1191 lines
29 KiB
C
1191 lines
29 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
/*
|
||
|
* Freescale i.MX23/i.MX28 Data Co-Processor driver
|
||
|
*
|
||
|
* Copyright (C) 2013 Marek Vasut <marex@denx.de>
|
||
|
*/
|
||
|
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/kthread.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/stmp_device.h>
|
||
|
#include <linux/clk.h>
|
||
|
|
||
|
#include <crypto/aes.h>
|
||
|
#include <crypto/sha1.h>
|
||
|
#include <crypto/sha2.h>
|
||
|
#include <crypto/internal/hash.h>
|
||
|
#include <crypto/internal/skcipher.h>
|
||
|
#include <crypto/scatterwalk.h>
|
||
|
|
||
|
#define DCP_MAX_CHANS 4
|
||
|
#define DCP_BUF_SZ PAGE_SIZE
|
||
|
#define DCP_SHA_PAY_SZ 64
|
||
|
|
||
|
#define DCP_ALIGNMENT 64
|
||
|
|
||
|
/*
|
||
|
* Null hashes to align with hw behavior on imx6sl and ull
|
||
|
* these are flipped for consistency with hw output
|
||
|
*/
|
||
|
static const uint8_t sha1_null_hash[] =
|
||
|
"\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
|
||
|
"\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
|
||
|
|
||
|
static const uint8_t sha256_null_hash[] =
|
||
|
"\x55\xb8\x52\x78\x1b\x99\x95\xa4"
|
||
|
"\x4c\x93\x9b\x64\xe4\x41\xae\x27"
|
||
|
"\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
|
||
|
"\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
|
||
|
|
||
|
/* DCP DMA descriptor. */
|
||
|
struct dcp_dma_desc {
|
||
|
uint32_t next_cmd_addr;
|
||
|
uint32_t control0;
|
||
|
uint32_t control1;
|
||
|
uint32_t source;
|
||
|
uint32_t destination;
|
||
|
uint32_t size;
|
||
|
uint32_t payload;
|
||
|
uint32_t status;
|
||
|
};
|
||
|
|
||
|
/* Coherent aligned block for bounce buffering. */
|
||
|
struct dcp_coherent_block {
|
||
|
uint8_t aes_in_buf[DCP_BUF_SZ];
|
||
|
uint8_t aes_out_buf[DCP_BUF_SZ];
|
||
|
uint8_t sha_in_buf[DCP_BUF_SZ];
|
||
|
uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
|
||
|
|
||
|
uint8_t aes_key[2 * AES_KEYSIZE_128];
|
||
|
|
||
|
struct dcp_dma_desc desc[DCP_MAX_CHANS];
|
||
|
};
|
||
|
|
||
|
struct dcp {
|
||
|
struct device *dev;
|
||
|
void __iomem *base;
|
||
|
|
||
|
uint32_t caps;
|
||
|
|
||
|
struct dcp_coherent_block *coh;
|
||
|
|
||
|
struct completion completion[DCP_MAX_CHANS];
|
||
|
spinlock_t lock[DCP_MAX_CHANS];
|
||
|
struct task_struct *thread[DCP_MAX_CHANS];
|
||
|
struct crypto_queue queue[DCP_MAX_CHANS];
|
||
|
struct clk *dcp_clk;
|
||
|
};
|
||
|
|
||
|
enum dcp_chan {
|
||
|
DCP_CHAN_HASH_SHA = 0,
|
||
|
DCP_CHAN_CRYPTO = 2,
|
||
|
};
|
||
|
|
||
|
struct dcp_async_ctx {
|
||
|
/* Common context */
|
||
|
enum dcp_chan chan;
|
||
|
uint32_t fill;
|
||
|
|
||
|
/* SHA Hash-specific context */
|
||
|
struct mutex mutex;
|
||
|
uint32_t alg;
|
||
|
unsigned int hot:1;
|
||
|
|
||
|
/* Crypto-specific context */
|
||
|
struct crypto_skcipher *fallback;
|
||
|
unsigned int key_len;
|
||
|
uint8_t key[AES_KEYSIZE_128];
|
||
|
};
|
||
|
|
||
|
struct dcp_aes_req_ctx {
|
||
|
unsigned int enc:1;
|
||
|
unsigned int ecb:1;
|
||
|
struct skcipher_request fallback_req; // keep at the end
|
||
|
};
|
||
|
|
||
|
struct dcp_sha_req_ctx {
|
||
|
unsigned int init:1;
|
||
|
unsigned int fini:1;
|
||
|
};
|
||
|
|
||
|
struct dcp_export_state {
|
||
|
struct dcp_sha_req_ctx req_ctx;
|
||
|
struct dcp_async_ctx async_ctx;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* There can even be only one instance of the MXS DCP due to the
|
||
|
* design of Linux Crypto API.
|
||
|
*/
|
||
|
static struct dcp *global_sdcp;
|
||
|
|
||
|
/* DCP register layout. */
|
||
|
#define MXS_DCP_CTRL 0x00
|
||
|
#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
|
||
|
#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
|
||
|
|
||
|
#define MXS_DCP_STAT 0x10
|
||
|
#define MXS_DCP_STAT_CLR 0x18
|
||
|
#define MXS_DCP_STAT_IRQ_MASK 0xf
|
||
|
|
||
|
#define MXS_DCP_CHANNELCTRL 0x20
|
||
|
#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
|
||
|
|
||
|
#define MXS_DCP_CAPABILITY1 0x40
|
||
|
#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
|
||
|
#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
|
||
|
#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
|
||
|
|
||
|
#define MXS_DCP_CONTEXT 0x50
|
||
|
|
||
|
#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
|
||
|
|
||
|
#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
|
||
|
|
||
|
#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
|
||
|
#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
|
||
|
|
||
|
/* DMA descriptor bits. */
|
||
|
#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
|
||
|
#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
|
||
|
#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
|
||
|
#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
|
||
|
#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
|
||
|
#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
|
||
|
#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
|
||
|
#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
|
||
|
#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
|
||
|
|
||
|
#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
|
||
|
#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
|
||
|
#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
|
||
|
#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
|
||
|
#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
|
||
|
|
||
|
static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
|
||
|
{
|
||
|
int dma_err;
|
||
|
struct dcp *sdcp = global_sdcp;
|
||
|
const int chan = actx->chan;
|
||
|
uint32_t stat;
|
||
|
unsigned long ret;
|
||
|
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
|
||
|
dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
|
||
|
DMA_TO_DEVICE);
|
||
|
|
||
|
dma_err = dma_mapping_error(sdcp->dev, desc_phys);
|
||
|
if (dma_err)
|
||
|
return dma_err;
|
||
|
|
||
|
reinit_completion(&sdcp->completion[chan]);
|
||
|
|
||
|
/* Clear status register. */
|
||
|
writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
|
||
|
|
||
|
/* Load the DMA descriptor. */
|
||
|
writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
|
||
|
|
||
|
/* Increment the semaphore to start the DMA transfer. */
|
||
|
writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
|
||
|
|
||
|
ret = wait_for_completion_timeout(&sdcp->completion[chan],
|
||
|
msecs_to_jiffies(1000));
|
||
|
if (!ret) {
|
||
|
dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
|
||
|
chan, readl(sdcp->base + MXS_DCP_STAT));
|
||
|
return -ETIMEDOUT;
|
||
|
}
|
||
|
|
||
|
stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
|
||
|
if (stat & 0xff) {
|
||
|
dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
|
||
|
chan, stat);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Encryption (AES128)
|
||
|
*/
|
||
|
static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
|
||
|
struct skcipher_request *req, int init)
|
||
|
{
|
||
|
dma_addr_t key_phys, src_phys, dst_phys;
|
||
|
struct dcp *sdcp = global_sdcp;
|
||
|
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
|
||
|
struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
|
||
|
int ret;
|
||
|
|
||
|
key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
|
||
|
2 * AES_KEYSIZE_128, DMA_TO_DEVICE);
|
||
|
ret = dma_mapping_error(sdcp->dev, key_phys);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
|
||
|
DCP_BUF_SZ, DMA_TO_DEVICE);
|
||
|
ret = dma_mapping_error(sdcp->dev, src_phys);
|
||
|
if (ret)
|
||
|
goto err_src;
|
||
|
|
||
|
dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
|
||
|
DCP_BUF_SZ, DMA_FROM_DEVICE);
|
||
|
ret = dma_mapping_error(sdcp->dev, dst_phys);
|
||
|
if (ret)
|
||
|
goto err_dst;
|
||
|
|
||
|
if (actx->fill % AES_BLOCK_SIZE) {
|
||
|
dev_err(sdcp->dev, "Invalid block size!\n");
|
||
|
ret = -EINVAL;
|
||
|
goto aes_done_run;
|
||
|
}
|
||
|
|
||
|
/* Fill in the DMA descriptor. */
|
||
|
desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
|
||
|
MXS_DCP_CONTROL0_INTERRUPT |
|
||
|
MXS_DCP_CONTROL0_ENABLE_CIPHER;
|
||
|
|
||
|
/* Payload contains the key. */
|
||
|
desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
|
||
|
|
||
|
if (rctx->enc)
|
||
|
desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
|
||
|
if (init)
|
||
|
desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
|
||
|
|
||
|
desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
|
||
|
|
||
|
if (rctx->ecb)
|
||
|
desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
|
||
|
else
|
||
|
desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
|
||
|
|
||
|
desc->next_cmd_addr = 0;
|
||
|
desc->source = src_phys;
|
||
|
desc->destination = dst_phys;
|
||
|
desc->size = actx->fill;
|
||
|
desc->payload = key_phys;
|
||
|
desc->status = 0;
|
||
|
|
||
|
ret = mxs_dcp_start_dma(actx);
|
||
|
|
||
|
aes_done_run:
|
||
|
dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
|
||
|
err_dst:
|
||
|
dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
|
||
|
err_src:
|
||
|
dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
|
||
|
DMA_TO_DEVICE);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
|
||
|
{
|
||
|
struct dcp *sdcp = global_sdcp;
|
||
|
|
||
|
struct skcipher_request *req = skcipher_request_cast(arq);
|
||
|
struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
|
||
|
struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
|
||
|
|
||
|
struct scatterlist *dst = req->dst;
|
||
|
struct scatterlist *src = req->src;
|
||
|
int dst_nents = sg_nents(dst);
|
||
|
|
||
|
const int out_off = DCP_BUF_SZ;
|
||
|
uint8_t *in_buf = sdcp->coh->aes_in_buf;
|
||
|
uint8_t *out_buf = sdcp->coh->aes_out_buf;
|
||
|
|
||
|
uint32_t dst_off = 0;
|
||
|
uint8_t *src_buf = NULL;
|
||
|
uint32_t last_out_len = 0;
|
||
|
|
||
|
uint8_t *key = sdcp->coh->aes_key;
|
||
|
|
||
|
int ret = 0;
|
||
|
unsigned int i, len, clen, tlen = 0;
|
||
|
int init = 0;
|
||
|
bool limit_hit = false;
|
||
|
|
||
|
actx->fill = 0;
|
||
|
|
||
|
/* Copy the key from the temporary location. */
|
||
|
memcpy(key, actx->key, actx->key_len);
|
||
|
|
||
|
if (!rctx->ecb) {
|
||
|
/* Copy the CBC IV just past the key. */
|
||
|
memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
|
||
|
/* CBC needs the INIT set. */
|
||
|
init = 1;
|
||
|
} else {
|
||
|
memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
|
||
|
}
|
||
|
|
||
|
for_each_sg(req->src, src, sg_nents(req->src), i) {
|
||
|
src_buf = sg_virt(src);
|
||
|
len = sg_dma_len(src);
|
||
|
tlen += len;
|
||
|
limit_hit = tlen > req->cryptlen;
|
||
|
|
||
|
if (limit_hit)
|
||
|
len = req->cryptlen - (tlen - len);
|
||
|
|
||
|
do {
|
||
|
if (actx->fill + len > out_off)
|
||
|
clen = out_off - actx->fill;
|
||
|
else
|
||
|
clen = len;
|
||
|
|
||
|
memcpy(in_buf + actx->fill, src_buf, clen);
|
||
|
len -= clen;
|
||
|
src_buf += clen;
|
||
|
actx->fill += clen;
|
||
|
|
||
|
/*
|
||
|
* If we filled the buffer or this is the last SG,
|
||
|
* submit the buffer.
|
||
|
*/
|
||
|
if (actx->fill == out_off || sg_is_last(src) ||
|
||
|
limit_hit) {
|
||
|
ret = mxs_dcp_run_aes(actx, req, init);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
init = 0;
|
||
|
|
||
|
sg_pcopy_from_buffer(dst, dst_nents, out_buf,
|
||
|
actx->fill, dst_off);
|
||
|
dst_off += actx->fill;
|
||
|
last_out_len = actx->fill;
|
||
|
actx->fill = 0;
|
||
|
}
|
||
|
} while (len);
|
||
|
|
||
|
if (limit_hit)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Copy the IV for CBC for chaining */
|
||
|
if (!rctx->ecb) {
|
||
|
if (rctx->enc)
|
||
|
memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
|
||
|
AES_BLOCK_SIZE);
|
||
|
else
|
||
|
memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
|
||
|
AES_BLOCK_SIZE);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int dcp_chan_thread_aes(void *data)
|
||
|
{
|
||
|
struct dcp *sdcp = global_sdcp;
|
||
|
const int chan = DCP_CHAN_CRYPTO;
|
||
|
|
||
|
struct crypto_async_request *backlog;
|
||
|
struct crypto_async_request *arq;
|
||
|
|
||
|
int ret;
|
||
|
|
||
|
while (!kthread_should_stop()) {
|
||
|
set_current_state(TASK_INTERRUPTIBLE);
|
||
|
|
||
|
spin_lock(&sdcp->lock[chan]);
|
||
|
backlog = crypto_get_backlog(&sdcp->queue[chan]);
|
||
|
arq = crypto_dequeue_request(&sdcp->queue[chan]);
|
||
|
spin_unlock(&sdcp->lock[chan]);
|
||
|
|
||
|
if (!backlog && !arq) {
|
||
|
schedule();
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
set_current_state(TASK_RUNNING);
|
||
|
|
||
|
if (backlog)
|
||
|
backlog->complete(backlog, -EINPROGRESS);
|
||
|
|
||
|
if (arq) {
|
||
|
ret = mxs_dcp_aes_block_crypt(arq);
|
||
|
arq->complete(arq, ret);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
|
||
|
{
|
||
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
||
|
struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
|
||
|
struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
|
||
|
int ret;
|
||
|
|
||
|
skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
|
||
|
skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
|
||
|
req->base.complete, req->base.data);
|
||
|
skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
|
||
|
req->cryptlen, req->iv);
|
||
|
|
||
|
if (enc)
|
||
|
ret = crypto_skcipher_encrypt(&rctx->fallback_req);
|
||
|
else
|
||
|
ret = crypto_skcipher_decrypt(&rctx->fallback_req);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
|
||
|
{
|
||
|
struct dcp *sdcp = global_sdcp;
|
||
|
struct crypto_async_request *arq = &req->base;
|
||
|
struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
|
||
|
struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
|
||
|
int ret;
|
||
|
|
||
|
if (unlikely(actx->key_len != AES_KEYSIZE_128))
|
||
|
return mxs_dcp_block_fallback(req, enc);
|
||
|
|
||
|
rctx->enc = enc;
|
||
|
rctx->ecb = ecb;
|
||
|
actx->chan = DCP_CHAN_CRYPTO;
|
||
|
|
||
|
spin_lock(&sdcp->lock[actx->chan]);
|
||
|
ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
|
||
|
spin_unlock(&sdcp->lock[actx->chan]);
|
||
|
|
||
|
wake_up_process(sdcp->thread[actx->chan]);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
|
||
|
{
|
||
|
return mxs_dcp_aes_enqueue(req, 0, 1);
|
||
|
}
|
||
|
|
||
|
static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
|
||
|
{
|
||
|
return mxs_dcp_aes_enqueue(req, 1, 1);
|
||
|
}
|
||
|
|
||
|
static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
|
||
|
{
|
||
|
return mxs_dcp_aes_enqueue(req, 0, 0);
|
||
|
}
|
||
|
|
||
|
static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
|
||
|
{
|
||
|
return mxs_dcp_aes_enqueue(req, 1, 0);
|
||
|
}
|
||
|
|
||
|
static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
||
|
unsigned int len)
|
||
|
{
|
||
|
struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
|
||
|
|
||
|
/*
|
||
|
* AES 128 is supposed by the hardware, store key into temporary
|
||
|
* buffer and exit. We must use the temporary buffer here, since
|
||
|
* there can still be an operation in progress.
|
||
|
*/
|
||
|
actx->key_len = len;
|
||
|
if (len == AES_KEYSIZE_128) {
|
||
|
memcpy(actx->key, key, len);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the requested AES key size is not supported by the hardware,
|
||
|
* but is supported by in-kernel software implementation, we use
|
||
|
* software fallback.
|
||
|
*/
|
||
|
crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
|
||
|
crypto_skcipher_set_flags(actx->fallback,
|
||
|
tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
|
||
|
return crypto_skcipher_setkey(actx->fallback, key, len);
|
||
|
}
|
||
|
|
||
|
static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
|
||
|
{
|
||
|
const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
|
||
|
struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
|
||
|
struct crypto_skcipher *blk;
|
||
|
|
||
|
blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
|
||
|
if (IS_ERR(blk))
|
||
|
return PTR_ERR(blk);
|
||
|
|
||
|
actx->fallback = blk;
|
||
|
crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
|
||
|
crypto_skcipher_reqsize(blk));
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
|
||
|
{
|
||
|
struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
|
||
|
|
||
|
crypto_free_skcipher(actx->fallback);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Hashing (SHA1/SHA256)
|
||
|
*/
|
||
|
static int mxs_dcp_run_sha(struct ahash_request *req)
|
||
|
{
|
||
|
struct dcp *sdcp = global_sdcp;
|
||
|
int ret;
|
||
|
|
||
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||
|
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
|
||
|
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
|
||
|
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
|
||
|
|
||
|
dma_addr_t digest_phys = 0;
|
||
|
dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
|
||
|
DCP_BUF_SZ, DMA_TO_DEVICE);
|
||
|
|
||
|
ret = dma_mapping_error(sdcp->dev, buf_phys);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/* Fill in the DMA descriptor. */
|
||
|
desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
|
||
|
MXS_DCP_CONTROL0_INTERRUPT |
|
||
|
MXS_DCP_CONTROL0_ENABLE_HASH;
|
||
|
if (rctx->init)
|
||
|
desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
|
||
|
|
||
|
desc->control1 = actx->alg;
|
||
|
desc->next_cmd_addr = 0;
|
||
|
desc->source = buf_phys;
|
||
|
desc->destination = 0;
|
||
|
desc->size = actx->fill;
|
||
|
desc->payload = 0;
|
||
|
desc->status = 0;
|
||
|
|
||
|
/*
|
||
|
* Align driver with hw behavior when generating null hashes
|
||
|
*/
|
||
|
if (rctx->init && rctx->fini && desc->size == 0) {
|
||
|
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
|
||
|
const uint8_t *sha_buf =
|
||
|
(actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
|
||
|
sha1_null_hash : sha256_null_hash;
|
||
|
memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
|
||
|
ret = 0;
|
||
|
goto done_run;
|
||
|
}
|
||
|
|
||
|
/* Set HASH_TERM bit for last transfer block. */
|
||
|
if (rctx->fini) {
|
||
|
digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
|
||
|
DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
|
||
|
ret = dma_mapping_error(sdcp->dev, digest_phys);
|
||
|
if (ret)
|
||
|
goto done_run;
|
||
|
|
||
|
desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
|
||
|
desc->payload = digest_phys;
|
||
|
}
|
||
|
|
||
|
ret = mxs_dcp_start_dma(actx);
|
||
|
|
||
|
if (rctx->fini)
|
||
|
dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
|
||
|
DMA_FROM_DEVICE);
|
||
|
|
||
|
done_run:
|
||
|
dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
|
||
|
{
|
||
|
struct dcp *sdcp = global_sdcp;
|
||
|
|
||
|
struct ahash_request *req = ahash_request_cast(arq);
|
||
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||
|
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
|
||
|
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
|
||
|
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
|
||
|
|
||
|
uint8_t *in_buf = sdcp->coh->sha_in_buf;
|
||
|
uint8_t *out_buf = sdcp->coh->sha_out_buf;
|
||
|
|
||
|
struct scatterlist *src;
|
||
|
|
||
|
unsigned int i, len, clen, oft = 0;
|
||
|
int ret;
|
||
|
|
||
|
int fin = rctx->fini;
|
||
|
if (fin)
|
||
|
rctx->fini = 0;
|
||
|
|
||
|
src = req->src;
|
||
|
len = req->nbytes;
|
||
|
|
||
|
while (len) {
|
||
|
if (actx->fill + len > DCP_BUF_SZ)
|
||
|
clen = DCP_BUF_SZ - actx->fill;
|
||
|
else
|
||
|
clen = len;
|
||
|
|
||
|
scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
|
||
|
0);
|
||
|
|
||
|
len -= clen;
|
||
|
oft += clen;
|
||
|
actx->fill += clen;
|
||
|
|
||
|
/*
|
||
|
* If we filled the buffer and still have some
|
||
|
* more data, submit the buffer.
|
||
|
*/
|
||
|
if (len && actx->fill == DCP_BUF_SZ) {
|
||
|
ret = mxs_dcp_run_sha(req);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
actx->fill = 0;
|
||
|
rctx->init = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (fin) {
|
||
|
rctx->fini = 1;
|
||
|
|
||
|
/* Submit whatever is left. */
|
||
|
if (!req->result)
|
||
|
return -EINVAL;
|
||
|
|
||
|
ret = mxs_dcp_run_sha(req);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
actx->fill = 0;
|
||
|
|
||
|
/* For some reason the result is flipped */
|
||
|
for (i = 0; i < halg->digestsize; i++)
|
||
|
req->result[i] = out_buf[halg->digestsize - i - 1];
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dcp_chan_thread_sha(void *data)
|
||
|
{
|
||
|
struct dcp *sdcp = global_sdcp;
|
||
|
const int chan = DCP_CHAN_HASH_SHA;
|
||
|
|
||
|
struct crypto_async_request *backlog;
|
||
|
struct crypto_async_request *arq;
|
||
|
int ret;
|
||
|
|
||
|
while (!kthread_should_stop()) {
|
||
|
set_current_state(TASK_INTERRUPTIBLE);
|
||
|
|
||
|
spin_lock(&sdcp->lock[chan]);
|
||
|
backlog = crypto_get_backlog(&sdcp->queue[chan]);
|
||
|
arq = crypto_dequeue_request(&sdcp->queue[chan]);
|
||
|
spin_unlock(&sdcp->lock[chan]);
|
||
|
|
||
|
if (!backlog && !arq) {
|
||
|
schedule();
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
set_current_state(TASK_RUNNING);
|
||
|
|
||
|
if (backlog)
|
||
|
backlog->complete(backlog, -EINPROGRESS);
|
||
|
|
||
|
if (arq) {
|
||
|
ret = dcp_sha_req_to_buf(arq);
|
||
|
arq->complete(arq, ret);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dcp_sha_init(struct ahash_request *req)
|
||
|
{
|
||
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||
|
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
|
||
|
|
||
|
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
|
||
|
|
||
|
/*
|
||
|
* Start hashing session. The code below only inits the
|
||
|
* hashing session context, nothing more.
|
||
|
*/
|
||
|
memset(actx, 0, sizeof(*actx));
|
||
|
|
||
|
if (strcmp(halg->base.cra_name, "sha1") == 0)
|
||
|
actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
|
||
|
else
|
||
|
actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
|
||
|
|
||
|
actx->fill = 0;
|
||
|
actx->hot = 0;
|
||
|
actx->chan = DCP_CHAN_HASH_SHA;
|
||
|
|
||
|
mutex_init(&actx->mutex);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dcp_sha_update_fx(struct ahash_request *req, int fini)
|
||
|
{
|
||
|
struct dcp *sdcp = global_sdcp;
|
||
|
|
||
|
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
|
||
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||
|
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
|
||
|
|
||
|
int ret;
|
||
|
|
||
|
/*
|
||
|
* Ignore requests that have no data in them and are not
|
||
|
* the trailing requests in the stream of requests.
|
||
|
*/
|
||
|
if (!req->nbytes && !fini)
|
||
|
return 0;
|
||
|
|
||
|
mutex_lock(&actx->mutex);
|
||
|
|
||
|
rctx->fini = fini;
|
||
|
|
||
|
if (!actx->hot) {
|
||
|
actx->hot = 1;
|
||
|
rctx->init = 1;
|
||
|
}
|
||
|
|
||
|
spin_lock(&sdcp->lock[actx->chan]);
|
||
|
ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
|
||
|
spin_unlock(&sdcp->lock[actx->chan]);
|
||
|
|
||
|
wake_up_process(sdcp->thread[actx->chan]);
|
||
|
mutex_unlock(&actx->mutex);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int dcp_sha_update(struct ahash_request *req)
|
||
|
{
|
||
|
return dcp_sha_update_fx(req, 0);
|
||
|
}
|
||
|
|
||
|
static int dcp_sha_final(struct ahash_request *req)
|
||
|
{
|
||
|
ahash_request_set_crypt(req, NULL, req->result, 0);
|
||
|
req->nbytes = 0;
|
||
|
return dcp_sha_update_fx(req, 1);
|
||
|
}
|
||
|
|
||
|
static int dcp_sha_finup(struct ahash_request *req)
|
||
|
{
|
||
|
return dcp_sha_update_fx(req, 1);
|
||
|
}
|
||
|
|
||
|
static int dcp_sha_digest(struct ahash_request *req)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = dcp_sha_init(req);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
return dcp_sha_finup(req);
|
||
|
}
|
||
|
|
||
|
static int dcp_sha_import(struct ahash_request *req, const void *in)
|
||
|
{
|
||
|
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
|
||
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||
|
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
|
||
|
const struct dcp_export_state *export = in;
|
||
|
|
||
|
memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
|
||
|
memset(actx, 0, sizeof(struct dcp_async_ctx));
|
||
|
memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
|
||
|
memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dcp_sha_export(struct ahash_request *req, void *out)
|
||
|
{
|
||
|
struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
|
||
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||
|
struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
|
||
|
struct dcp_export_state *export = out;
|
||
|
|
||
|
memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
|
||
|
memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dcp_sha_cra_init(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
|
||
|
sizeof(struct dcp_sha_req_ctx));
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/* AES 128 ECB and AES 128 CBC */
|
||
|
static struct skcipher_alg dcp_aes_algs[] = {
|
||
|
{
|
||
|
.base.cra_name = "ecb(aes)",
|
||
|
.base.cra_driver_name = "ecb-aes-dcp",
|
||
|
.base.cra_priority = 400,
|
||
|
.base.cra_alignmask = 15,
|
||
|
.base.cra_flags = CRYPTO_ALG_ASYNC |
|
||
|
CRYPTO_ALG_NEED_FALLBACK,
|
||
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
||
|
.base.cra_ctxsize = sizeof(struct dcp_async_ctx),
|
||
|
.base.cra_module = THIS_MODULE,
|
||
|
|
||
|
.min_keysize = AES_MIN_KEY_SIZE,
|
||
|
.max_keysize = AES_MAX_KEY_SIZE,
|
||
|
.setkey = mxs_dcp_aes_setkey,
|
||
|
.encrypt = mxs_dcp_aes_ecb_encrypt,
|
||
|
.decrypt = mxs_dcp_aes_ecb_decrypt,
|
||
|
.init = mxs_dcp_aes_fallback_init_tfm,
|
||
|
.exit = mxs_dcp_aes_fallback_exit_tfm,
|
||
|
}, {
|
||
|
.base.cra_name = "cbc(aes)",
|
||
|
.base.cra_driver_name = "cbc-aes-dcp",
|
||
|
.base.cra_priority = 400,
|
||
|
.base.cra_alignmask = 15,
|
||
|
.base.cra_flags = CRYPTO_ALG_ASYNC |
|
||
|
CRYPTO_ALG_NEED_FALLBACK,
|
||
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
||
|
.base.cra_ctxsize = sizeof(struct dcp_async_ctx),
|
||
|
.base.cra_module = THIS_MODULE,
|
||
|
|
||
|
.min_keysize = AES_MIN_KEY_SIZE,
|
||
|
.max_keysize = AES_MAX_KEY_SIZE,
|
||
|
.setkey = mxs_dcp_aes_setkey,
|
||
|
.encrypt = mxs_dcp_aes_cbc_encrypt,
|
||
|
.decrypt = mxs_dcp_aes_cbc_decrypt,
|
||
|
.ivsize = AES_BLOCK_SIZE,
|
||
|
.init = mxs_dcp_aes_fallback_init_tfm,
|
||
|
.exit = mxs_dcp_aes_fallback_exit_tfm,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
/* SHA1 */
|
||
|
static struct ahash_alg dcp_sha1_alg = {
|
||
|
.init = dcp_sha_init,
|
||
|
.update = dcp_sha_update,
|
||
|
.final = dcp_sha_final,
|
||
|
.finup = dcp_sha_finup,
|
||
|
.digest = dcp_sha_digest,
|
||
|
.import = dcp_sha_import,
|
||
|
.export = dcp_sha_export,
|
||
|
.halg = {
|
||
|
.digestsize = SHA1_DIGEST_SIZE,
|
||
|
.statesize = sizeof(struct dcp_export_state),
|
||
|
.base = {
|
||
|
.cra_name = "sha1",
|
||
|
.cra_driver_name = "sha1-dcp",
|
||
|
.cra_priority = 400,
|
||
|
.cra_alignmask = 63,
|
||
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
||
|
.cra_blocksize = SHA1_BLOCK_SIZE,
|
||
|
.cra_ctxsize = sizeof(struct dcp_async_ctx),
|
||
|
.cra_module = THIS_MODULE,
|
||
|
.cra_init = dcp_sha_cra_init,
|
||
|
.cra_exit = dcp_sha_cra_exit,
|
||
|
},
|
||
|
},
|
||
|
};
|
||
|
|
||
|
/* SHA256 */
|
||
|
static struct ahash_alg dcp_sha256_alg = {
|
||
|
.init = dcp_sha_init,
|
||
|
.update = dcp_sha_update,
|
||
|
.final = dcp_sha_final,
|
||
|
.finup = dcp_sha_finup,
|
||
|
.digest = dcp_sha_digest,
|
||
|
.import = dcp_sha_import,
|
||
|
.export = dcp_sha_export,
|
||
|
.halg = {
|
||
|
.digestsize = SHA256_DIGEST_SIZE,
|
||
|
.statesize = sizeof(struct dcp_export_state),
|
||
|
.base = {
|
||
|
.cra_name = "sha256",
|
||
|
.cra_driver_name = "sha256-dcp",
|
||
|
.cra_priority = 400,
|
||
|
.cra_alignmask = 63,
|
||
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
||
|
.cra_blocksize = SHA256_BLOCK_SIZE,
|
||
|
.cra_ctxsize = sizeof(struct dcp_async_ctx),
|
||
|
.cra_module = THIS_MODULE,
|
||
|
.cra_init = dcp_sha_cra_init,
|
||
|
.cra_exit = dcp_sha_cra_exit,
|
||
|
},
|
||
|
},
|
||
|
};
|
||
|
|
||
|
static irqreturn_t mxs_dcp_irq(int irq, void *context)
|
||
|
{
|
||
|
struct dcp *sdcp = context;
|
||
|
uint32_t stat;
|
||
|
int i;
|
||
|
|
||
|
stat = readl(sdcp->base + MXS_DCP_STAT);
|
||
|
stat &= MXS_DCP_STAT_IRQ_MASK;
|
||
|
if (!stat)
|
||
|
return IRQ_NONE;
|
||
|
|
||
|
/* Clear the interrupts. */
|
||
|
writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
|
||
|
|
||
|
/* Complete the DMA requests that finished. */
|
||
|
for (i = 0; i < DCP_MAX_CHANS; i++)
|
||
|
if (stat & (1 << i))
|
||
|
complete(&sdcp->completion[i]);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static int mxs_dcp_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
struct device *dev = &pdev->dev;
|
||
|
struct dcp *sdcp = NULL;
|
||
|
int i, ret;
|
||
|
int dcp_vmi_irq, dcp_irq;
|
||
|
|
||
|
if (global_sdcp) {
|
||
|
dev_err(dev, "Only one DCP instance allowed!\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
dcp_vmi_irq = platform_get_irq(pdev, 0);
|
||
|
if (dcp_vmi_irq < 0)
|
||
|
return dcp_vmi_irq;
|
||
|
|
||
|
dcp_irq = platform_get_irq(pdev, 1);
|
||
|
if (dcp_irq < 0)
|
||
|
return dcp_irq;
|
||
|
|
||
|
sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
|
||
|
if (!sdcp)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
sdcp->dev = dev;
|
||
|
sdcp->base = devm_platform_ioremap_resource(pdev, 0);
|
||
|
if (IS_ERR(sdcp->base))
|
||
|
return PTR_ERR(sdcp->base);
|
||
|
|
||
|
|
||
|
ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
|
||
|
"dcp-vmi-irq", sdcp);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
|
||
|
"dcp-irq", sdcp);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "Failed to claim DCP IRQ!\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Allocate coherent helper block. */
|
||
|
sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
|
||
|
GFP_KERNEL);
|
||
|
if (!sdcp->coh)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* Re-align the structure so it fits the DCP constraints. */
|
||
|
sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
|
||
|
|
||
|
/* DCP clock is optional, only used on some SOCs */
|
||
|
sdcp->dcp_clk = devm_clk_get(dev, "dcp");
|
||
|
if (IS_ERR(sdcp->dcp_clk)) {
|
||
|
if (sdcp->dcp_clk != ERR_PTR(-ENOENT))
|
||
|
return PTR_ERR(sdcp->dcp_clk);
|
||
|
sdcp->dcp_clk = NULL;
|
||
|
}
|
||
|
ret = clk_prepare_enable(sdcp->dcp_clk);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/* Restart the DCP block. */
|
||
|
ret = stmp_reset_block(sdcp->base);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "Failed reset\n");
|
||
|
goto err_disable_unprepare_clk;
|
||
|
}
|
||
|
|
||
|
/* Initialize control register. */
|
||
|
writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
|
||
|
MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
|
||
|
sdcp->base + MXS_DCP_CTRL);
|
||
|
|
||
|
/* Enable all DCP DMA channels. */
|
||
|
writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
|
||
|
sdcp->base + MXS_DCP_CHANNELCTRL);
|
||
|
|
||
|
/*
|
||
|
* We do not enable context switching. Give the context buffer a
|
||
|
* pointer to an illegal address so if context switching is
|
||
|
* inadvertantly enabled, the DCP will return an error instead of
|
||
|
* trashing good memory. The DCP DMA cannot access ROM, so any ROM
|
||
|
* address will do.
|
||
|
*/
|
||
|
writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
|
||
|
for (i = 0; i < DCP_MAX_CHANS; i++)
|
||
|
writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
|
||
|
writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
|
||
|
|
||
|
global_sdcp = sdcp;
|
||
|
|
||
|
platform_set_drvdata(pdev, sdcp);
|
||
|
|
||
|
for (i = 0; i < DCP_MAX_CHANS; i++) {
|
||
|
spin_lock_init(&sdcp->lock[i]);
|
||
|
init_completion(&sdcp->completion[i]);
|
||
|
crypto_init_queue(&sdcp->queue[i], 50);
|
||
|
}
|
||
|
|
||
|
/* Create the SHA and AES handler threads. */
|
||
|
sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
|
||
|
NULL, "mxs_dcp_chan/sha");
|
||
|
if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
|
||
|
dev_err(dev, "Error starting SHA thread!\n");
|
||
|
ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
|
||
|
goto err_disable_unprepare_clk;
|
||
|
}
|
||
|
|
||
|
sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
|
||
|
NULL, "mxs_dcp_chan/aes");
|
||
|
if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
|
||
|
dev_err(dev, "Error starting SHA thread!\n");
|
||
|
ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
|
||
|
goto err_destroy_sha_thread;
|
||
|
}
|
||
|
|
||
|
/* Register the various crypto algorithms. */
|
||
|
sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
|
||
|
|
||
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
|
||
|
ret = crypto_register_skciphers(dcp_aes_algs,
|
||
|
ARRAY_SIZE(dcp_aes_algs));
|
||
|
if (ret) {
|
||
|
/* Failed to register algorithm. */
|
||
|
dev_err(dev, "Failed to register AES crypto!\n");
|
||
|
goto err_destroy_aes_thread;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
|
||
|
ret = crypto_register_ahash(&dcp_sha1_alg);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "Failed to register %s hash!\n",
|
||
|
dcp_sha1_alg.halg.base.cra_name);
|
||
|
goto err_unregister_aes;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
|
||
|
ret = crypto_register_ahash(&dcp_sha256_alg);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "Failed to register %s hash!\n",
|
||
|
dcp_sha256_alg.halg.base.cra_name);
|
||
|
goto err_unregister_sha1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err_unregister_sha1:
|
||
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
|
||
|
crypto_unregister_ahash(&dcp_sha1_alg);
|
||
|
|
||
|
err_unregister_aes:
|
||
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
|
||
|
crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
|
||
|
|
||
|
err_destroy_aes_thread:
|
||
|
kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
|
||
|
|
||
|
err_destroy_sha_thread:
|
||
|
kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
|
||
|
|
||
|
err_disable_unprepare_clk:
|
||
|
clk_disable_unprepare(sdcp->dcp_clk);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int mxs_dcp_remove(struct platform_device *pdev)
|
||
|
{
|
||
|
struct dcp *sdcp = platform_get_drvdata(pdev);
|
||
|
|
||
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
|
||
|
crypto_unregister_ahash(&dcp_sha256_alg);
|
||
|
|
||
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
|
||
|
crypto_unregister_ahash(&dcp_sha1_alg);
|
||
|
|
||
|
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
|
||
|
crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
|
||
|
|
||
|
kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
|
||
|
kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
|
||
|
|
||
|
clk_disable_unprepare(sdcp->dcp_clk);
|
||
|
|
||
|
platform_set_drvdata(pdev, NULL);
|
||
|
|
||
|
global_sdcp = NULL;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct of_device_id mxs_dcp_dt_ids[] = {
|
||
|
{ .compatible = "fsl,imx23-dcp", .data = NULL, },
|
||
|
{ .compatible = "fsl,imx28-dcp", .data = NULL, },
|
||
|
{ /* sentinel */ }
|
||
|
};
|
||
|
|
||
|
MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
|
||
|
|
||
|
static struct platform_driver mxs_dcp_driver = {
|
||
|
.probe = mxs_dcp_probe,
|
||
|
.remove = mxs_dcp_remove,
|
||
|
.driver = {
|
||
|
.name = "mxs-dcp",
|
||
|
.of_match_table = mxs_dcp_dt_ids,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
module_platform_driver(mxs_dcp_driver);
|
||
|
|
||
|
MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
|
||
|
MODULE_DESCRIPTION("Freescale MXS DCP Driver");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_ALIAS("platform:mxs-dcp");
|