495 lines
13 KiB
C
495 lines
13 KiB
C
|
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* Module Name: utmath - Integer math support routines
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include <acpi/acpi.h>
|
||
|
#include "accommon.h"
|
||
|
|
||
|
#define _COMPONENT ACPI_UTILITIES
|
||
|
ACPI_MODULE_NAME("utmath")
|
||
|
|
||
|
/* Structures used only for 64-bit divide */
|
||
|
typedef struct uint64_struct {
|
||
|
u32 lo;
|
||
|
u32 hi;
|
||
|
|
||
|
} uint64_struct;
|
||
|
|
||
|
typedef union uint64_overlay {
|
||
|
u64 full;
|
||
|
struct uint64_struct part;
|
||
|
|
||
|
} uint64_overlay;
|
||
|
|
||
|
/*
|
||
|
* Optional support for 64-bit double-precision integer multiply and shift.
|
||
|
* This code is configurable and is implemented in order to support 32-bit
|
||
|
* kernel environments where a 64-bit double-precision math library is not
|
||
|
* available.
|
||
|
*/
|
||
|
#ifndef ACPI_USE_NATIVE_MATH64
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ut_short_multiply
|
||
|
*
|
||
|
* PARAMETERS: multiplicand - 64-bit multiplicand
|
||
|
* multiplier - 32-bit multiplier
|
||
|
* out_product - Pointer to where the product is returned
|
||
|
*
|
||
|
* DESCRIPTION: Perform a short multiply.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
acpi_status
|
||
|
acpi_ut_short_multiply(u64 multiplicand, u32 multiplier, u64 *out_product)
|
||
|
{
|
||
|
union uint64_overlay multiplicand_ovl;
|
||
|
union uint64_overlay product;
|
||
|
u32 carry32;
|
||
|
|
||
|
ACPI_FUNCTION_TRACE(ut_short_multiply);
|
||
|
|
||
|
multiplicand_ovl.full = multiplicand;
|
||
|
|
||
|
/*
|
||
|
* The Product is 64 bits, the carry is always 32 bits,
|
||
|
* and is generated by the second multiply.
|
||
|
*/
|
||
|
ACPI_MUL_64_BY_32(0, multiplicand_ovl.part.hi, multiplier,
|
||
|
product.part.hi, carry32);
|
||
|
|
||
|
ACPI_MUL_64_BY_32(0, multiplicand_ovl.part.lo, multiplier,
|
||
|
product.part.lo, carry32);
|
||
|
|
||
|
product.part.hi += carry32;
|
||
|
|
||
|
/* Return only what was requested */
|
||
|
|
||
|
if (out_product) {
|
||
|
*out_product = product.full;
|
||
|
}
|
||
|
|
||
|
return_ACPI_STATUS(AE_OK);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ut_short_shift_left
|
||
|
*
|
||
|
* PARAMETERS: operand - 64-bit shift operand
|
||
|
* count - 32-bit shift count
|
||
|
* out_result - Pointer to where the result is returned
|
||
|
*
|
||
|
* DESCRIPTION: Perform a short left shift.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
acpi_status acpi_ut_short_shift_left(u64 operand, u32 count, u64 *out_result)
|
||
|
{
|
||
|
union uint64_overlay operand_ovl;
|
||
|
|
||
|
ACPI_FUNCTION_TRACE(ut_short_shift_left);
|
||
|
|
||
|
operand_ovl.full = operand;
|
||
|
|
||
|
if ((count & 63) >= 32) {
|
||
|
operand_ovl.part.hi = operand_ovl.part.lo;
|
||
|
operand_ovl.part.lo = 0;
|
||
|
count = (count & 63) - 32;
|
||
|
}
|
||
|
ACPI_SHIFT_LEFT_64_BY_32(operand_ovl.part.hi,
|
||
|
operand_ovl.part.lo, count);
|
||
|
|
||
|
/* Return only what was requested */
|
||
|
|
||
|
if (out_result) {
|
||
|
*out_result = operand_ovl.full;
|
||
|
}
|
||
|
|
||
|
return_ACPI_STATUS(AE_OK);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ut_short_shift_right
|
||
|
*
|
||
|
* PARAMETERS: operand - 64-bit shift operand
|
||
|
* count - 32-bit shift count
|
||
|
* out_result - Pointer to where the result is returned
|
||
|
*
|
||
|
* DESCRIPTION: Perform a short right shift.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
acpi_status acpi_ut_short_shift_right(u64 operand, u32 count, u64 *out_result)
|
||
|
{
|
||
|
union uint64_overlay operand_ovl;
|
||
|
|
||
|
ACPI_FUNCTION_TRACE(ut_short_shift_right);
|
||
|
|
||
|
operand_ovl.full = operand;
|
||
|
|
||
|
if ((count & 63) >= 32) {
|
||
|
operand_ovl.part.lo = operand_ovl.part.hi;
|
||
|
operand_ovl.part.hi = 0;
|
||
|
count = (count & 63) - 32;
|
||
|
}
|
||
|
ACPI_SHIFT_RIGHT_64_BY_32(operand_ovl.part.hi,
|
||
|
operand_ovl.part.lo, count);
|
||
|
|
||
|
/* Return only what was requested */
|
||
|
|
||
|
if (out_result) {
|
||
|
*out_result = operand_ovl.full;
|
||
|
}
|
||
|
|
||
|
return_ACPI_STATUS(AE_OK);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ut_short_multiply
|
||
|
*
|
||
|
* PARAMETERS: See function headers above
|
||
|
*
|
||
|
* DESCRIPTION: Native version of the ut_short_multiply function.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
acpi_status
|
||
|
acpi_ut_short_multiply(u64 multiplicand, u32 multiplier, u64 *out_product)
|
||
|
{
|
||
|
|
||
|
ACPI_FUNCTION_TRACE(ut_short_multiply);
|
||
|
|
||
|
/* Return only what was requested */
|
||
|
|
||
|
if (out_product) {
|
||
|
*out_product = multiplicand * multiplier;
|
||
|
}
|
||
|
|
||
|
return_ACPI_STATUS(AE_OK);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ut_short_shift_left
|
||
|
*
|
||
|
* PARAMETERS: See function headers above
|
||
|
*
|
||
|
* DESCRIPTION: Native version of the ut_short_shift_left function.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
acpi_status acpi_ut_short_shift_left(u64 operand, u32 count, u64 *out_result)
|
||
|
{
|
||
|
|
||
|
ACPI_FUNCTION_TRACE(ut_short_shift_left);
|
||
|
|
||
|
/* Return only what was requested */
|
||
|
|
||
|
if (out_result) {
|
||
|
*out_result = operand << count;
|
||
|
}
|
||
|
|
||
|
return_ACPI_STATUS(AE_OK);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ut_short_shift_right
|
||
|
*
|
||
|
* PARAMETERS: See function headers above
|
||
|
*
|
||
|
* DESCRIPTION: Native version of the ut_short_shift_right function.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
acpi_status acpi_ut_short_shift_right(u64 operand, u32 count, u64 *out_result)
|
||
|
{
|
||
|
|
||
|
ACPI_FUNCTION_TRACE(ut_short_shift_right);
|
||
|
|
||
|
/* Return only what was requested */
|
||
|
|
||
|
if (out_result) {
|
||
|
*out_result = operand >> count;
|
||
|
}
|
||
|
|
||
|
return_ACPI_STATUS(AE_OK);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Optional support for 64-bit double-precision integer divide. This code
|
||
|
* is configurable and is implemented in order to support 32-bit kernel
|
||
|
* environments where a 64-bit double-precision math library is not available.
|
||
|
*
|
||
|
* Support for a more normal 64-bit divide/modulo (with check for a divide-
|
||
|
* by-zero) appears after this optional section of code.
|
||
|
*/
|
||
|
#ifndef ACPI_USE_NATIVE_DIVIDE
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ut_short_divide
|
||
|
*
|
||
|
* PARAMETERS: dividend - 64-bit dividend
|
||
|
* divisor - 32-bit divisor
|
||
|
* out_quotient - Pointer to where the quotient is returned
|
||
|
* out_remainder - Pointer to where the remainder is returned
|
||
|
*
|
||
|
* RETURN: Status (Checks for divide-by-zero)
|
||
|
*
|
||
|
* DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits)
|
||
|
* divide and modulo. The result is a 64-bit quotient and a
|
||
|
* 32-bit remainder.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
acpi_status
|
||
|
acpi_ut_short_divide(u64 dividend,
|
||
|
u32 divisor, u64 *out_quotient, u32 *out_remainder)
|
||
|
{
|
||
|
union uint64_overlay dividend_ovl;
|
||
|
union uint64_overlay quotient;
|
||
|
u32 remainder32;
|
||
|
|
||
|
ACPI_FUNCTION_TRACE(ut_short_divide);
|
||
|
|
||
|
/* Always check for a zero divisor */
|
||
|
|
||
|
if (divisor == 0) {
|
||
|
ACPI_ERROR((AE_INFO, "Divide by zero"));
|
||
|
return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
|
||
|
}
|
||
|
|
||
|
dividend_ovl.full = dividend;
|
||
|
|
||
|
/*
|
||
|
* The quotient is 64 bits, the remainder is always 32 bits,
|
||
|
* and is generated by the second divide.
|
||
|
*/
|
||
|
ACPI_DIV_64_BY_32(0, dividend_ovl.part.hi, divisor,
|
||
|
quotient.part.hi, remainder32);
|
||
|
|
||
|
ACPI_DIV_64_BY_32(remainder32, dividend_ovl.part.lo, divisor,
|
||
|
quotient.part.lo, remainder32);
|
||
|
|
||
|
/* Return only what was requested */
|
||
|
|
||
|
if (out_quotient) {
|
||
|
*out_quotient = quotient.full;
|
||
|
}
|
||
|
if (out_remainder) {
|
||
|
*out_remainder = remainder32;
|
||
|
}
|
||
|
|
||
|
return_ACPI_STATUS(AE_OK);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ut_divide
|
||
|
*
|
||
|
* PARAMETERS: in_dividend - Dividend
|
||
|
* in_divisor - Divisor
|
||
|
* out_quotient - Pointer to where the quotient is returned
|
||
|
* out_remainder - Pointer to where the remainder is returned
|
||
|
*
|
||
|
* RETURN: Status (Checks for divide-by-zero)
|
||
|
*
|
||
|
* DESCRIPTION: Perform a divide and modulo.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
acpi_status
|
||
|
acpi_ut_divide(u64 in_dividend,
|
||
|
u64 in_divisor, u64 *out_quotient, u64 *out_remainder)
|
||
|
{
|
||
|
union uint64_overlay dividend;
|
||
|
union uint64_overlay divisor;
|
||
|
union uint64_overlay quotient;
|
||
|
union uint64_overlay remainder;
|
||
|
union uint64_overlay normalized_dividend;
|
||
|
union uint64_overlay normalized_divisor;
|
||
|
u32 partial1;
|
||
|
union uint64_overlay partial2;
|
||
|
union uint64_overlay partial3;
|
||
|
|
||
|
ACPI_FUNCTION_TRACE(ut_divide);
|
||
|
|
||
|
/* Always check for a zero divisor */
|
||
|
|
||
|
if (in_divisor == 0) {
|
||
|
ACPI_ERROR((AE_INFO, "Divide by zero"));
|
||
|
return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
|
||
|
}
|
||
|
|
||
|
divisor.full = in_divisor;
|
||
|
dividend.full = in_dividend;
|
||
|
if (divisor.part.hi == 0) {
|
||
|
/*
|
||
|
* 1) Simplest case is where the divisor is 32 bits, we can
|
||
|
* just do two divides
|
||
|
*/
|
||
|
remainder.part.hi = 0;
|
||
|
|
||
|
/*
|
||
|
* The quotient is 64 bits, the remainder is always 32 bits,
|
||
|
* and is generated by the second divide.
|
||
|
*/
|
||
|
ACPI_DIV_64_BY_32(0, dividend.part.hi, divisor.part.lo,
|
||
|
quotient.part.hi, partial1);
|
||
|
|
||
|
ACPI_DIV_64_BY_32(partial1, dividend.part.lo, divisor.part.lo,
|
||
|
quotient.part.lo, remainder.part.lo);
|
||
|
}
|
||
|
|
||
|
else {
|
||
|
/*
|
||
|
* 2) The general case where the divisor is a full 64 bits
|
||
|
* is more difficult
|
||
|
*/
|
||
|
quotient.part.hi = 0;
|
||
|
normalized_dividend = dividend;
|
||
|
normalized_divisor = divisor;
|
||
|
|
||
|
/* Normalize the operands (shift until the divisor is < 32 bits) */
|
||
|
|
||
|
do {
|
||
|
ACPI_SHIFT_RIGHT_64(normalized_divisor.part.hi,
|
||
|
normalized_divisor.part.lo);
|
||
|
ACPI_SHIFT_RIGHT_64(normalized_dividend.part.hi,
|
||
|
normalized_dividend.part.lo);
|
||
|
|
||
|
} while (normalized_divisor.part.hi != 0);
|
||
|
|
||
|
/* Partial divide */
|
||
|
|
||
|
ACPI_DIV_64_BY_32(normalized_dividend.part.hi,
|
||
|
normalized_dividend.part.lo,
|
||
|
normalized_divisor.part.lo, quotient.part.lo,
|
||
|
partial1);
|
||
|
|
||
|
/*
|
||
|
* The quotient is always 32 bits, and simply requires
|
||
|
* adjustment. The 64-bit remainder must be generated.
|
||
|
*/
|
||
|
partial1 = quotient.part.lo * divisor.part.hi;
|
||
|
partial2.full = (u64) quotient.part.lo * divisor.part.lo;
|
||
|
partial3.full = (u64) partial2.part.hi + partial1;
|
||
|
|
||
|
remainder.part.hi = partial3.part.lo;
|
||
|
remainder.part.lo = partial2.part.lo;
|
||
|
|
||
|
if (partial3.part.hi == 0) {
|
||
|
if (partial3.part.lo >= dividend.part.hi) {
|
||
|
if (partial3.part.lo == dividend.part.hi) {
|
||
|
if (partial2.part.lo > dividend.part.lo) {
|
||
|
quotient.part.lo--;
|
||
|
remainder.full -= divisor.full;
|
||
|
}
|
||
|
} else {
|
||
|
quotient.part.lo--;
|
||
|
remainder.full -= divisor.full;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
remainder.full = remainder.full - dividend.full;
|
||
|
remainder.part.hi = (u32)-((s32)remainder.part.hi);
|
||
|
remainder.part.lo = (u32)-((s32)remainder.part.lo);
|
||
|
|
||
|
if (remainder.part.lo) {
|
||
|
remainder.part.hi--;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Return only what was requested */
|
||
|
|
||
|
if (out_quotient) {
|
||
|
*out_quotient = quotient.full;
|
||
|
}
|
||
|
if (out_remainder) {
|
||
|
*out_remainder = remainder.full;
|
||
|
}
|
||
|
|
||
|
return_ACPI_STATUS(AE_OK);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ut_short_divide, acpi_ut_divide
|
||
|
*
|
||
|
* PARAMETERS: See function headers above
|
||
|
*
|
||
|
* DESCRIPTION: Native versions of the ut_divide functions. Use these if either
|
||
|
* 1) The target is a 64-bit platform and therefore 64-bit
|
||
|
* integer math is supported directly by the machine.
|
||
|
* 2) The target is a 32-bit or 16-bit platform, and the
|
||
|
* double-precision integer math library is available to
|
||
|
* perform the divide.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
acpi_status
|
||
|
acpi_ut_short_divide(u64 in_dividend,
|
||
|
u32 divisor, u64 *out_quotient, u32 *out_remainder)
|
||
|
{
|
||
|
|
||
|
ACPI_FUNCTION_TRACE(ut_short_divide);
|
||
|
|
||
|
/* Always check for a zero divisor */
|
||
|
|
||
|
if (divisor == 0) {
|
||
|
ACPI_ERROR((AE_INFO, "Divide by zero"));
|
||
|
return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
|
||
|
}
|
||
|
|
||
|
/* Return only what was requested */
|
||
|
|
||
|
if (out_quotient) {
|
||
|
*out_quotient = in_dividend / divisor;
|
||
|
}
|
||
|
if (out_remainder) {
|
||
|
*out_remainder = (u32) (in_dividend % divisor);
|
||
|
}
|
||
|
|
||
|
return_ACPI_STATUS(AE_OK);
|
||
|
}
|
||
|
|
||
|
acpi_status
|
||
|
acpi_ut_divide(u64 in_dividend,
|
||
|
u64 in_divisor, u64 *out_quotient, u64 *out_remainder)
|
||
|
{
|
||
|
ACPI_FUNCTION_TRACE(ut_divide);
|
||
|
|
||
|
/* Always check for a zero divisor */
|
||
|
|
||
|
if (in_divisor == 0) {
|
||
|
ACPI_ERROR((AE_INFO, "Divide by zero"));
|
||
|
return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
|
||
|
}
|
||
|
|
||
|
/* Return only what was requested */
|
||
|
|
||
|
if (out_quotient) {
|
||
|
*out_quotient = in_dividend / in_divisor;
|
||
|
}
|
||
|
if (out_remainder) {
|
||
|
*out_remainder = in_dividend % in_divisor;
|
||
|
}
|
||
|
|
||
|
return_ACPI_STATUS(AE_OK);
|
||
|
}
|
||
|
|
||
|
#endif
|