64 = 0;
uint32_t query = 0;
int size;
/* GPU Clocks */
size = sizeof(value);
seq_printf(m, "GFX Clocks and Power:\n");
amdgpu_debugfs_prints_cpu_info(m, adev);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (MCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (SCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (PSTATE_SCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (PSTATE_MCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&value, &size))
seq_printf(m, "\t%u mV (VDDGFX)\n", value);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&value, &size))
seq_printf(m, "\t%u mV (VDDNB)\n", value);
size = sizeof(uint32_t);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_POWER, (void *)&query, &size))
seq_printf(m, "\t%u.%u W (average GPU)\n", query >> 8, query & 0xff);
size = sizeof(value);
seq_printf(m, "\n");
/* GPU Temp */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_TEMP, (void *)&value, &size))
seq_printf(m, "GPU Temperature: %u C\n", value/1000);
/* GPU Load */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD, (void *)&value, &size))
seq_printf(m, "GPU Load: %u %%\n", value);
/* MEM Load */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_LOAD, (void *)&value, &size))
seq_printf(m, "MEM Load: %u %%\n", value);
seq_printf(m, "\n");
/* SMC feature mask */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK, (void *)&value64, &size))
seq_printf(m, "SMC Feature Mask: 0x%016llx\n", value64);
/* ASICs greater than CHIP_VEGA20 supports these sensors */
if (gc_ver != IP_VERSION(9, 4, 0) && mp1_ver > IP_VERSION(9, 0, 0)) {
/* VCN clocks */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCN_POWER_STATE, (void *)&value, &size)) {
if (!value) {
seq_printf(m, "VCN: Disabled\n");
} else {
seq_printf(m, "VCN: Enabled\n");
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (DCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (VCLK)\n", value/100);
}
}
seq_printf(m, "\n");
} else {
/* UVD clocks */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_POWER, (void *)&value, &size)) {
if (!value) {
seq_printf(m, "UVD: Disabled\n");
} else {
seq_printf(m, "UVD: Enabled\n");
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (DCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (VCLK)\n", value/100);
}
}
seq_printf(m, "\n");
/* VCE clocks */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_POWER, (void *)&value, &size)) {
if (!value) {
seq_printf(m, "VCE: Disabled\n");
} else {
seq_printf(m, "VCE: Enabled\n");
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_ECCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (ECCLK)\n", value/100);
}
}
}
return 0;
}
static void amdgpu_parse_cg_state(struct seq_file *m, u64 flags)
{
int i;
for (i = 0; clocks[i].flag; i++)
seq_printf(m, "\t%s: %s\n", clocks[i].name,
(flags & clocks[i].flag) ? "On" : "Off");
}
static int amdgpu_debugfs_pm_info_show(struct seq_file *m, void *unused)
{
struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
struct drm_device *dev = adev_to_drm(adev);
u64 flags = 0;
int r;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(dev->dev);
if (r < 0) {
pm_runtime_put_autosuspend(dev->dev);
return r;
}
if (amdgpu_dpm_debugfs_print_current_performance_level(adev, m)) {
r = amdgpu_debugfs_pm_info_pp(m, adev);
if (r)
goto out;
}
amdgpu_device_ip_get_clockgating_state(adev, &flags);
seq_printf(m, "Clock Gating Flags Mask: 0x%llx\n", flags);
amdgpu_parse_cg_state(m, flags);
seq_printf(m, "\n");
out:
pm_runtime_mark_last_busy(dev->dev);
pm_runtime_put_autosuspend(dev->dev);
return r;
}
DEFINE_SHOW_ATTRIBUTE(amdgpu_debugfs_pm_info);
/*
* amdgpu_pm_priv_buffer_read - Read memory region allocated to FW
*
* Reads debug memory region allocated to PMFW
*/
static ssize_t amdgpu_pm_prv_buffer_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
size_t smu_prv_buf_size;
void *smu_prv_buf;
int ret = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = amdgpu_dpm_get_smu_prv_buf_details(adev, &smu_prv_buf, &smu_prv_buf_size);
if (ret)
return ret;
if (!smu_prv_buf || !smu_prv_buf_size)
return -EINVAL;
return simple_read_from_buffer(buf, size, pos, smu_prv_buf,
smu_prv_buf_size);
}
static const struct file_operations amdgpu_debugfs_pm_prv_buffer_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = amdgpu_pm_prv_buffer_read,
.llseek = default_llseek,
};
#endif
void amdgpu_debugfs_pm_init(struct amdgpu_device *adev)
{
#if defined(CONFIG_DEBUG_FS)
struct drm_minor *minor = adev_to_drm(adev)->primary;
struct dentry *root = minor->debugfs_root;
if (!adev->pm.dpm_enabled)
return;
debugfs_create_file("amdgpu_pm_info", 0444, root, adev,
&amdgpu_debugfs_pm_info_fops);
if (adev->pm.smu_prv_buffer_size > 0)
debugfs_create_file_size("amdgpu_pm_prv_buffer", 0444, root,
adev,
&amdgpu_debugfs_pm_prv_buffer_fops,
adev->pm.smu_prv_buffer_size);
amdgpu_dpm_stb_debug_fs_init(adev);
#endif
}