1439 lines
36 KiB
C
1439 lines
36 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
/*
|
||
|
* processor_idle - idle state submodule to the ACPI processor driver
|
||
|
*
|
||
|
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
|
||
|
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
|
||
|
* Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
|
||
|
* Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
|
||
|
* - Added processor hotplug support
|
||
|
* Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
|
||
|
* - Added support for C3 on SMP
|
||
|
*/
|
||
|
#define pr_fmt(fmt) "ACPI: " fmt
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/acpi.h>
|
||
|
#include <linux/dmi.h>
|
||
|
#include <linux/sched.h> /* need_resched() */
|
||
|
#include <linux/sort.h>
|
||
|
#include <linux/tick.h>
|
||
|
#include <linux/cpuidle.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/minmax.h>
|
||
|
#include <linux/perf_event.h>
|
||
|
#include <acpi/processor.h>
|
||
|
#include <linux/context_tracking.h>
|
||
|
|
||
|
/*
|
||
|
* Include the apic definitions for x86 to have the APIC timer related defines
|
||
|
* available also for UP (on SMP it gets magically included via linux/smp.h).
|
||
|
* asm/acpi.h is not an option, as it would require more include magic. Also
|
||
|
* creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
|
||
|
*/
|
||
|
#ifdef CONFIG_X86
|
||
|
#include <asm/apic.h>
|
||
|
#include <asm/cpu.h>
|
||
|
#endif
|
||
|
|
||
|
#define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
|
||
|
|
||
|
static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
|
||
|
module_param(max_cstate, uint, 0400);
|
||
|
static bool nocst __read_mostly;
|
||
|
module_param(nocst, bool, 0400);
|
||
|
static bool bm_check_disable __read_mostly;
|
||
|
module_param(bm_check_disable, bool, 0400);
|
||
|
|
||
|
static unsigned int latency_factor __read_mostly = 2;
|
||
|
module_param(latency_factor, uint, 0644);
|
||
|
|
||
|
static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
|
||
|
|
||
|
struct cpuidle_driver acpi_idle_driver = {
|
||
|
.name = "acpi_idle",
|
||
|
.owner = THIS_MODULE,
|
||
|
};
|
||
|
|
||
|
#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
|
||
|
static
|
||
|
DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
|
||
|
|
||
|
static int disabled_by_idle_boot_param(void)
|
||
|
{
|
||
|
return boot_option_idle_override == IDLE_POLL ||
|
||
|
boot_option_idle_override == IDLE_HALT;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
|
||
|
* For now disable this. Probably a bug somewhere else.
|
||
|
*
|
||
|
* To skip this limit, boot/load with a large max_cstate limit.
|
||
|
*/
|
||
|
static int set_max_cstate(const struct dmi_system_id *id)
|
||
|
{
|
||
|
if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
|
||
|
return 0;
|
||
|
|
||
|
pr_notice("%s detected - limiting to C%ld max_cstate."
|
||
|
" Override with \"processor.max_cstate=%d\"\n", id->ident,
|
||
|
(long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
|
||
|
|
||
|
max_cstate = (long)id->driver_data;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct dmi_system_id processor_power_dmi_table[] = {
|
||
|
{ set_max_cstate, "Clevo 5600D", {
|
||
|
DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
|
||
|
DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
|
||
|
(void *)2},
|
||
|
{ set_max_cstate, "Pavilion zv5000", {
|
||
|
DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
|
||
|
DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
|
||
|
(void *)1},
|
||
|
{ set_max_cstate, "Asus L8400B", {
|
||
|
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
|
||
|
DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
|
||
|
(void *)1},
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Callers should disable interrupts before the call and enable
|
||
|
* interrupts after return.
|
||
|
*/
|
||
|
static void __cpuidle acpi_safe_halt(void)
|
||
|
{
|
||
|
if (!tif_need_resched()) {
|
||
|
safe_halt();
|
||
|
local_irq_disable();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef ARCH_APICTIMER_STOPS_ON_C3
|
||
|
|
||
|
/*
|
||
|
* Some BIOS implementations switch to C3 in the published C2 state.
|
||
|
* This seems to be a common problem on AMD boxen, but other vendors
|
||
|
* are affected too. We pick the most conservative approach: we assume
|
||
|
* that the local APIC stops in both C2 and C3.
|
||
|
*/
|
||
|
static void lapic_timer_check_state(int state, struct acpi_processor *pr,
|
||
|
struct acpi_processor_cx *cx)
|
||
|
{
|
||
|
struct acpi_processor_power *pwr = &pr->power;
|
||
|
u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
|
||
|
|
||
|
if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
|
||
|
return;
|
||
|
|
||
|
if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
|
||
|
type = ACPI_STATE_C1;
|
||
|
|
||
|
/*
|
||
|
* Check, if one of the previous states already marked the lapic
|
||
|
* unstable
|
||
|
*/
|
||
|
if (pwr->timer_broadcast_on_state < state)
|
||
|
return;
|
||
|
|
||
|
if (cx->type >= type)
|
||
|
pr->power.timer_broadcast_on_state = state;
|
||
|
}
|
||
|
|
||
|
static void __lapic_timer_propagate_broadcast(void *arg)
|
||
|
{
|
||
|
struct acpi_processor *pr = (struct acpi_processor *) arg;
|
||
|
|
||
|
if (pr->power.timer_broadcast_on_state < INT_MAX)
|
||
|
tick_broadcast_enable();
|
||
|
else
|
||
|
tick_broadcast_disable();
|
||
|
}
|
||
|
|
||
|
static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
|
||
|
{
|
||
|
smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
|
||
|
(void *)pr, 1);
|
||
|
}
|
||
|
|
||
|
/* Power(C) State timer broadcast control */
|
||
|
static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
|
||
|
struct acpi_processor_cx *cx)
|
||
|
{
|
||
|
return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
static void lapic_timer_check_state(int state, struct acpi_processor *pr,
|
||
|
struct acpi_processor_cx *cstate) { }
|
||
|
static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
|
||
|
|
||
|
static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
|
||
|
struct acpi_processor_cx *cx)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#if defined(CONFIG_X86)
|
||
|
static void tsc_check_state(int state)
|
||
|
{
|
||
|
switch (boot_cpu_data.x86_vendor) {
|
||
|
case X86_VENDOR_HYGON:
|
||
|
case X86_VENDOR_AMD:
|
||
|
case X86_VENDOR_INTEL:
|
||
|
case X86_VENDOR_CENTAUR:
|
||
|
case X86_VENDOR_ZHAOXIN:
|
||
|
/*
|
||
|
* AMD Fam10h TSC will tick in all
|
||
|
* C/P/S0/S1 states when this bit is set.
|
||
|
*/
|
||
|
if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
|
||
|
return;
|
||
|
fallthrough;
|
||
|
default:
|
||
|
/* TSC could halt in idle, so notify users */
|
||
|
if (state > ACPI_STATE_C1)
|
||
|
mark_tsc_unstable("TSC halts in idle");
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
static void tsc_check_state(int state) { return; }
|
||
|
#endif
|
||
|
|
||
|
static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
|
||
|
{
|
||
|
|
||
|
if (!pr->pblk)
|
||
|
return -ENODEV;
|
||
|
|
||
|
/* if info is obtained from pblk/fadt, type equals state */
|
||
|
pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
|
||
|
pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
|
||
|
|
||
|
#ifndef CONFIG_HOTPLUG_CPU
|
||
|
/*
|
||
|
* Check for P_LVL2_UP flag before entering C2 and above on
|
||
|
* an SMP system.
|
||
|
*/
|
||
|
if ((num_online_cpus() > 1) &&
|
||
|
!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
|
||
|
return -ENODEV;
|
||
|
#endif
|
||
|
|
||
|
/* determine C2 and C3 address from pblk */
|
||
|
pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
|
||
|
pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
|
||
|
|
||
|
/* determine latencies from FADT */
|
||
|
pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
|
||
|
pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
|
||
|
|
||
|
/*
|
||
|
* FADT specified C2 latency must be less than or equal to
|
||
|
* 100 microseconds.
|
||
|
*/
|
||
|
if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
|
||
|
acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
|
||
|
acpi_gbl_FADT.c2_latency);
|
||
|
/* invalidate C2 */
|
||
|
pr->power.states[ACPI_STATE_C2].address = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* FADT supplied C3 latency must be less than or equal to
|
||
|
* 1000 microseconds.
|
||
|
*/
|
||
|
if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
|
||
|
acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
|
||
|
acpi_gbl_FADT.c3_latency);
|
||
|
/* invalidate C3 */
|
||
|
pr->power.states[ACPI_STATE_C3].address = 0;
|
||
|
}
|
||
|
|
||
|
acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
|
||
|
pr->power.states[ACPI_STATE_C2].address,
|
||
|
pr->power.states[ACPI_STATE_C3].address);
|
||
|
|
||
|
snprintf(pr->power.states[ACPI_STATE_C2].desc,
|
||
|
ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
|
||
|
pr->power.states[ACPI_STATE_C2].address);
|
||
|
snprintf(pr->power.states[ACPI_STATE_C3].desc,
|
||
|
ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
|
||
|
pr->power.states[ACPI_STATE_C3].address);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
|
||
|
{
|
||
|
if (!pr->power.states[ACPI_STATE_C1].valid) {
|
||
|
/* set the first C-State to C1 */
|
||
|
/* all processors need to support C1 */
|
||
|
pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
|
||
|
pr->power.states[ACPI_STATE_C1].valid = 1;
|
||
|
pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
|
||
|
|
||
|
snprintf(pr->power.states[ACPI_STATE_C1].desc,
|
||
|
ACPI_CX_DESC_LEN, "ACPI HLT");
|
||
|
}
|
||
|
/* the C0 state only exists as a filler in our array */
|
||
|
pr->power.states[ACPI_STATE_C0].valid = 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
if (nocst)
|
||
|
return -ENODEV;
|
||
|
|
||
|
ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (!pr->power.count)
|
||
|
return -EFAULT;
|
||
|
|
||
|
pr->flags.has_cst = 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
|
||
|
struct acpi_processor_cx *cx)
|
||
|
{
|
||
|
static int bm_check_flag = -1;
|
||
|
static int bm_control_flag = -1;
|
||
|
|
||
|
|
||
|
if (!cx->address)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
|
||
|
* DMA transfers are used by any ISA device to avoid livelock.
|
||
|
* Note that we could disable Type-F DMA (as recommended by
|
||
|
* the erratum), but this is known to disrupt certain ISA
|
||
|
* devices thus we take the conservative approach.
|
||
|
*/
|
||
|
else if (errata.piix4.fdma) {
|
||
|
acpi_handle_debug(pr->handle,
|
||
|
"C3 not supported on PIIX4 with Type-F DMA\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* All the logic here assumes flags.bm_check is same across all CPUs */
|
||
|
if (bm_check_flag == -1) {
|
||
|
/* Determine whether bm_check is needed based on CPU */
|
||
|
acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
|
||
|
bm_check_flag = pr->flags.bm_check;
|
||
|
bm_control_flag = pr->flags.bm_control;
|
||
|
} else {
|
||
|
pr->flags.bm_check = bm_check_flag;
|
||
|
pr->flags.bm_control = bm_control_flag;
|
||
|
}
|
||
|
|
||
|
if (pr->flags.bm_check) {
|
||
|
if (!pr->flags.bm_control) {
|
||
|
if (pr->flags.has_cst != 1) {
|
||
|
/* bus mastering control is necessary */
|
||
|
acpi_handle_debug(pr->handle,
|
||
|
"C3 support requires BM control\n");
|
||
|
return;
|
||
|
} else {
|
||
|
/* Here we enter C3 without bus mastering */
|
||
|
acpi_handle_debug(pr->handle,
|
||
|
"C3 support without BM control\n");
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* WBINVD should be set in fadt, for C3 state to be
|
||
|
* supported on when bm_check is not required.
|
||
|
*/
|
||
|
if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
|
||
|
acpi_handle_debug(pr->handle,
|
||
|
"Cache invalidation should work properly"
|
||
|
" for C3 to be enabled on SMP systems\n");
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Otherwise we've met all of our C3 requirements.
|
||
|
* Normalize the C3 latency to expidite policy. Enable
|
||
|
* checking of bus mastering status (bm_check) so we can
|
||
|
* use this in our C3 policy
|
||
|
*/
|
||
|
cx->valid = 1;
|
||
|
|
||
|
/*
|
||
|
* On older chipsets, BM_RLD needs to be set
|
||
|
* in order for Bus Master activity to wake the
|
||
|
* system from C3. Newer chipsets handle DMA
|
||
|
* during C3 automatically and BM_RLD is a NOP.
|
||
|
* In either case, the proper way to
|
||
|
* handle BM_RLD is to set it and leave it set.
|
||
|
*/
|
||
|
acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static int acpi_cst_latency_cmp(const void *a, const void *b)
|
||
|
{
|
||
|
const struct acpi_processor_cx *x = a, *y = b;
|
||
|
|
||
|
if (!(x->valid && y->valid))
|
||
|
return 0;
|
||
|
if (x->latency > y->latency)
|
||
|
return 1;
|
||
|
if (x->latency < y->latency)
|
||
|
return -1;
|
||
|
return 0;
|
||
|
}
|
||
|
static void acpi_cst_latency_swap(void *a, void *b, int n)
|
||
|
{
|
||
|
struct acpi_processor_cx *x = a, *y = b;
|
||
|
|
||
|
if (!(x->valid && y->valid))
|
||
|
return;
|
||
|
swap(x->latency, y->latency);
|
||
|
}
|
||
|
|
||
|
static int acpi_processor_power_verify(struct acpi_processor *pr)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
unsigned int working = 0;
|
||
|
unsigned int last_latency = 0;
|
||
|
unsigned int last_type = 0;
|
||
|
bool buggy_latency = false;
|
||
|
|
||
|
pr->power.timer_broadcast_on_state = INT_MAX;
|
||
|
|
||
|
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
|
||
|
struct acpi_processor_cx *cx = &pr->power.states[i];
|
||
|
|
||
|
switch (cx->type) {
|
||
|
case ACPI_STATE_C1:
|
||
|
cx->valid = 1;
|
||
|
break;
|
||
|
|
||
|
case ACPI_STATE_C2:
|
||
|
if (!cx->address)
|
||
|
break;
|
||
|
cx->valid = 1;
|
||
|
break;
|
||
|
|
||
|
case ACPI_STATE_C3:
|
||
|
acpi_processor_power_verify_c3(pr, cx);
|
||
|
break;
|
||
|
}
|
||
|
if (!cx->valid)
|
||
|
continue;
|
||
|
if (cx->type >= last_type && cx->latency < last_latency)
|
||
|
buggy_latency = true;
|
||
|
last_latency = cx->latency;
|
||
|
last_type = cx->type;
|
||
|
|
||
|
lapic_timer_check_state(i, pr, cx);
|
||
|
tsc_check_state(cx->type);
|
||
|
working++;
|
||
|
}
|
||
|
|
||
|
if (buggy_latency) {
|
||
|
pr_notice("FW issue: working around C-state latencies out of order\n");
|
||
|
sort(&pr->power.states[1], max_cstate,
|
||
|
sizeof(struct acpi_processor_cx),
|
||
|
acpi_cst_latency_cmp,
|
||
|
acpi_cst_latency_swap);
|
||
|
}
|
||
|
|
||
|
lapic_timer_propagate_broadcast(pr);
|
||
|
|
||
|
return (working);
|
||
|
}
|
||
|
|
||
|
static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
int result;
|
||
|
|
||
|
|
||
|
/* NOTE: the idle thread may not be running while calling
|
||
|
* this function */
|
||
|
|
||
|
/* Zero initialize all the C-states info. */
|
||
|
memset(pr->power.states, 0, sizeof(pr->power.states));
|
||
|
|
||
|
result = acpi_processor_get_power_info_cst(pr);
|
||
|
if (result == -ENODEV)
|
||
|
result = acpi_processor_get_power_info_fadt(pr);
|
||
|
|
||
|
if (result)
|
||
|
return result;
|
||
|
|
||
|
acpi_processor_get_power_info_default(pr);
|
||
|
|
||
|
pr->power.count = acpi_processor_power_verify(pr);
|
||
|
|
||
|
/*
|
||
|
* if one state of type C2 or C3 is available, mark this
|
||
|
* CPU as being "idle manageable"
|
||
|
*/
|
||
|
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
|
||
|
if (pr->power.states[i].valid) {
|
||
|
pr->power.count = i;
|
||
|
pr->flags.power = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* acpi_idle_bm_check - checks if bus master activity was detected
|
||
|
*/
|
||
|
static int acpi_idle_bm_check(void)
|
||
|
{
|
||
|
u32 bm_status = 0;
|
||
|
|
||
|
if (bm_check_disable)
|
||
|
return 0;
|
||
|
|
||
|
acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
|
||
|
if (bm_status)
|
||
|
acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
|
||
|
/*
|
||
|
* PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
|
||
|
* the true state of bus mastering activity; forcing us to
|
||
|
* manually check the BMIDEA bit of each IDE channel.
|
||
|
*/
|
||
|
else if (errata.piix4.bmisx) {
|
||
|
if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
|
||
|
|| (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
|
||
|
bm_status = 1;
|
||
|
}
|
||
|
return bm_status;
|
||
|
}
|
||
|
|
||
|
static void wait_for_freeze(void)
|
||
|
{
|
||
|
#ifdef CONFIG_X86
|
||
|
/* No delay is needed if we are in guest */
|
||
|
if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
|
||
|
return;
|
||
|
/*
|
||
|
* Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
|
||
|
* not this code. Assume that any Intel systems using this
|
||
|
* are ancient and may need the dummy wait. This also assumes
|
||
|
* that the motivating chipset issue was Intel-only.
|
||
|
*/
|
||
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
|
||
|
return;
|
||
|
#endif
|
||
|
/*
|
||
|
* Dummy wait op - must do something useless after P_LVL2 read
|
||
|
* because chipsets cannot guarantee that STPCLK# signal gets
|
||
|
* asserted in time to freeze execution properly
|
||
|
*
|
||
|
* This workaround has been in place since the original ACPI
|
||
|
* implementation was merged, circa 2002.
|
||
|
*
|
||
|
* If a profile is pointing to this instruction, please first
|
||
|
* consider moving your system to a more modern idle
|
||
|
* mechanism.
|
||
|
*/
|
||
|
inl(acpi_gbl_FADT.xpm_timer_block.address);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* acpi_idle_do_entry - enter idle state using the appropriate method
|
||
|
* @cx: cstate data
|
||
|
*
|
||
|
* Caller disables interrupt before call and enables interrupt after return.
|
||
|
*/
|
||
|
static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
|
||
|
{
|
||
|
perf_lopwr_cb(true);
|
||
|
|
||
|
if (cx->entry_method == ACPI_CSTATE_FFH) {
|
||
|
/* Call into architectural FFH based C-state */
|
||
|
acpi_processor_ffh_cstate_enter(cx);
|
||
|
} else if (cx->entry_method == ACPI_CSTATE_HALT) {
|
||
|
acpi_safe_halt();
|
||
|
} else {
|
||
|
/* IO port based C-state */
|
||
|
inb(cx->address);
|
||
|
wait_for_freeze();
|
||
|
}
|
||
|
|
||
|
perf_lopwr_cb(false);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
|
||
|
* @dev: the target CPU
|
||
|
* @index: the index of suggested state
|
||
|
*/
|
||
|
static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
|
||
|
{
|
||
|
struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
|
||
|
|
||
|
ACPI_FLUSH_CPU_CACHE();
|
||
|
|
||
|
while (1) {
|
||
|
|
||
|
if (cx->entry_method == ACPI_CSTATE_HALT)
|
||
|
safe_halt();
|
||
|
else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
|
||
|
inb(cx->address);
|
||
|
wait_for_freeze();
|
||
|
} else
|
||
|
return -ENODEV;
|
||
|
|
||
|
#if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
|
||
|
cond_wakeup_cpu0();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* Never reached */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
|
||
|
{
|
||
|
return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
|
||
|
!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
|
||
|
}
|
||
|
|
||
|
static int c3_cpu_count;
|
||
|
static DEFINE_RAW_SPINLOCK(c3_lock);
|
||
|
|
||
|
/**
|
||
|
* acpi_idle_enter_bm - enters C3 with proper BM handling
|
||
|
* @drv: cpuidle driver
|
||
|
* @pr: Target processor
|
||
|
* @cx: Target state context
|
||
|
* @index: index of target state
|
||
|
*/
|
||
|
static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
|
||
|
struct acpi_processor *pr,
|
||
|
struct acpi_processor_cx *cx,
|
||
|
int index)
|
||
|
{
|
||
|
static struct acpi_processor_cx safe_cx = {
|
||
|
.entry_method = ACPI_CSTATE_HALT,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* disable bus master
|
||
|
* bm_check implies we need ARB_DIS
|
||
|
* bm_control implies whether we can do ARB_DIS
|
||
|
*
|
||
|
* That leaves a case where bm_check is set and bm_control is not set.
|
||
|
* In that case we cannot do much, we enter C3 without doing anything.
|
||
|
*/
|
||
|
bool dis_bm = pr->flags.bm_control;
|
||
|
|
||
|
/* If we can skip BM, demote to a safe state. */
|
||
|
if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
|
||
|
dis_bm = false;
|
||
|
index = drv->safe_state_index;
|
||
|
if (index >= 0) {
|
||
|
cx = this_cpu_read(acpi_cstate[index]);
|
||
|
} else {
|
||
|
cx = &safe_cx;
|
||
|
index = -EBUSY;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (dis_bm) {
|
||
|
raw_spin_lock(&c3_lock);
|
||
|
c3_cpu_count++;
|
||
|
/* Disable bus master arbitration when all CPUs are in C3 */
|
||
|
if (c3_cpu_count == num_online_cpus())
|
||
|
acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
|
||
|
raw_spin_unlock(&c3_lock);
|
||
|
}
|
||
|
|
||
|
ct_idle_enter();
|
||
|
|
||
|
acpi_idle_do_entry(cx);
|
||
|
|
||
|
ct_idle_exit();
|
||
|
|
||
|
/* Re-enable bus master arbitration */
|
||
|
if (dis_bm) {
|
||
|
raw_spin_lock(&c3_lock);
|
||
|
acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
|
||
|
c3_cpu_count--;
|
||
|
raw_spin_unlock(&c3_lock);
|
||
|
}
|
||
|
|
||
|
return index;
|
||
|
}
|
||
|
|
||
|
static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
|
||
|
struct cpuidle_driver *drv, int index)
|
||
|
{
|
||
|
struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
|
||
|
struct acpi_processor *pr;
|
||
|
|
||
|
pr = __this_cpu_read(processors);
|
||
|
if (unlikely(!pr))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (cx->type != ACPI_STATE_C1) {
|
||
|
if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
|
||
|
return acpi_idle_enter_bm(drv, pr, cx, index);
|
||
|
|
||
|
/* C2 to C1 demotion. */
|
||
|
if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
|
||
|
index = ACPI_IDLE_STATE_START;
|
||
|
cx = per_cpu(acpi_cstate[index], dev->cpu);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (cx->type == ACPI_STATE_C3)
|
||
|
ACPI_FLUSH_CPU_CACHE();
|
||
|
|
||
|
acpi_idle_do_entry(cx);
|
||
|
|
||
|
return index;
|
||
|
}
|
||
|
|
||
|
static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
|
||
|
struct cpuidle_driver *drv, int index)
|
||
|
{
|
||
|
struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
|
||
|
|
||
|
if (cx->type == ACPI_STATE_C3) {
|
||
|
struct acpi_processor *pr = __this_cpu_read(processors);
|
||
|
|
||
|
if (unlikely(!pr))
|
||
|
return 0;
|
||
|
|
||
|
if (pr->flags.bm_check) {
|
||
|
u8 bm_sts_skip = cx->bm_sts_skip;
|
||
|
|
||
|
/* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
|
||
|
cx->bm_sts_skip = 1;
|
||
|
acpi_idle_enter_bm(drv, pr, cx, index);
|
||
|
cx->bm_sts_skip = bm_sts_skip;
|
||
|
|
||
|
return 0;
|
||
|
} else {
|
||
|
ACPI_FLUSH_CPU_CACHE();
|
||
|
}
|
||
|
}
|
||
|
acpi_idle_do_entry(cx);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
|
||
|
struct cpuidle_device *dev)
|
||
|
{
|
||
|
int i, count = ACPI_IDLE_STATE_START;
|
||
|
struct acpi_processor_cx *cx;
|
||
|
struct cpuidle_state *state;
|
||
|
|
||
|
if (max_cstate == 0)
|
||
|
max_cstate = 1;
|
||
|
|
||
|
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
|
||
|
state = &acpi_idle_driver.states[count];
|
||
|
cx = &pr->power.states[i];
|
||
|
|
||
|
if (!cx->valid)
|
||
|
continue;
|
||
|
|
||
|
per_cpu(acpi_cstate[count], dev->cpu) = cx;
|
||
|
|
||
|
if (lapic_timer_needs_broadcast(pr, cx))
|
||
|
state->flags |= CPUIDLE_FLAG_TIMER_STOP;
|
||
|
|
||
|
if (cx->type == ACPI_STATE_C3) {
|
||
|
state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
|
||
|
if (pr->flags.bm_check)
|
||
|
state->flags |= CPUIDLE_FLAG_RCU_IDLE;
|
||
|
}
|
||
|
|
||
|
count++;
|
||
|
if (count == CPUIDLE_STATE_MAX)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (!count)
|
||
|
return -EINVAL;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int acpi_processor_setup_cstates(struct acpi_processor *pr)
|
||
|
{
|
||
|
int i, count;
|
||
|
struct acpi_processor_cx *cx;
|
||
|
struct cpuidle_state *state;
|
||
|
struct cpuidle_driver *drv = &acpi_idle_driver;
|
||
|
|
||
|
if (max_cstate == 0)
|
||
|
max_cstate = 1;
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
|
||
|
cpuidle_poll_state_init(drv);
|
||
|
count = 1;
|
||
|
} else {
|
||
|
count = 0;
|
||
|
}
|
||
|
|
||
|
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
|
||
|
cx = &pr->power.states[i];
|
||
|
|
||
|
if (!cx->valid)
|
||
|
continue;
|
||
|
|
||
|
state = &drv->states[count];
|
||
|
snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
|
||
|
strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
|
||
|
state->exit_latency = cx->latency;
|
||
|
state->target_residency = cx->latency * latency_factor;
|
||
|
state->enter = acpi_idle_enter;
|
||
|
|
||
|
state->flags = 0;
|
||
|
if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
|
||
|
cx->type == ACPI_STATE_C3) {
|
||
|
state->enter_dead = acpi_idle_play_dead;
|
||
|
if (cx->type != ACPI_STATE_C3)
|
||
|
drv->safe_state_index = count;
|
||
|
}
|
||
|
/*
|
||
|
* Halt-induced C1 is not good for ->enter_s2idle, because it
|
||
|
* re-enables interrupts on exit. Moreover, C1 is generally not
|
||
|
* particularly interesting from the suspend-to-idle angle, so
|
||
|
* avoid C1 and the situations in which we may need to fall back
|
||
|
* to it altogether.
|
||
|
*/
|
||
|
if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
|
||
|
state->enter_s2idle = acpi_idle_enter_s2idle;
|
||
|
|
||
|
count++;
|
||
|
if (count == CPUIDLE_STATE_MAX)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
drv->state_count = count;
|
||
|
|
||
|
if (!count)
|
||
|
return -EINVAL;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline void acpi_processor_cstate_first_run_checks(void)
|
||
|
{
|
||
|
static int first_run;
|
||
|
|
||
|
if (first_run)
|
||
|
return;
|
||
|
dmi_check_system(processor_power_dmi_table);
|
||
|
max_cstate = acpi_processor_cstate_check(max_cstate);
|
||
|
if (max_cstate < ACPI_C_STATES_MAX)
|
||
|
pr_notice("processor limited to max C-state %d\n", max_cstate);
|
||
|
|
||
|
first_run++;
|
||
|
|
||
|
if (nocst)
|
||
|
return;
|
||
|
|
||
|
acpi_processor_claim_cst_control();
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
static inline int disabled_by_idle_boot_param(void) { return 0; }
|
||
|
static inline void acpi_processor_cstate_first_run_checks(void) { }
|
||
|
static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
|
||
|
{
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
|
||
|
struct cpuidle_device *dev)
|
||
|
{
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
static int acpi_processor_setup_cstates(struct acpi_processor *pr)
|
||
|
{
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
|
||
|
|
||
|
struct acpi_lpi_states_array {
|
||
|
unsigned int size;
|
||
|
unsigned int composite_states_size;
|
||
|
struct acpi_lpi_state *entries;
|
||
|
struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
|
||
|
};
|
||
|
|
||
|
static int obj_get_integer(union acpi_object *obj, u32 *value)
|
||
|
{
|
||
|
if (obj->type != ACPI_TYPE_INTEGER)
|
||
|
return -EINVAL;
|
||
|
|
||
|
*value = obj->integer.value;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int acpi_processor_evaluate_lpi(acpi_handle handle,
|
||
|
struct acpi_lpi_states_array *info)
|
||
|
{
|
||
|
acpi_status status;
|
||
|
int ret = 0;
|
||
|
int pkg_count, state_idx = 1, loop;
|
||
|
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
|
||
|
union acpi_object *lpi_data;
|
||
|
struct acpi_lpi_state *lpi_state;
|
||
|
|
||
|
status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
acpi_handle_debug(handle, "No _LPI, giving up\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
lpi_data = buffer.pointer;
|
||
|
|
||
|
/* There must be at least 4 elements = 3 elements + 1 package */
|
||
|
if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
|
||
|
lpi_data->package.count < 4) {
|
||
|
pr_debug("not enough elements in _LPI\n");
|
||
|
ret = -ENODATA;
|
||
|
goto end;
|
||
|
}
|
||
|
|
||
|
pkg_count = lpi_data->package.elements[2].integer.value;
|
||
|
|
||
|
/* Validate number of power states. */
|
||
|
if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
|
||
|
pr_debug("count given by _LPI is not valid\n");
|
||
|
ret = -ENODATA;
|
||
|
goto end;
|
||
|
}
|
||
|
|
||
|
lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
|
||
|
if (!lpi_state) {
|
||
|
ret = -ENOMEM;
|
||
|
goto end;
|
||
|
}
|
||
|
|
||
|
info->size = pkg_count;
|
||
|
info->entries = lpi_state;
|
||
|
|
||
|
/* LPI States start at index 3 */
|
||
|
for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
|
||
|
union acpi_object *element, *pkg_elem, *obj;
|
||
|
|
||
|
element = &lpi_data->package.elements[loop];
|
||
|
if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
|
||
|
continue;
|
||
|
|
||
|
pkg_elem = element->package.elements;
|
||
|
|
||
|
obj = pkg_elem + 6;
|
||
|
if (obj->type == ACPI_TYPE_BUFFER) {
|
||
|
struct acpi_power_register *reg;
|
||
|
|
||
|
reg = (struct acpi_power_register *)obj->buffer.pointer;
|
||
|
if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
|
||
|
reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
|
||
|
continue;
|
||
|
|
||
|
lpi_state->address = reg->address;
|
||
|
lpi_state->entry_method =
|
||
|
reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
|
||
|
ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
|
||
|
} else if (obj->type == ACPI_TYPE_INTEGER) {
|
||
|
lpi_state->entry_method = ACPI_CSTATE_INTEGER;
|
||
|
lpi_state->address = obj->integer.value;
|
||
|
} else {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
|
||
|
|
||
|
obj = pkg_elem + 9;
|
||
|
if (obj->type == ACPI_TYPE_STRING)
|
||
|
strscpy(lpi_state->desc, obj->string.pointer,
|
||
|
ACPI_CX_DESC_LEN);
|
||
|
|
||
|
lpi_state->index = state_idx;
|
||
|
if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
|
||
|
pr_debug("No min. residency found, assuming 10 us\n");
|
||
|
lpi_state->min_residency = 10;
|
||
|
}
|
||
|
|
||
|
if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
|
||
|
pr_debug("No wakeup residency found, assuming 10 us\n");
|
||
|
lpi_state->wake_latency = 10;
|
||
|
}
|
||
|
|
||
|
if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
|
||
|
lpi_state->flags = 0;
|
||
|
|
||
|
if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
|
||
|
lpi_state->arch_flags = 0;
|
||
|
|
||
|
if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
|
||
|
lpi_state->res_cnt_freq = 1;
|
||
|
|
||
|
if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
|
||
|
lpi_state->enable_parent_state = 0;
|
||
|
}
|
||
|
|
||
|
acpi_handle_debug(handle, "Found %d power states\n", state_idx);
|
||
|
end:
|
||
|
kfree(buffer.pointer);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* flat_state_cnt - the number of composite LPI states after the process of flattening
|
||
|
*/
|
||
|
static int flat_state_cnt;
|
||
|
|
||
|
/**
|
||
|
* combine_lpi_states - combine local and parent LPI states to form a composite LPI state
|
||
|
*
|
||
|
* @local: local LPI state
|
||
|
* @parent: parent LPI state
|
||
|
* @result: composite LPI state
|
||
|
*/
|
||
|
static bool combine_lpi_states(struct acpi_lpi_state *local,
|
||
|
struct acpi_lpi_state *parent,
|
||
|
struct acpi_lpi_state *result)
|
||
|
{
|
||
|
if (parent->entry_method == ACPI_CSTATE_INTEGER) {
|
||
|
if (!parent->address) /* 0 means autopromotable */
|
||
|
return false;
|
||
|
result->address = local->address + parent->address;
|
||
|
} else {
|
||
|
result->address = parent->address;
|
||
|
}
|
||
|
|
||
|
result->min_residency = max(local->min_residency, parent->min_residency);
|
||
|
result->wake_latency = local->wake_latency + parent->wake_latency;
|
||
|
result->enable_parent_state = parent->enable_parent_state;
|
||
|
result->entry_method = local->entry_method;
|
||
|
|
||
|
result->flags = parent->flags;
|
||
|
result->arch_flags = parent->arch_flags;
|
||
|
result->index = parent->index;
|
||
|
|
||
|
strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
|
||
|
strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
|
||
|
strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
|
||
|
|
||
|
static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
|
||
|
struct acpi_lpi_state *t)
|
||
|
{
|
||
|
curr_level->composite_states[curr_level->composite_states_size++] = t;
|
||
|
}
|
||
|
|
||
|
static int flatten_lpi_states(struct acpi_processor *pr,
|
||
|
struct acpi_lpi_states_array *curr_level,
|
||
|
struct acpi_lpi_states_array *prev_level)
|
||
|
{
|
||
|
int i, j, state_count = curr_level->size;
|
||
|
struct acpi_lpi_state *p, *t = curr_level->entries;
|
||
|
|
||
|
curr_level->composite_states_size = 0;
|
||
|
for (j = 0; j < state_count; j++, t++) {
|
||
|
struct acpi_lpi_state *flpi;
|
||
|
|
||
|
if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
|
||
|
continue;
|
||
|
|
||
|
if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
|
||
|
pr_warn("Limiting number of LPI states to max (%d)\n",
|
||
|
ACPI_PROCESSOR_MAX_POWER);
|
||
|
pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
flpi = &pr->power.lpi_states[flat_state_cnt];
|
||
|
|
||
|
if (!prev_level) { /* leaf/processor node */
|
||
|
memcpy(flpi, t, sizeof(*t));
|
||
|
stash_composite_state(curr_level, flpi);
|
||
|
flat_state_cnt++;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < prev_level->composite_states_size; i++) {
|
||
|
p = prev_level->composite_states[i];
|
||
|
if (t->index <= p->enable_parent_state &&
|
||
|
combine_lpi_states(p, t, flpi)) {
|
||
|
stash_composite_state(curr_level, flpi);
|
||
|
flat_state_cnt++;
|
||
|
flpi++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
kfree(curr_level->entries);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
|
||
|
{
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
|
||
|
static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
|
||
|
{
|
||
|
int ret, i;
|
||
|
acpi_status status;
|
||
|
acpi_handle handle = pr->handle, pr_ahandle;
|
||
|
struct acpi_device *d = NULL;
|
||
|
struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
|
||
|
|
||
|
/* make sure our architecture has support */
|
||
|
ret = acpi_processor_ffh_lpi_probe(pr->id);
|
||
|
if (ret == -EOPNOTSUPP)
|
||
|
return ret;
|
||
|
|
||
|
if (!osc_pc_lpi_support_confirmed)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
if (!acpi_has_method(handle, "_LPI"))
|
||
|
return -EINVAL;
|
||
|
|
||
|
flat_state_cnt = 0;
|
||
|
prev = &info[0];
|
||
|
curr = &info[1];
|
||
|
handle = pr->handle;
|
||
|
ret = acpi_processor_evaluate_lpi(handle, prev);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
flatten_lpi_states(pr, prev, NULL);
|
||
|
|
||
|
status = acpi_get_parent(handle, &pr_ahandle);
|
||
|
while (ACPI_SUCCESS(status)) {
|
||
|
d = acpi_fetch_acpi_dev(pr_ahandle);
|
||
|
if (!d)
|
||
|
break;
|
||
|
|
||
|
handle = pr_ahandle;
|
||
|
|
||
|
if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
|
||
|
break;
|
||
|
|
||
|
/* can be optional ? */
|
||
|
if (!acpi_has_method(handle, "_LPI"))
|
||
|
break;
|
||
|
|
||
|
ret = acpi_processor_evaluate_lpi(handle, curr);
|
||
|
if (ret)
|
||
|
break;
|
||
|
|
||
|
/* flatten all the LPI states in this level of hierarchy */
|
||
|
flatten_lpi_states(pr, curr, prev);
|
||
|
|
||
|
tmp = prev, prev = curr, curr = tmp;
|
||
|
|
||
|
status = acpi_get_parent(handle, &pr_ahandle);
|
||
|
}
|
||
|
|
||
|
pr->power.count = flat_state_cnt;
|
||
|
/* reset the index after flattening */
|
||
|
for (i = 0; i < pr->power.count; i++)
|
||
|
pr->power.lpi_states[i].index = i;
|
||
|
|
||
|
/* Tell driver that _LPI is supported. */
|
||
|
pr->flags.has_lpi = 1;
|
||
|
pr->flags.power = 1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
|
||
|
{
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* acpi_idle_lpi_enter - enters an ACPI any LPI state
|
||
|
* @dev: the target CPU
|
||
|
* @drv: cpuidle driver containing cpuidle state info
|
||
|
* @index: index of target state
|
||
|
*
|
||
|
* Return: 0 for success or negative value for error
|
||
|
*/
|
||
|
static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
|
||
|
struct cpuidle_driver *drv, int index)
|
||
|
{
|
||
|
struct acpi_processor *pr;
|
||
|
struct acpi_lpi_state *lpi;
|
||
|
|
||
|
pr = __this_cpu_read(processors);
|
||
|
|
||
|
if (unlikely(!pr))
|
||
|
return -EINVAL;
|
||
|
|
||
|
lpi = &pr->power.lpi_states[index];
|
||
|
if (lpi->entry_method == ACPI_CSTATE_FFH)
|
||
|
return acpi_processor_ffh_lpi_enter(lpi);
|
||
|
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
|
||
|
{
|
||
|
int i;
|
||
|
struct acpi_lpi_state *lpi;
|
||
|
struct cpuidle_state *state;
|
||
|
struct cpuidle_driver *drv = &acpi_idle_driver;
|
||
|
|
||
|
if (!pr->flags.has_lpi)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
|
||
|
lpi = &pr->power.lpi_states[i];
|
||
|
|
||
|
state = &drv->states[i];
|
||
|
snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
|
||
|
strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
|
||
|
state->exit_latency = lpi->wake_latency;
|
||
|
state->target_residency = lpi->min_residency;
|
||
|
if (lpi->arch_flags)
|
||
|
state->flags |= CPUIDLE_FLAG_TIMER_STOP;
|
||
|
state->enter = acpi_idle_lpi_enter;
|
||
|
drv->safe_state_index = i;
|
||
|
}
|
||
|
|
||
|
drv->state_count = i;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
|
||
|
* global state data i.e. idle routines
|
||
|
*
|
||
|
* @pr: the ACPI processor
|
||
|
*/
|
||
|
static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
|
||
|
{
|
||
|
int i;
|
||
|
struct cpuidle_driver *drv = &acpi_idle_driver;
|
||
|
|
||
|
if (!pr->flags.power_setup_done || !pr->flags.power)
|
||
|
return -EINVAL;
|
||
|
|
||
|
drv->safe_state_index = -1;
|
||
|
for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
|
||
|
drv->states[i].name[0] = '\0';
|
||
|
drv->states[i].desc[0] = '\0';
|
||
|
}
|
||
|
|
||
|
if (pr->flags.has_lpi)
|
||
|
return acpi_processor_setup_lpi_states(pr);
|
||
|
|
||
|
return acpi_processor_setup_cstates(pr);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
|
||
|
* device i.e. per-cpu data
|
||
|
*
|
||
|
* @pr: the ACPI processor
|
||
|
* @dev : the cpuidle device
|
||
|
*/
|
||
|
static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
|
||
|
struct cpuidle_device *dev)
|
||
|
{
|
||
|
if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
|
||
|
return -EINVAL;
|
||
|
|
||
|
dev->cpu = pr->id;
|
||
|
if (pr->flags.has_lpi)
|
||
|
return acpi_processor_ffh_lpi_probe(pr->id);
|
||
|
|
||
|
return acpi_processor_setup_cpuidle_cx(pr, dev);
|
||
|
}
|
||
|
|
||
|
static int acpi_processor_get_power_info(struct acpi_processor *pr)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = acpi_processor_get_lpi_info(pr);
|
||
|
if (ret)
|
||
|
ret = acpi_processor_get_cstate_info(pr);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int acpi_processor_hotplug(struct acpi_processor *pr)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
struct cpuidle_device *dev;
|
||
|
|
||
|
if (disabled_by_idle_boot_param())
|
||
|
return 0;
|
||
|
|
||
|
if (!pr->flags.power_setup_done)
|
||
|
return -ENODEV;
|
||
|
|
||
|
dev = per_cpu(acpi_cpuidle_device, pr->id);
|
||
|
cpuidle_pause_and_lock();
|
||
|
cpuidle_disable_device(dev);
|
||
|
ret = acpi_processor_get_power_info(pr);
|
||
|
if (!ret && pr->flags.power) {
|
||
|
acpi_processor_setup_cpuidle_dev(pr, dev);
|
||
|
ret = cpuidle_enable_device(dev);
|
||
|
}
|
||
|
cpuidle_resume_and_unlock();
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
|
||
|
{
|
||
|
int cpu;
|
||
|
struct acpi_processor *_pr;
|
||
|
struct cpuidle_device *dev;
|
||
|
|
||
|
if (disabled_by_idle_boot_param())
|
||
|
return 0;
|
||
|
|
||
|
if (!pr->flags.power_setup_done)
|
||
|
return -ENODEV;
|
||
|
|
||
|
/*
|
||
|
* FIXME: Design the ACPI notification to make it once per
|
||
|
* system instead of once per-cpu. This condition is a hack
|
||
|
* to make the code that updates C-States be called once.
|
||
|
*/
|
||
|
|
||
|
if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
|
||
|
|
||
|
/* Protect against cpu-hotplug */
|
||
|
cpus_read_lock();
|
||
|
cpuidle_pause_and_lock();
|
||
|
|
||
|
/* Disable all cpuidle devices */
|
||
|
for_each_online_cpu(cpu) {
|
||
|
_pr = per_cpu(processors, cpu);
|
||
|
if (!_pr || !_pr->flags.power_setup_done)
|
||
|
continue;
|
||
|
dev = per_cpu(acpi_cpuidle_device, cpu);
|
||
|
cpuidle_disable_device(dev);
|
||
|
}
|
||
|
|
||
|
/* Populate Updated C-state information */
|
||
|
acpi_processor_get_power_info(pr);
|
||
|
acpi_processor_setup_cpuidle_states(pr);
|
||
|
|
||
|
/* Enable all cpuidle devices */
|
||
|
for_each_online_cpu(cpu) {
|
||
|
_pr = per_cpu(processors, cpu);
|
||
|
if (!_pr || !_pr->flags.power_setup_done)
|
||
|
continue;
|
||
|
acpi_processor_get_power_info(_pr);
|
||
|
if (_pr->flags.power) {
|
||
|
dev = per_cpu(acpi_cpuidle_device, cpu);
|
||
|
acpi_processor_setup_cpuidle_dev(_pr, dev);
|
||
|
cpuidle_enable_device(dev);
|
||
|
}
|
||
|
}
|
||
|
cpuidle_resume_and_unlock();
|
||
|
cpus_read_unlock();
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int acpi_processor_registered;
|
||
|
|
||
|
int acpi_processor_power_init(struct acpi_processor *pr)
|
||
|
{
|
||
|
int retval;
|
||
|
struct cpuidle_device *dev;
|
||
|
|
||
|
if (disabled_by_idle_boot_param())
|
||
|
return 0;
|
||
|
|
||
|
acpi_processor_cstate_first_run_checks();
|
||
|
|
||
|
if (!acpi_processor_get_power_info(pr))
|
||
|
pr->flags.power_setup_done = 1;
|
||
|
|
||
|
/*
|
||
|
* Install the idle handler if processor power management is supported.
|
||
|
* Note that we use previously set idle handler will be used on
|
||
|
* platforms that only support C1.
|
||
|
*/
|
||
|
if (pr->flags.power) {
|
||
|
/* Register acpi_idle_driver if not already registered */
|
||
|
if (!acpi_processor_registered) {
|
||
|
acpi_processor_setup_cpuidle_states(pr);
|
||
|
retval = cpuidle_register_driver(&acpi_idle_driver);
|
||
|
if (retval)
|
||
|
return retval;
|
||
|
pr_debug("%s registered with cpuidle\n",
|
||
|
acpi_idle_driver.name);
|
||
|
}
|
||
|
|
||
|
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
|
||
|
if (!dev)
|
||
|
return -ENOMEM;
|
||
|
per_cpu(acpi_cpuidle_device, pr->id) = dev;
|
||
|
|
||
|
acpi_processor_setup_cpuidle_dev(pr, dev);
|
||
|
|
||
|
/* Register per-cpu cpuidle_device. Cpuidle driver
|
||
|
* must already be registered before registering device
|
||
|
*/
|
||
|
retval = cpuidle_register_device(dev);
|
||
|
if (retval) {
|
||
|
if (acpi_processor_registered == 0)
|
||
|
cpuidle_unregister_driver(&acpi_idle_driver);
|
||
|
return retval;
|
||
|
}
|
||
|
acpi_processor_registered++;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int acpi_processor_power_exit(struct acpi_processor *pr)
|
||
|
{
|
||
|
struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
|
||
|
|
||
|
if (disabled_by_idle_boot_param())
|
||
|
return 0;
|
||
|
|
||
|
if (pr->flags.power) {
|
||
|
cpuidle_unregister_device(dev);
|
||
|
acpi_processor_registered--;
|
||
|
if (acpi_processor_registered == 0)
|
||
|
cpuidle_unregister_driver(&acpi_idle_driver);
|
||
|
}
|
||
|
|
||
|
pr->flags.power_setup_done = 0;
|
||
|
return 0;
|
||
|
}
|