1485 lines
42 KiB
C
1485 lines
42 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* kvm nested virtualization support for s390x
|
||
|
*
|
||
|
* Copyright IBM Corp. 2016, 2018
|
||
|
*
|
||
|
* Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com>
|
||
|
*/
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/kvm_host.h>
|
||
|
#include <linux/bug.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/bitmap.h>
|
||
|
#include <linux/sched/signal.h>
|
||
|
|
||
|
#include <asm/gmap.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
#include <asm/sclp.h>
|
||
|
#include <asm/nmi.h>
|
||
|
#include <asm/dis.h>
|
||
|
#include <asm/fpu/api.h>
|
||
|
#include "kvm-s390.h"
|
||
|
#include "gaccess.h"
|
||
|
|
||
|
struct vsie_page {
|
||
|
struct kvm_s390_sie_block scb_s; /* 0x0000 */
|
||
|
/*
|
||
|
* the backup info for machine check. ensure it's at
|
||
|
* the same offset as that in struct sie_page!
|
||
|
*/
|
||
|
struct mcck_volatile_info mcck_info; /* 0x0200 */
|
||
|
/*
|
||
|
* The pinned original scb. Be aware that other VCPUs can modify
|
||
|
* it while we read from it. Values that are used for conditions or
|
||
|
* are reused conditionally, should be accessed via READ_ONCE.
|
||
|
*/
|
||
|
struct kvm_s390_sie_block *scb_o; /* 0x0218 */
|
||
|
/* the shadow gmap in use by the vsie_page */
|
||
|
struct gmap *gmap; /* 0x0220 */
|
||
|
/* address of the last reported fault to guest2 */
|
||
|
unsigned long fault_addr; /* 0x0228 */
|
||
|
/* calculated guest addresses of satellite control blocks */
|
||
|
gpa_t sca_gpa; /* 0x0230 */
|
||
|
gpa_t itdba_gpa; /* 0x0238 */
|
||
|
gpa_t gvrd_gpa; /* 0x0240 */
|
||
|
gpa_t riccbd_gpa; /* 0x0248 */
|
||
|
gpa_t sdnx_gpa; /* 0x0250 */
|
||
|
__u8 reserved[0x0700 - 0x0258]; /* 0x0258 */
|
||
|
struct kvm_s390_crypto_cb crycb; /* 0x0700 */
|
||
|
__u8 fac[S390_ARCH_FAC_LIST_SIZE_BYTE]; /* 0x0800 */
|
||
|
};
|
||
|
|
||
|
/* trigger a validity icpt for the given scb */
|
||
|
static int set_validity_icpt(struct kvm_s390_sie_block *scb,
|
||
|
__u16 reason_code)
|
||
|
{
|
||
|
scb->ipa = 0x1000;
|
||
|
scb->ipb = ((__u32) reason_code) << 16;
|
||
|
scb->icptcode = ICPT_VALIDITY;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* mark the prefix as unmapped, this will block the VSIE */
|
||
|
static void prefix_unmapped(struct vsie_page *vsie_page)
|
||
|
{
|
||
|
atomic_or(PROG_REQUEST, &vsie_page->scb_s.prog20);
|
||
|
}
|
||
|
|
||
|
/* mark the prefix as unmapped and wait until the VSIE has been left */
|
||
|
static void prefix_unmapped_sync(struct vsie_page *vsie_page)
|
||
|
{
|
||
|
prefix_unmapped(vsie_page);
|
||
|
if (vsie_page->scb_s.prog0c & PROG_IN_SIE)
|
||
|
atomic_or(CPUSTAT_STOP_INT, &vsie_page->scb_s.cpuflags);
|
||
|
while (vsie_page->scb_s.prog0c & PROG_IN_SIE)
|
||
|
cpu_relax();
|
||
|
}
|
||
|
|
||
|
/* mark the prefix as mapped, this will allow the VSIE to run */
|
||
|
static void prefix_mapped(struct vsie_page *vsie_page)
|
||
|
{
|
||
|
atomic_andnot(PROG_REQUEST, &vsie_page->scb_s.prog20);
|
||
|
}
|
||
|
|
||
|
/* test if the prefix is mapped into the gmap shadow */
|
||
|
static int prefix_is_mapped(struct vsie_page *vsie_page)
|
||
|
{
|
||
|
return !(atomic_read(&vsie_page->scb_s.prog20) & PROG_REQUEST);
|
||
|
}
|
||
|
|
||
|
/* copy the updated intervention request bits into the shadow scb */
|
||
|
static void update_intervention_requests(struct vsie_page *vsie_page)
|
||
|
{
|
||
|
const int bits = CPUSTAT_STOP_INT | CPUSTAT_IO_INT | CPUSTAT_EXT_INT;
|
||
|
int cpuflags;
|
||
|
|
||
|
cpuflags = atomic_read(&vsie_page->scb_o->cpuflags);
|
||
|
atomic_andnot(bits, &vsie_page->scb_s.cpuflags);
|
||
|
atomic_or(cpuflags & bits, &vsie_page->scb_s.cpuflags);
|
||
|
}
|
||
|
|
||
|
/* shadow (filter and validate) the cpuflags */
|
||
|
static int prepare_cpuflags(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||
|
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
|
||
|
int newflags, cpuflags = atomic_read(&scb_o->cpuflags);
|
||
|
|
||
|
/* we don't allow ESA/390 guests */
|
||
|
if (!(cpuflags & CPUSTAT_ZARCH))
|
||
|
return set_validity_icpt(scb_s, 0x0001U);
|
||
|
|
||
|
if (cpuflags & (CPUSTAT_RRF | CPUSTAT_MCDS))
|
||
|
return set_validity_icpt(scb_s, 0x0001U);
|
||
|
else if (cpuflags & (CPUSTAT_SLSV | CPUSTAT_SLSR))
|
||
|
return set_validity_icpt(scb_s, 0x0007U);
|
||
|
|
||
|
/* intervention requests will be set later */
|
||
|
newflags = CPUSTAT_ZARCH;
|
||
|
if (cpuflags & CPUSTAT_GED && test_kvm_facility(vcpu->kvm, 8))
|
||
|
newflags |= CPUSTAT_GED;
|
||
|
if (cpuflags & CPUSTAT_GED2 && test_kvm_facility(vcpu->kvm, 78)) {
|
||
|
if (cpuflags & CPUSTAT_GED)
|
||
|
return set_validity_icpt(scb_s, 0x0001U);
|
||
|
newflags |= CPUSTAT_GED2;
|
||
|
}
|
||
|
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GPERE))
|
||
|
newflags |= cpuflags & CPUSTAT_P;
|
||
|
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GSLS))
|
||
|
newflags |= cpuflags & CPUSTAT_SM;
|
||
|
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IBS))
|
||
|
newflags |= cpuflags & CPUSTAT_IBS;
|
||
|
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_KSS))
|
||
|
newflags |= cpuflags & CPUSTAT_KSS;
|
||
|
|
||
|
atomic_set(&scb_s->cpuflags, newflags);
|
||
|
return 0;
|
||
|
}
|
||
|
/* Copy to APCB FORMAT1 from APCB FORMAT0 */
|
||
|
static int setup_apcb10(struct kvm_vcpu *vcpu, struct kvm_s390_apcb1 *apcb_s,
|
||
|
unsigned long apcb_o, struct kvm_s390_apcb1 *apcb_h)
|
||
|
{
|
||
|
struct kvm_s390_apcb0 tmp;
|
||
|
|
||
|
if (read_guest_real(vcpu, apcb_o, &tmp, sizeof(struct kvm_s390_apcb0)))
|
||
|
return -EFAULT;
|
||
|
|
||
|
apcb_s->apm[0] = apcb_h->apm[0] & tmp.apm[0];
|
||
|
apcb_s->aqm[0] = apcb_h->aqm[0] & tmp.aqm[0] & 0xffff000000000000UL;
|
||
|
apcb_s->adm[0] = apcb_h->adm[0] & tmp.adm[0] & 0xffff000000000000UL;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* setup_apcb00 - Copy to APCB FORMAT0 from APCB FORMAT0
|
||
|
* @vcpu: pointer to the virtual CPU
|
||
|
* @apcb_s: pointer to start of apcb in the shadow crycb
|
||
|
* @apcb_o: pointer to start of original apcb in the guest2
|
||
|
* @apcb_h: pointer to start of apcb in the guest1
|
||
|
*
|
||
|
* Returns 0 and -EFAULT on error reading guest apcb
|
||
|
*/
|
||
|
static int setup_apcb00(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
|
||
|
unsigned long apcb_o, unsigned long *apcb_h)
|
||
|
{
|
||
|
if (read_guest_real(vcpu, apcb_o, apcb_s,
|
||
|
sizeof(struct kvm_s390_apcb0)))
|
||
|
return -EFAULT;
|
||
|
|
||
|
bitmap_and(apcb_s, apcb_s, apcb_h,
|
||
|
BITS_PER_BYTE * sizeof(struct kvm_s390_apcb0));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* setup_apcb11 - Copy the FORMAT1 APCB from the guest to the shadow CRYCB
|
||
|
* @vcpu: pointer to the virtual CPU
|
||
|
* @apcb_s: pointer to start of apcb in the shadow crycb
|
||
|
* @apcb_o: pointer to start of original guest apcb
|
||
|
* @apcb_h: pointer to start of apcb in the host
|
||
|
*
|
||
|
* Returns 0 and -EFAULT on error reading guest apcb
|
||
|
*/
|
||
|
static int setup_apcb11(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
|
||
|
unsigned long apcb_o,
|
||
|
unsigned long *apcb_h)
|
||
|
{
|
||
|
if (read_guest_real(vcpu, apcb_o, apcb_s,
|
||
|
sizeof(struct kvm_s390_apcb1)))
|
||
|
return -EFAULT;
|
||
|
|
||
|
bitmap_and(apcb_s, apcb_s, apcb_h,
|
||
|
BITS_PER_BYTE * sizeof(struct kvm_s390_apcb1));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* setup_apcb - Create a shadow copy of the apcb.
|
||
|
* @vcpu: pointer to the virtual CPU
|
||
|
* @crycb_s: pointer to shadow crycb
|
||
|
* @crycb_o: pointer to original guest crycb
|
||
|
* @crycb_h: pointer to the host crycb
|
||
|
* @fmt_o: format of the original guest crycb.
|
||
|
* @fmt_h: format of the host crycb.
|
||
|
*
|
||
|
* Checks the compatibility between the guest and host crycb and calls the
|
||
|
* appropriate copy function.
|
||
|
*
|
||
|
* Return 0 or an error number if the guest and host crycb are incompatible.
|
||
|
*/
|
||
|
static int setup_apcb(struct kvm_vcpu *vcpu, struct kvm_s390_crypto_cb *crycb_s,
|
||
|
const u32 crycb_o,
|
||
|
struct kvm_s390_crypto_cb *crycb_h,
|
||
|
int fmt_o, int fmt_h)
|
||
|
{
|
||
|
struct kvm_s390_crypto_cb *crycb;
|
||
|
|
||
|
crycb = (struct kvm_s390_crypto_cb *) (unsigned long)crycb_o;
|
||
|
|
||
|
switch (fmt_o) {
|
||
|
case CRYCB_FORMAT2:
|
||
|
if ((crycb_o & PAGE_MASK) != ((crycb_o + 256) & PAGE_MASK))
|
||
|
return -EACCES;
|
||
|
if (fmt_h != CRYCB_FORMAT2)
|
||
|
return -EINVAL;
|
||
|
return setup_apcb11(vcpu, (unsigned long *)&crycb_s->apcb1,
|
||
|
(unsigned long) &crycb->apcb1,
|
||
|
(unsigned long *)&crycb_h->apcb1);
|
||
|
case CRYCB_FORMAT1:
|
||
|
switch (fmt_h) {
|
||
|
case CRYCB_FORMAT2:
|
||
|
return setup_apcb10(vcpu, &crycb_s->apcb1,
|
||
|
(unsigned long) &crycb->apcb0,
|
||
|
&crycb_h->apcb1);
|
||
|
case CRYCB_FORMAT1:
|
||
|
return setup_apcb00(vcpu,
|
||
|
(unsigned long *) &crycb_s->apcb0,
|
||
|
(unsigned long) &crycb->apcb0,
|
||
|
(unsigned long *) &crycb_h->apcb0);
|
||
|
}
|
||
|
break;
|
||
|
case CRYCB_FORMAT0:
|
||
|
if ((crycb_o & PAGE_MASK) != ((crycb_o + 32) & PAGE_MASK))
|
||
|
return -EACCES;
|
||
|
|
||
|
switch (fmt_h) {
|
||
|
case CRYCB_FORMAT2:
|
||
|
return setup_apcb10(vcpu, &crycb_s->apcb1,
|
||
|
(unsigned long) &crycb->apcb0,
|
||
|
&crycb_h->apcb1);
|
||
|
case CRYCB_FORMAT1:
|
||
|
case CRYCB_FORMAT0:
|
||
|
return setup_apcb00(vcpu,
|
||
|
(unsigned long *) &crycb_s->apcb0,
|
||
|
(unsigned long) &crycb->apcb0,
|
||
|
(unsigned long *) &crycb_h->apcb0);
|
||
|
}
|
||
|
}
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* shadow_crycb - Create a shadow copy of the crycb block
|
||
|
* @vcpu: a pointer to the virtual CPU
|
||
|
* @vsie_page: a pointer to internal date used for the vSIE
|
||
|
*
|
||
|
* Create a shadow copy of the crycb block and setup key wrapping, if
|
||
|
* requested for guest 3 and enabled for guest 2.
|
||
|
*
|
||
|
* We accept format-1 or format-2, but we convert format-1 into format-2
|
||
|
* in the shadow CRYCB.
|
||
|
* Using format-2 enables the firmware to choose the right format when
|
||
|
* scheduling the SIE.
|
||
|
* There is nothing to do for format-0.
|
||
|
*
|
||
|
* This function centralize the issuing of set_validity_icpt() for all
|
||
|
* the subfunctions working on the crycb.
|
||
|
*
|
||
|
* Returns: - 0 if shadowed or nothing to do
|
||
|
* - > 0 if control has to be given to guest 2
|
||
|
*/
|
||
|
static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||
|
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
|
||
|
const uint32_t crycbd_o = READ_ONCE(scb_o->crycbd);
|
||
|
const u32 crycb_addr = crycbd_o & 0x7ffffff8U;
|
||
|
unsigned long *b1, *b2;
|
||
|
u8 ecb3_flags;
|
||
|
u32 ecd_flags;
|
||
|
int apie_h;
|
||
|
int apie_s;
|
||
|
int key_msk = test_kvm_facility(vcpu->kvm, 76);
|
||
|
int fmt_o = crycbd_o & CRYCB_FORMAT_MASK;
|
||
|
int fmt_h = vcpu->arch.sie_block->crycbd & CRYCB_FORMAT_MASK;
|
||
|
int ret = 0;
|
||
|
|
||
|
scb_s->crycbd = 0;
|
||
|
|
||
|
apie_h = vcpu->arch.sie_block->eca & ECA_APIE;
|
||
|
apie_s = apie_h & scb_o->eca;
|
||
|
if (!apie_s && (!key_msk || (fmt_o == CRYCB_FORMAT0)))
|
||
|
return 0;
|
||
|
|
||
|
if (!crycb_addr)
|
||
|
return set_validity_icpt(scb_s, 0x0039U);
|
||
|
|
||
|
if (fmt_o == CRYCB_FORMAT1)
|
||
|
if ((crycb_addr & PAGE_MASK) !=
|
||
|
((crycb_addr + 128) & PAGE_MASK))
|
||
|
return set_validity_icpt(scb_s, 0x003CU);
|
||
|
|
||
|
if (apie_s) {
|
||
|
ret = setup_apcb(vcpu, &vsie_page->crycb, crycb_addr,
|
||
|
vcpu->kvm->arch.crypto.crycb,
|
||
|
fmt_o, fmt_h);
|
||
|
if (ret)
|
||
|
goto end;
|
||
|
scb_s->eca |= scb_o->eca & ECA_APIE;
|
||
|
}
|
||
|
|
||
|
/* we may only allow it if enabled for guest 2 */
|
||
|
ecb3_flags = scb_o->ecb3 & vcpu->arch.sie_block->ecb3 &
|
||
|
(ECB3_AES | ECB3_DEA);
|
||
|
ecd_flags = scb_o->ecd & vcpu->arch.sie_block->ecd & ECD_ECC;
|
||
|
if (!ecb3_flags && !ecd_flags)
|
||
|
goto end;
|
||
|
|
||
|
/* copy only the wrapping keys */
|
||
|
if (read_guest_real(vcpu, crycb_addr + 72,
|
||
|
vsie_page->crycb.dea_wrapping_key_mask, 56))
|
||
|
return set_validity_icpt(scb_s, 0x0035U);
|
||
|
|
||
|
scb_s->ecb3 |= ecb3_flags;
|
||
|
scb_s->ecd |= ecd_flags;
|
||
|
|
||
|
/* xor both blocks in one run */
|
||
|
b1 = (unsigned long *) vsie_page->crycb.dea_wrapping_key_mask;
|
||
|
b2 = (unsigned long *)
|
||
|
vcpu->kvm->arch.crypto.crycb->dea_wrapping_key_mask;
|
||
|
/* as 56%8 == 0, bitmap_xor won't overwrite any data */
|
||
|
bitmap_xor(b1, b1, b2, BITS_PER_BYTE * 56);
|
||
|
end:
|
||
|
switch (ret) {
|
||
|
case -EINVAL:
|
||
|
return set_validity_icpt(scb_s, 0x0022U);
|
||
|
case -EFAULT:
|
||
|
return set_validity_icpt(scb_s, 0x0035U);
|
||
|
case -EACCES:
|
||
|
return set_validity_icpt(scb_s, 0x003CU);
|
||
|
}
|
||
|
scb_s->crycbd = ((__u32)(__u64) &vsie_page->crycb) | CRYCB_FORMAT2;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* shadow (round up/down) the ibc to avoid validity icpt */
|
||
|
static void prepare_ibc(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||
|
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
|
||
|
/* READ_ONCE does not work on bitfields - use a temporary variable */
|
||
|
const uint32_t __new_ibc = scb_o->ibc;
|
||
|
const uint32_t new_ibc = READ_ONCE(__new_ibc) & 0x0fffU;
|
||
|
__u64 min_ibc = (sclp.ibc >> 16) & 0x0fffU;
|
||
|
|
||
|
scb_s->ibc = 0;
|
||
|
/* ibc installed in g2 and requested for g3 */
|
||
|
if (vcpu->kvm->arch.model.ibc && new_ibc) {
|
||
|
scb_s->ibc = new_ibc;
|
||
|
/* takte care of the minimum ibc level of the machine */
|
||
|
if (scb_s->ibc < min_ibc)
|
||
|
scb_s->ibc = min_ibc;
|
||
|
/* take care of the maximum ibc level set for the guest */
|
||
|
if (scb_s->ibc > vcpu->kvm->arch.model.ibc)
|
||
|
scb_s->ibc = vcpu->kvm->arch.model.ibc;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* unshadow the scb, copying parameters back to the real scb */
|
||
|
static void unshadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||
|
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
|
||
|
|
||
|
/* interception */
|
||
|
scb_o->icptcode = scb_s->icptcode;
|
||
|
scb_o->icptstatus = scb_s->icptstatus;
|
||
|
scb_o->ipa = scb_s->ipa;
|
||
|
scb_o->ipb = scb_s->ipb;
|
||
|
scb_o->gbea = scb_s->gbea;
|
||
|
|
||
|
/* timer */
|
||
|
scb_o->cputm = scb_s->cputm;
|
||
|
scb_o->ckc = scb_s->ckc;
|
||
|
scb_o->todpr = scb_s->todpr;
|
||
|
|
||
|
/* guest state */
|
||
|
scb_o->gpsw = scb_s->gpsw;
|
||
|
scb_o->gg14 = scb_s->gg14;
|
||
|
scb_o->gg15 = scb_s->gg15;
|
||
|
memcpy(scb_o->gcr, scb_s->gcr, 128);
|
||
|
scb_o->pp = scb_s->pp;
|
||
|
|
||
|
/* branch prediction */
|
||
|
if (test_kvm_facility(vcpu->kvm, 82)) {
|
||
|
scb_o->fpf &= ~FPF_BPBC;
|
||
|
scb_o->fpf |= scb_s->fpf & FPF_BPBC;
|
||
|
}
|
||
|
|
||
|
/* interrupt intercept */
|
||
|
switch (scb_s->icptcode) {
|
||
|
case ICPT_PROGI:
|
||
|
case ICPT_INSTPROGI:
|
||
|
case ICPT_EXTINT:
|
||
|
memcpy((void *)((u64)scb_o + 0xc0),
|
||
|
(void *)((u64)scb_s + 0xc0), 0xf0 - 0xc0);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (scb_s->ihcpu != 0xffffU)
|
||
|
scb_o->ihcpu = scb_s->ihcpu;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Setup the shadow scb by copying and checking the relevant parts of the g2
|
||
|
* provided scb.
|
||
|
*
|
||
|
* Returns: - 0 if the scb has been shadowed
|
||
|
* - > 0 if control has to be given to guest 2
|
||
|
*/
|
||
|
static int shadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
|
||
|
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||
|
/* READ_ONCE does not work on bitfields - use a temporary variable */
|
||
|
const uint32_t __new_prefix = scb_o->prefix;
|
||
|
const uint32_t new_prefix = READ_ONCE(__new_prefix);
|
||
|
const bool wants_tx = READ_ONCE(scb_o->ecb) & ECB_TE;
|
||
|
bool had_tx = scb_s->ecb & ECB_TE;
|
||
|
unsigned long new_mso = 0;
|
||
|
int rc;
|
||
|
|
||
|
/* make sure we don't have any leftovers when reusing the scb */
|
||
|
scb_s->icptcode = 0;
|
||
|
scb_s->eca = 0;
|
||
|
scb_s->ecb = 0;
|
||
|
scb_s->ecb2 = 0;
|
||
|
scb_s->ecb3 = 0;
|
||
|
scb_s->ecd = 0;
|
||
|
scb_s->fac = 0;
|
||
|
scb_s->fpf = 0;
|
||
|
|
||
|
rc = prepare_cpuflags(vcpu, vsie_page);
|
||
|
if (rc)
|
||
|
goto out;
|
||
|
|
||
|
/* timer */
|
||
|
scb_s->cputm = scb_o->cputm;
|
||
|
scb_s->ckc = scb_o->ckc;
|
||
|
scb_s->todpr = scb_o->todpr;
|
||
|
scb_s->epoch = scb_o->epoch;
|
||
|
|
||
|
/* guest state */
|
||
|
scb_s->gpsw = scb_o->gpsw;
|
||
|
scb_s->gg14 = scb_o->gg14;
|
||
|
scb_s->gg15 = scb_o->gg15;
|
||
|
memcpy(scb_s->gcr, scb_o->gcr, 128);
|
||
|
scb_s->pp = scb_o->pp;
|
||
|
|
||
|
/* interception / execution handling */
|
||
|
scb_s->gbea = scb_o->gbea;
|
||
|
scb_s->lctl = scb_o->lctl;
|
||
|
scb_s->svcc = scb_o->svcc;
|
||
|
scb_s->ictl = scb_o->ictl;
|
||
|
/*
|
||
|
* SKEY handling functions can't deal with false setting of PTE invalid
|
||
|
* bits. Therefore we cannot provide interpretation and would later
|
||
|
* have to provide own emulation handlers.
|
||
|
*/
|
||
|
if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_KSS))
|
||
|
scb_s->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
|
||
|
|
||
|
scb_s->icpua = scb_o->icpua;
|
||
|
|
||
|
if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_SM))
|
||
|
new_mso = READ_ONCE(scb_o->mso) & 0xfffffffffff00000UL;
|
||
|
/* if the hva of the prefix changes, we have to remap the prefix */
|
||
|
if (scb_s->mso != new_mso || scb_s->prefix != new_prefix)
|
||
|
prefix_unmapped(vsie_page);
|
||
|
/* SIE will do mso/msl validity and exception checks for us */
|
||
|
scb_s->msl = scb_o->msl & 0xfffffffffff00000UL;
|
||
|
scb_s->mso = new_mso;
|
||
|
scb_s->prefix = new_prefix;
|
||
|
|
||
|
/* We have to definetly flush the tlb if this scb never ran */
|
||
|
if (scb_s->ihcpu != 0xffffU)
|
||
|
scb_s->ihcpu = scb_o->ihcpu;
|
||
|
|
||
|
/* MVPG and Protection Exception Interpretation are always available */
|
||
|
scb_s->eca |= scb_o->eca & (ECA_MVPGI | ECA_PROTEXCI);
|
||
|
/* Host-protection-interruption introduced with ESOP */
|
||
|
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_ESOP))
|
||
|
scb_s->ecb |= scb_o->ecb & ECB_HOSTPROTINT;
|
||
|
/*
|
||
|
* CPU Topology
|
||
|
* This facility only uses the utility field of the SCA and none of
|
||
|
* the cpu entries that are problematic with the other interpretation
|
||
|
* facilities so we can pass it through
|
||
|
*/
|
||
|
if (test_kvm_facility(vcpu->kvm, 11))
|
||
|
scb_s->ecb |= scb_o->ecb & ECB_PTF;
|
||
|
/* transactional execution */
|
||
|
if (test_kvm_facility(vcpu->kvm, 73) && wants_tx) {
|
||
|
/* remap the prefix is tx is toggled on */
|
||
|
if (!had_tx)
|
||
|
prefix_unmapped(vsie_page);
|
||
|
scb_s->ecb |= ECB_TE;
|
||
|
}
|
||
|
/* specification exception interpretation */
|
||
|
scb_s->ecb |= scb_o->ecb & ECB_SPECI;
|
||
|
/* branch prediction */
|
||
|
if (test_kvm_facility(vcpu->kvm, 82))
|
||
|
scb_s->fpf |= scb_o->fpf & FPF_BPBC;
|
||
|
/* SIMD */
|
||
|
if (test_kvm_facility(vcpu->kvm, 129)) {
|
||
|
scb_s->eca |= scb_o->eca & ECA_VX;
|
||
|
scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
|
||
|
}
|
||
|
/* Run-time-Instrumentation */
|
||
|
if (test_kvm_facility(vcpu->kvm, 64))
|
||
|
scb_s->ecb3 |= scb_o->ecb3 & ECB3_RI;
|
||
|
/* Instruction Execution Prevention */
|
||
|
if (test_kvm_facility(vcpu->kvm, 130))
|
||
|
scb_s->ecb2 |= scb_o->ecb2 & ECB2_IEP;
|
||
|
/* Guarded Storage */
|
||
|
if (test_kvm_facility(vcpu->kvm, 133)) {
|
||
|
scb_s->ecb |= scb_o->ecb & ECB_GS;
|
||
|
scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
|
||
|
}
|
||
|
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIIF))
|
||
|
scb_s->eca |= scb_o->eca & ECA_SII;
|
||
|
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IB))
|
||
|
scb_s->eca |= scb_o->eca & ECA_IB;
|
||
|
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_CEI))
|
||
|
scb_s->eca |= scb_o->eca & ECA_CEI;
|
||
|
/* Epoch Extension */
|
||
|
if (test_kvm_facility(vcpu->kvm, 139)) {
|
||
|
scb_s->ecd |= scb_o->ecd & ECD_MEF;
|
||
|
scb_s->epdx = scb_o->epdx;
|
||
|
}
|
||
|
|
||
|
/* etoken */
|
||
|
if (test_kvm_facility(vcpu->kvm, 156))
|
||
|
scb_s->ecd |= scb_o->ecd & ECD_ETOKENF;
|
||
|
|
||
|
scb_s->hpid = HPID_VSIE;
|
||
|
scb_s->cpnc = scb_o->cpnc;
|
||
|
|
||
|
prepare_ibc(vcpu, vsie_page);
|
||
|
rc = shadow_crycb(vcpu, vsie_page);
|
||
|
out:
|
||
|
if (rc)
|
||
|
unshadow_scb(vcpu, vsie_page);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
void kvm_s390_vsie_gmap_notifier(struct gmap *gmap, unsigned long start,
|
||
|
unsigned long end)
|
||
|
{
|
||
|
struct kvm *kvm = gmap->private;
|
||
|
struct vsie_page *cur;
|
||
|
unsigned long prefix;
|
||
|
struct page *page;
|
||
|
int i;
|
||
|
|
||
|
if (!gmap_is_shadow(gmap))
|
||
|
return;
|
||
|
if (start >= 1UL << 31)
|
||
|
/* We are only interested in prefix pages */
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Only new shadow blocks are added to the list during runtime,
|
||
|
* therefore we can safely reference them all the time.
|
||
|
*/
|
||
|
for (i = 0; i < kvm->arch.vsie.page_count; i++) {
|
||
|
page = READ_ONCE(kvm->arch.vsie.pages[i]);
|
||
|
if (!page)
|
||
|
continue;
|
||
|
cur = page_to_virt(page);
|
||
|
if (READ_ONCE(cur->gmap) != gmap)
|
||
|
continue;
|
||
|
prefix = cur->scb_s.prefix << GUEST_PREFIX_SHIFT;
|
||
|
/* with mso/msl, the prefix lies at an offset */
|
||
|
prefix += cur->scb_s.mso;
|
||
|
if (prefix <= end && start <= prefix + 2 * PAGE_SIZE - 1)
|
||
|
prefix_unmapped_sync(cur);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Map the first prefix page and if tx is enabled also the second prefix page.
|
||
|
*
|
||
|
* The prefix will be protected, a gmap notifier will inform about unmaps.
|
||
|
* The shadow scb must not be executed until the prefix is remapped, this is
|
||
|
* guaranteed by properly handling PROG_REQUEST.
|
||
|
*
|
||
|
* Returns: - 0 on if successfully mapped or already mapped
|
||
|
* - > 0 if control has to be given to guest 2
|
||
|
* - -EAGAIN if the caller can retry immediately
|
||
|
* - -ENOMEM if out of memory
|
||
|
*/
|
||
|
static int map_prefix(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||
|
u64 prefix = scb_s->prefix << GUEST_PREFIX_SHIFT;
|
||
|
int rc;
|
||
|
|
||
|
if (prefix_is_mapped(vsie_page))
|
||
|
return 0;
|
||
|
|
||
|
/* mark it as mapped so we can catch any concurrent unmappers */
|
||
|
prefix_mapped(vsie_page);
|
||
|
|
||
|
/* with mso/msl, the prefix lies at offset *mso* */
|
||
|
prefix += scb_s->mso;
|
||
|
|
||
|
rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, prefix, NULL);
|
||
|
if (!rc && (scb_s->ecb & ECB_TE))
|
||
|
rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
|
||
|
prefix + PAGE_SIZE, NULL);
|
||
|
/*
|
||
|
* We don't have to mprotect, we will be called for all unshadows.
|
||
|
* SIE will detect if protection applies and trigger a validity.
|
||
|
*/
|
||
|
if (rc)
|
||
|
prefix_unmapped(vsie_page);
|
||
|
if (rc > 0 || rc == -EFAULT)
|
||
|
rc = set_validity_icpt(scb_s, 0x0037U);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Pin the guest page given by gpa and set hpa to the pinned host address.
|
||
|
* Will always be pinned writable.
|
||
|
*
|
||
|
* Returns: - 0 on success
|
||
|
* - -EINVAL if the gpa is not valid guest storage
|
||
|
*/
|
||
|
static int pin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t *hpa)
|
||
|
{
|
||
|
struct page *page;
|
||
|
|
||
|
page = gfn_to_page(kvm, gpa_to_gfn(gpa));
|
||
|
if (is_error_page(page))
|
||
|
return -EINVAL;
|
||
|
*hpa = (hpa_t) page_to_virt(page) + (gpa & ~PAGE_MASK);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Unpins a page previously pinned via pin_guest_page, marking it as dirty. */
|
||
|
static void unpin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t hpa)
|
||
|
{
|
||
|
kvm_release_pfn_dirty(hpa >> PAGE_SHIFT);
|
||
|
/* mark the page always as dirty for migration */
|
||
|
mark_page_dirty(kvm, gpa_to_gfn(gpa));
|
||
|
}
|
||
|
|
||
|
/* unpin all blocks previously pinned by pin_blocks(), marking them dirty */
|
||
|
static void unpin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||
|
hpa_t hpa;
|
||
|
|
||
|
hpa = (u64) scb_s->scaoh << 32 | scb_s->scaol;
|
||
|
if (hpa) {
|
||
|
unpin_guest_page(vcpu->kvm, vsie_page->sca_gpa, hpa);
|
||
|
vsie_page->sca_gpa = 0;
|
||
|
scb_s->scaol = 0;
|
||
|
scb_s->scaoh = 0;
|
||
|
}
|
||
|
|
||
|
hpa = scb_s->itdba;
|
||
|
if (hpa) {
|
||
|
unpin_guest_page(vcpu->kvm, vsie_page->itdba_gpa, hpa);
|
||
|
vsie_page->itdba_gpa = 0;
|
||
|
scb_s->itdba = 0;
|
||
|
}
|
||
|
|
||
|
hpa = scb_s->gvrd;
|
||
|
if (hpa) {
|
||
|
unpin_guest_page(vcpu->kvm, vsie_page->gvrd_gpa, hpa);
|
||
|
vsie_page->gvrd_gpa = 0;
|
||
|
scb_s->gvrd = 0;
|
||
|
}
|
||
|
|
||
|
hpa = scb_s->riccbd;
|
||
|
if (hpa) {
|
||
|
unpin_guest_page(vcpu->kvm, vsie_page->riccbd_gpa, hpa);
|
||
|
vsie_page->riccbd_gpa = 0;
|
||
|
scb_s->riccbd = 0;
|
||
|
}
|
||
|
|
||
|
hpa = scb_s->sdnxo;
|
||
|
if (hpa) {
|
||
|
unpin_guest_page(vcpu->kvm, vsie_page->sdnx_gpa, hpa);
|
||
|
vsie_page->sdnx_gpa = 0;
|
||
|
scb_s->sdnxo = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Instead of shadowing some blocks, we can simply forward them because the
|
||
|
* addresses in the scb are 64 bit long.
|
||
|
*
|
||
|
* This works as long as the data lies in one page. If blocks ever exceed one
|
||
|
* page, we have to fall back to shadowing.
|
||
|
*
|
||
|
* As we reuse the sca, the vcpu pointers contained in it are invalid. We must
|
||
|
* therefore not enable any facilities that access these pointers (e.g. SIGPIF).
|
||
|
*
|
||
|
* Returns: - 0 if all blocks were pinned.
|
||
|
* - > 0 if control has to be given to guest 2
|
||
|
* - -ENOMEM if out of memory
|
||
|
*/
|
||
|
static int pin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
|
||
|
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||
|
hpa_t hpa;
|
||
|
gpa_t gpa;
|
||
|
int rc = 0;
|
||
|
|
||
|
gpa = READ_ONCE(scb_o->scaol) & ~0xfUL;
|
||
|
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_64BSCAO))
|
||
|
gpa |= (u64) READ_ONCE(scb_o->scaoh) << 32;
|
||
|
if (gpa) {
|
||
|
if (gpa < 2 * PAGE_SIZE)
|
||
|
rc = set_validity_icpt(scb_s, 0x0038U);
|
||
|
else if ((gpa & ~0x1fffUL) == kvm_s390_get_prefix(vcpu))
|
||
|
rc = set_validity_icpt(scb_s, 0x0011U);
|
||
|
else if ((gpa & PAGE_MASK) !=
|
||
|
((gpa + sizeof(struct bsca_block) - 1) & PAGE_MASK))
|
||
|
rc = set_validity_icpt(scb_s, 0x003bU);
|
||
|
if (!rc) {
|
||
|
rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
|
||
|
if (rc)
|
||
|
rc = set_validity_icpt(scb_s, 0x0034U);
|
||
|
}
|
||
|
if (rc)
|
||
|
goto unpin;
|
||
|
vsie_page->sca_gpa = gpa;
|
||
|
scb_s->scaoh = (u32)((u64)hpa >> 32);
|
||
|
scb_s->scaol = (u32)(u64)hpa;
|
||
|
}
|
||
|
|
||
|
gpa = READ_ONCE(scb_o->itdba) & ~0xffUL;
|
||
|
if (gpa && (scb_s->ecb & ECB_TE)) {
|
||
|
if (gpa < 2 * PAGE_SIZE) {
|
||
|
rc = set_validity_icpt(scb_s, 0x0080U);
|
||
|
goto unpin;
|
||
|
}
|
||
|
/* 256 bytes cannot cross page boundaries */
|
||
|
rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
|
||
|
if (rc) {
|
||
|
rc = set_validity_icpt(scb_s, 0x0080U);
|
||
|
goto unpin;
|
||
|
}
|
||
|
vsie_page->itdba_gpa = gpa;
|
||
|
scb_s->itdba = hpa;
|
||
|
}
|
||
|
|
||
|
gpa = READ_ONCE(scb_o->gvrd) & ~0x1ffUL;
|
||
|
if (gpa && (scb_s->eca & ECA_VX) && !(scb_s->ecd & ECD_HOSTREGMGMT)) {
|
||
|
if (gpa < 2 * PAGE_SIZE) {
|
||
|
rc = set_validity_icpt(scb_s, 0x1310U);
|
||
|
goto unpin;
|
||
|
}
|
||
|
/*
|
||
|
* 512 bytes vector registers cannot cross page boundaries
|
||
|
* if this block gets bigger, we have to shadow it.
|
||
|
*/
|
||
|
rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
|
||
|
if (rc) {
|
||
|
rc = set_validity_icpt(scb_s, 0x1310U);
|
||
|
goto unpin;
|
||
|
}
|
||
|
vsie_page->gvrd_gpa = gpa;
|
||
|
scb_s->gvrd = hpa;
|
||
|
}
|
||
|
|
||
|
gpa = READ_ONCE(scb_o->riccbd) & ~0x3fUL;
|
||
|
if (gpa && (scb_s->ecb3 & ECB3_RI)) {
|
||
|
if (gpa < 2 * PAGE_SIZE) {
|
||
|
rc = set_validity_icpt(scb_s, 0x0043U);
|
||
|
goto unpin;
|
||
|
}
|
||
|
/* 64 bytes cannot cross page boundaries */
|
||
|
rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
|
||
|
if (rc) {
|
||
|
rc = set_validity_icpt(scb_s, 0x0043U);
|
||
|
goto unpin;
|
||
|
}
|
||
|
/* Validity 0x0044 will be checked by SIE */
|
||
|
vsie_page->riccbd_gpa = gpa;
|
||
|
scb_s->riccbd = hpa;
|
||
|
}
|
||
|
if (((scb_s->ecb & ECB_GS) && !(scb_s->ecd & ECD_HOSTREGMGMT)) ||
|
||
|
(scb_s->ecd & ECD_ETOKENF)) {
|
||
|
unsigned long sdnxc;
|
||
|
|
||
|
gpa = READ_ONCE(scb_o->sdnxo) & ~0xfUL;
|
||
|
sdnxc = READ_ONCE(scb_o->sdnxo) & 0xfUL;
|
||
|
if (!gpa || gpa < 2 * PAGE_SIZE) {
|
||
|
rc = set_validity_icpt(scb_s, 0x10b0U);
|
||
|
goto unpin;
|
||
|
}
|
||
|
if (sdnxc < 6 || sdnxc > 12) {
|
||
|
rc = set_validity_icpt(scb_s, 0x10b1U);
|
||
|
goto unpin;
|
||
|
}
|
||
|
if (gpa & ((1 << sdnxc) - 1)) {
|
||
|
rc = set_validity_icpt(scb_s, 0x10b2U);
|
||
|
goto unpin;
|
||
|
}
|
||
|
/* Due to alignment rules (checked above) this cannot
|
||
|
* cross page boundaries
|
||
|
*/
|
||
|
rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
|
||
|
if (rc) {
|
||
|
rc = set_validity_icpt(scb_s, 0x10b0U);
|
||
|
goto unpin;
|
||
|
}
|
||
|
vsie_page->sdnx_gpa = gpa;
|
||
|
scb_s->sdnxo = hpa | sdnxc;
|
||
|
}
|
||
|
return 0;
|
||
|
unpin:
|
||
|
unpin_blocks(vcpu, vsie_page);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* unpin the scb provided by guest 2, marking it as dirty */
|
||
|
static void unpin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
|
||
|
gpa_t gpa)
|
||
|
{
|
||
|
hpa_t hpa = (hpa_t) vsie_page->scb_o;
|
||
|
|
||
|
if (hpa)
|
||
|
unpin_guest_page(vcpu->kvm, gpa, hpa);
|
||
|
vsie_page->scb_o = NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Pin the scb at gpa provided by guest 2 at vsie_page->scb_o.
|
||
|
*
|
||
|
* Returns: - 0 if the scb was pinned.
|
||
|
* - > 0 if control has to be given to guest 2
|
||
|
*/
|
||
|
static int pin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
|
||
|
gpa_t gpa)
|
||
|
{
|
||
|
hpa_t hpa;
|
||
|
int rc;
|
||
|
|
||
|
rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
|
||
|
if (rc) {
|
||
|
rc = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
|
||
|
WARN_ON_ONCE(rc);
|
||
|
return 1;
|
||
|
}
|
||
|
vsie_page->scb_o = (struct kvm_s390_sie_block *) hpa;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Inject a fault into guest 2.
|
||
|
*
|
||
|
* Returns: - > 0 if control has to be given to guest 2
|
||
|
* < 0 if an error occurred during injection.
|
||
|
*/
|
||
|
static int inject_fault(struct kvm_vcpu *vcpu, __u16 code, __u64 vaddr,
|
||
|
bool write_flag)
|
||
|
{
|
||
|
struct kvm_s390_pgm_info pgm = {
|
||
|
.code = code,
|
||
|
.trans_exc_code =
|
||
|
/* 0-51: virtual address */
|
||
|
(vaddr & 0xfffffffffffff000UL) |
|
||
|
/* 52-53: store / fetch */
|
||
|
(((unsigned int) !write_flag) + 1) << 10,
|
||
|
/* 62-63: asce id (alway primary == 0) */
|
||
|
.exc_access_id = 0, /* always primary */
|
||
|
.op_access_id = 0, /* not MVPG */
|
||
|
};
|
||
|
int rc;
|
||
|
|
||
|
if (code == PGM_PROTECTION)
|
||
|
pgm.trans_exc_code |= 0x4UL;
|
||
|
|
||
|
rc = kvm_s390_inject_prog_irq(vcpu, &pgm);
|
||
|
return rc ? rc : 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Handle a fault during vsie execution on a gmap shadow.
|
||
|
*
|
||
|
* Returns: - 0 if the fault was resolved
|
||
|
* - > 0 if control has to be given to guest 2
|
||
|
* - < 0 if an error occurred
|
||
|
*/
|
||
|
static int handle_fault(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
if (current->thread.gmap_int_code == PGM_PROTECTION)
|
||
|
/* we can directly forward all protection exceptions */
|
||
|
return inject_fault(vcpu, PGM_PROTECTION,
|
||
|
current->thread.gmap_addr, 1);
|
||
|
|
||
|
rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
|
||
|
current->thread.gmap_addr, NULL);
|
||
|
if (rc > 0) {
|
||
|
rc = inject_fault(vcpu, rc,
|
||
|
current->thread.gmap_addr,
|
||
|
current->thread.gmap_write_flag);
|
||
|
if (rc >= 0)
|
||
|
vsie_page->fault_addr = current->thread.gmap_addr;
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Retry the previous fault that required guest 2 intervention. This avoids
|
||
|
* one superfluous SIE re-entry and direct exit.
|
||
|
*
|
||
|
* Will ignore any errors. The next SIE fault will do proper fault handling.
|
||
|
*/
|
||
|
static void handle_last_fault(struct kvm_vcpu *vcpu,
|
||
|
struct vsie_page *vsie_page)
|
||
|
{
|
||
|
if (vsie_page->fault_addr)
|
||
|
kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
|
||
|
vsie_page->fault_addr, NULL);
|
||
|
vsie_page->fault_addr = 0;
|
||
|
}
|
||
|
|
||
|
static inline void clear_vsie_icpt(struct vsie_page *vsie_page)
|
||
|
{
|
||
|
vsie_page->scb_s.icptcode = 0;
|
||
|
}
|
||
|
|
||
|
/* rewind the psw and clear the vsie icpt, so we can retry execution */
|
||
|
static void retry_vsie_icpt(struct vsie_page *vsie_page)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||
|
int ilen = insn_length(scb_s->ipa >> 8);
|
||
|
|
||
|
/* take care of EXECUTE instructions */
|
||
|
if (scb_s->icptstatus & 1) {
|
||
|
ilen = (scb_s->icptstatus >> 4) & 0x6;
|
||
|
if (!ilen)
|
||
|
ilen = 4;
|
||
|
}
|
||
|
scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, ilen);
|
||
|
clear_vsie_icpt(vsie_page);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Try to shadow + enable the guest 2 provided facility list.
|
||
|
* Retry instruction execution if enabled for and provided by guest 2.
|
||
|
*
|
||
|
* Returns: - 0 if handled (retry or guest 2 icpt)
|
||
|
* - > 0 if control has to be given to guest 2
|
||
|
*/
|
||
|
static int handle_stfle(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||
|
__u32 fac = READ_ONCE(vsie_page->scb_o->fac) & 0x7ffffff8U;
|
||
|
|
||
|
if (fac && test_kvm_facility(vcpu->kvm, 7)) {
|
||
|
retry_vsie_icpt(vsie_page);
|
||
|
if (read_guest_real(vcpu, fac, &vsie_page->fac,
|
||
|
sizeof(vsie_page->fac)))
|
||
|
return set_validity_icpt(scb_s, 0x1090U);
|
||
|
scb_s->fac = (__u32)(__u64) &vsie_page->fac;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get a register for a nested guest.
|
||
|
* @vcpu the vcpu of the guest
|
||
|
* @vsie_page the vsie_page for the nested guest
|
||
|
* @reg the register number, the upper 4 bits are ignored.
|
||
|
* returns: the value of the register.
|
||
|
*/
|
||
|
static u64 vsie_get_register(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page, u8 reg)
|
||
|
{
|
||
|
/* no need to validate the parameter and/or perform error handling */
|
||
|
reg &= 0xf;
|
||
|
switch (reg) {
|
||
|
case 15:
|
||
|
return vsie_page->scb_s.gg15;
|
||
|
case 14:
|
||
|
return vsie_page->scb_s.gg14;
|
||
|
default:
|
||
|
return vcpu->run->s.regs.gprs[reg];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int vsie_handle_mvpg(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||
|
unsigned long pei_dest, pei_src, src, dest, mask, prefix;
|
||
|
u64 *pei_block = &vsie_page->scb_o->mcic;
|
||
|
int edat, rc_dest, rc_src;
|
||
|
union ctlreg0 cr0;
|
||
|
|
||
|
cr0.val = vcpu->arch.sie_block->gcr[0];
|
||
|
edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8);
|
||
|
mask = _kvm_s390_logical_to_effective(&scb_s->gpsw, PAGE_MASK);
|
||
|
prefix = scb_s->prefix << GUEST_PREFIX_SHIFT;
|
||
|
|
||
|
dest = vsie_get_register(vcpu, vsie_page, scb_s->ipb >> 20) & mask;
|
||
|
dest = _kvm_s390_real_to_abs(prefix, dest) + scb_s->mso;
|
||
|
src = vsie_get_register(vcpu, vsie_page, scb_s->ipb >> 16) & mask;
|
||
|
src = _kvm_s390_real_to_abs(prefix, src) + scb_s->mso;
|
||
|
|
||
|
rc_dest = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, dest, &pei_dest);
|
||
|
rc_src = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, src, &pei_src);
|
||
|
/*
|
||
|
* Either everything went well, or something non-critical went wrong
|
||
|
* e.g. because of a race. In either case, simply retry.
|
||
|
*/
|
||
|
if (rc_dest == -EAGAIN || rc_src == -EAGAIN || (!rc_dest && !rc_src)) {
|
||
|
retry_vsie_icpt(vsie_page);
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
/* Something more serious went wrong, propagate the error */
|
||
|
if (rc_dest < 0)
|
||
|
return rc_dest;
|
||
|
if (rc_src < 0)
|
||
|
return rc_src;
|
||
|
|
||
|
/* The only possible suppressing exception: just deliver it */
|
||
|
if (rc_dest == PGM_TRANSLATION_SPEC || rc_src == PGM_TRANSLATION_SPEC) {
|
||
|
clear_vsie_icpt(vsie_page);
|
||
|
rc_dest = kvm_s390_inject_program_int(vcpu, PGM_TRANSLATION_SPEC);
|
||
|
WARN_ON_ONCE(rc_dest);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Forward the PEI intercept to the guest if it was a page fault, or
|
||
|
* also for segment and region table faults if EDAT applies.
|
||
|
*/
|
||
|
if (edat) {
|
||
|
rc_dest = rc_dest == PGM_ASCE_TYPE ? rc_dest : 0;
|
||
|
rc_src = rc_src == PGM_ASCE_TYPE ? rc_src : 0;
|
||
|
} else {
|
||
|
rc_dest = rc_dest != PGM_PAGE_TRANSLATION ? rc_dest : 0;
|
||
|
rc_src = rc_src != PGM_PAGE_TRANSLATION ? rc_src : 0;
|
||
|
}
|
||
|
if (!rc_dest && !rc_src) {
|
||
|
pei_block[0] = pei_dest;
|
||
|
pei_block[1] = pei_src;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
retry_vsie_icpt(vsie_page);
|
||
|
|
||
|
/*
|
||
|
* The host has edat, and the guest does not, or it was an ASCE type
|
||
|
* exception. The host needs to inject the appropriate DAT interrupts
|
||
|
* into the guest.
|
||
|
*/
|
||
|
if (rc_dest)
|
||
|
return inject_fault(vcpu, rc_dest, dest, 1);
|
||
|
return inject_fault(vcpu, rc_src, src, 0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Run the vsie on a shadow scb and a shadow gmap, without any further
|
||
|
* sanity checks, handling SIE faults.
|
||
|
*
|
||
|
* Returns: - 0 everything went fine
|
||
|
* - > 0 if control has to be given to guest 2
|
||
|
* - < 0 if an error occurred
|
||
|
*/
|
||
|
static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
||
|
__releases(vcpu->kvm->srcu)
|
||
|
__acquires(vcpu->kvm->srcu)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||
|
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
|
||
|
int guest_bp_isolation;
|
||
|
int rc = 0;
|
||
|
|
||
|
handle_last_fault(vcpu, vsie_page);
|
||
|
|
||
|
kvm_vcpu_srcu_read_unlock(vcpu);
|
||
|
|
||
|
/* save current guest state of bp isolation override */
|
||
|
guest_bp_isolation = test_thread_flag(TIF_ISOLATE_BP_GUEST);
|
||
|
|
||
|
/*
|
||
|
* The guest is running with BPBC, so we have to force it on for our
|
||
|
* nested guest. This is done by enabling BPBC globally, so the BPBC
|
||
|
* control in the SCB (which the nested guest can modify) is simply
|
||
|
* ignored.
|
||
|
*/
|
||
|
if (test_kvm_facility(vcpu->kvm, 82) &&
|
||
|
vcpu->arch.sie_block->fpf & FPF_BPBC)
|
||
|
set_thread_flag(TIF_ISOLATE_BP_GUEST);
|
||
|
|
||
|
local_irq_disable();
|
||
|
guest_enter_irqoff();
|
||
|
local_irq_enable();
|
||
|
|
||
|
/*
|
||
|
* Simulate a SIE entry of the VCPU (see sie64a), so VCPU blocking
|
||
|
* and VCPU requests also hinder the vSIE from running and lead
|
||
|
* to an immediate exit. kvm_s390_vsie_kick() has to be used to
|
||
|
* also kick the vSIE.
|
||
|
*/
|
||
|
vcpu->arch.sie_block->prog0c |= PROG_IN_SIE;
|
||
|
barrier();
|
||
|
if (test_cpu_flag(CIF_FPU))
|
||
|
load_fpu_regs();
|
||
|
if (!kvm_s390_vcpu_sie_inhibited(vcpu))
|
||
|
rc = sie64a(scb_s, vcpu->run->s.regs.gprs);
|
||
|
barrier();
|
||
|
vcpu->arch.sie_block->prog0c &= ~PROG_IN_SIE;
|
||
|
|
||
|
local_irq_disable();
|
||
|
guest_exit_irqoff();
|
||
|
local_irq_enable();
|
||
|
|
||
|
/* restore guest state for bp isolation override */
|
||
|
if (!guest_bp_isolation)
|
||
|
clear_thread_flag(TIF_ISOLATE_BP_GUEST);
|
||
|
|
||
|
kvm_vcpu_srcu_read_lock(vcpu);
|
||
|
|
||
|
if (rc == -EINTR) {
|
||
|
VCPU_EVENT(vcpu, 3, "%s", "machine check");
|
||
|
kvm_s390_reinject_machine_check(vcpu, &vsie_page->mcck_info);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (rc > 0)
|
||
|
rc = 0; /* we could still have an icpt */
|
||
|
else if (rc == -EFAULT)
|
||
|
return handle_fault(vcpu, vsie_page);
|
||
|
|
||
|
switch (scb_s->icptcode) {
|
||
|
case ICPT_INST:
|
||
|
if (scb_s->ipa == 0xb2b0)
|
||
|
rc = handle_stfle(vcpu, vsie_page);
|
||
|
break;
|
||
|
case ICPT_STOP:
|
||
|
/* stop not requested by g2 - must have been a kick */
|
||
|
if (!(atomic_read(&scb_o->cpuflags) & CPUSTAT_STOP_INT))
|
||
|
clear_vsie_icpt(vsie_page);
|
||
|
break;
|
||
|
case ICPT_VALIDITY:
|
||
|
if ((scb_s->ipa & 0xf000) != 0xf000)
|
||
|
scb_s->ipa += 0x1000;
|
||
|
break;
|
||
|
case ICPT_PARTEXEC:
|
||
|
if (scb_s->ipa == 0xb254)
|
||
|
rc = vsie_handle_mvpg(vcpu, vsie_page);
|
||
|
break;
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void release_gmap_shadow(struct vsie_page *vsie_page)
|
||
|
{
|
||
|
if (vsie_page->gmap)
|
||
|
gmap_put(vsie_page->gmap);
|
||
|
WRITE_ONCE(vsie_page->gmap, NULL);
|
||
|
prefix_unmapped(vsie_page);
|
||
|
}
|
||
|
|
||
|
static int acquire_gmap_shadow(struct kvm_vcpu *vcpu,
|
||
|
struct vsie_page *vsie_page)
|
||
|
{
|
||
|
unsigned long asce;
|
||
|
union ctlreg0 cr0;
|
||
|
struct gmap *gmap;
|
||
|
int edat;
|
||
|
|
||
|
asce = vcpu->arch.sie_block->gcr[1];
|
||
|
cr0.val = vcpu->arch.sie_block->gcr[0];
|
||
|
edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8);
|
||
|
edat += edat && test_kvm_facility(vcpu->kvm, 78);
|
||
|
|
||
|
/*
|
||
|
* ASCE or EDAT could have changed since last icpt, or the gmap
|
||
|
* we're holding has been unshadowed. If the gmap is still valid,
|
||
|
* we can safely reuse it.
|
||
|
*/
|
||
|
if (vsie_page->gmap && gmap_shadow_valid(vsie_page->gmap, asce, edat))
|
||
|
return 0;
|
||
|
|
||
|
/* release the old shadow - if any, and mark the prefix as unmapped */
|
||
|
release_gmap_shadow(vsie_page);
|
||
|
gmap = gmap_shadow(vcpu->arch.gmap, asce, edat);
|
||
|
if (IS_ERR(gmap))
|
||
|
return PTR_ERR(gmap);
|
||
|
gmap->private = vcpu->kvm;
|
||
|
WRITE_ONCE(vsie_page->gmap, gmap);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Register the shadow scb at the VCPU, e.g. for kicking out of vsie.
|
||
|
*/
|
||
|
static void register_shadow_scb(struct kvm_vcpu *vcpu,
|
||
|
struct vsie_page *vsie_page)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||
|
|
||
|
WRITE_ONCE(vcpu->arch.vsie_block, &vsie_page->scb_s);
|
||
|
/*
|
||
|
* External calls have to lead to a kick of the vcpu and
|
||
|
* therefore the vsie -> Simulate Wait state.
|
||
|
*/
|
||
|
kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
|
||
|
/*
|
||
|
* We have to adjust the g3 epoch by the g2 epoch. The epoch will
|
||
|
* automatically be adjusted on tod clock changes via kvm_sync_clock.
|
||
|
*/
|
||
|
preempt_disable();
|
||
|
scb_s->epoch += vcpu->kvm->arch.epoch;
|
||
|
|
||
|
if (scb_s->ecd & ECD_MEF) {
|
||
|
scb_s->epdx += vcpu->kvm->arch.epdx;
|
||
|
if (scb_s->epoch < vcpu->kvm->arch.epoch)
|
||
|
scb_s->epdx += 1;
|
||
|
}
|
||
|
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Unregister a shadow scb from a VCPU.
|
||
|
*/
|
||
|
static void unregister_shadow_scb(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
|
||
|
WRITE_ONCE(vcpu->arch.vsie_block, NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Run the vsie on a shadowed scb, managing the gmap shadow, handling
|
||
|
* prefix pages and faults.
|
||
|
*
|
||
|
* Returns: - 0 if no errors occurred
|
||
|
* - > 0 if control has to be given to guest 2
|
||
|
* - -ENOMEM if out of memory
|
||
|
*/
|
||
|
static int vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||
|
int rc = 0;
|
||
|
|
||
|
while (1) {
|
||
|
rc = acquire_gmap_shadow(vcpu, vsie_page);
|
||
|
if (!rc)
|
||
|
rc = map_prefix(vcpu, vsie_page);
|
||
|
if (!rc) {
|
||
|
gmap_enable(vsie_page->gmap);
|
||
|
update_intervention_requests(vsie_page);
|
||
|
rc = do_vsie_run(vcpu, vsie_page);
|
||
|
gmap_enable(vcpu->arch.gmap);
|
||
|
}
|
||
|
atomic_andnot(PROG_BLOCK_SIE, &scb_s->prog20);
|
||
|
|
||
|
if (rc == -EAGAIN)
|
||
|
rc = 0;
|
||
|
if (rc || scb_s->icptcode || signal_pending(current) ||
|
||
|
kvm_s390_vcpu_has_irq(vcpu, 0) ||
|
||
|
kvm_s390_vcpu_sie_inhibited(vcpu))
|
||
|
break;
|
||
|
cond_resched();
|
||
|
}
|
||
|
|
||
|
if (rc == -EFAULT) {
|
||
|
/*
|
||
|
* Addressing exceptions are always presentes as intercepts.
|
||
|
* As addressing exceptions are suppressing and our guest 3 PSW
|
||
|
* points at the responsible instruction, we have to
|
||
|
* forward the PSW and set the ilc. If we can't read guest 3
|
||
|
* instruction, we can use an arbitrary ilc. Let's always use
|
||
|
* ilen = 4 for now, so we can avoid reading in guest 3 virtual
|
||
|
* memory. (we could also fake the shadow so the hardware
|
||
|
* handles it).
|
||
|
*/
|
||
|
scb_s->icptcode = ICPT_PROGI;
|
||
|
scb_s->iprcc = PGM_ADDRESSING;
|
||
|
scb_s->pgmilc = 4;
|
||
|
scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, 4);
|
||
|
rc = 1;
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get or create a vsie page for a scb address.
|
||
|
*
|
||
|
* Returns: - address of a vsie page (cached or new one)
|
||
|
* - NULL if the same scb address is already used by another VCPU
|
||
|
* - ERR_PTR(-ENOMEM) if out of memory
|
||
|
*/
|
||
|
static struct vsie_page *get_vsie_page(struct kvm *kvm, unsigned long addr)
|
||
|
{
|
||
|
struct vsie_page *vsie_page;
|
||
|
struct page *page;
|
||
|
int nr_vcpus;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
page = radix_tree_lookup(&kvm->arch.vsie.addr_to_page, addr >> 9);
|
||
|
rcu_read_unlock();
|
||
|
if (page) {
|
||
|
if (page_ref_inc_return(page) == 2)
|
||
|
return page_to_virt(page);
|
||
|
page_ref_dec(page);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We want at least #online_vcpus shadows, so every VCPU can execute
|
||
|
* the VSIE in parallel.
|
||
|
*/
|
||
|
nr_vcpus = atomic_read(&kvm->online_vcpus);
|
||
|
|
||
|
mutex_lock(&kvm->arch.vsie.mutex);
|
||
|
if (kvm->arch.vsie.page_count < nr_vcpus) {
|
||
|
page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO | GFP_DMA);
|
||
|
if (!page) {
|
||
|
mutex_unlock(&kvm->arch.vsie.mutex);
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
}
|
||
|
page_ref_inc(page);
|
||
|
kvm->arch.vsie.pages[kvm->arch.vsie.page_count] = page;
|
||
|
kvm->arch.vsie.page_count++;
|
||
|
} else {
|
||
|
/* reuse an existing entry that belongs to nobody */
|
||
|
while (true) {
|
||
|
page = kvm->arch.vsie.pages[kvm->arch.vsie.next];
|
||
|
if (page_ref_inc_return(page) == 2)
|
||
|
break;
|
||
|
page_ref_dec(page);
|
||
|
kvm->arch.vsie.next++;
|
||
|
kvm->arch.vsie.next %= nr_vcpus;
|
||
|
}
|
||
|
radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
|
||
|
}
|
||
|
page->index = addr;
|
||
|
/* double use of the same address */
|
||
|
if (radix_tree_insert(&kvm->arch.vsie.addr_to_page, addr >> 9, page)) {
|
||
|
page_ref_dec(page);
|
||
|
mutex_unlock(&kvm->arch.vsie.mutex);
|
||
|
return NULL;
|
||
|
}
|
||
|
mutex_unlock(&kvm->arch.vsie.mutex);
|
||
|
|
||
|
vsie_page = page_to_virt(page);
|
||
|
memset(&vsie_page->scb_s, 0, sizeof(struct kvm_s390_sie_block));
|
||
|
release_gmap_shadow(vsie_page);
|
||
|
vsie_page->fault_addr = 0;
|
||
|
vsie_page->scb_s.ihcpu = 0xffffU;
|
||
|
return vsie_page;
|
||
|
}
|
||
|
|
||
|
/* put a vsie page acquired via get_vsie_page */
|
||
|
static void put_vsie_page(struct kvm *kvm, struct vsie_page *vsie_page)
|
||
|
{
|
||
|
struct page *page = pfn_to_page(__pa(vsie_page) >> PAGE_SHIFT);
|
||
|
|
||
|
page_ref_dec(page);
|
||
|
}
|
||
|
|
||
|
int kvm_s390_handle_vsie(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct vsie_page *vsie_page;
|
||
|
unsigned long scb_addr;
|
||
|
int rc;
|
||
|
|
||
|
vcpu->stat.instruction_sie++;
|
||
|
if (!test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIEF2))
|
||
|
return -EOPNOTSUPP;
|
||
|
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
|
||
|
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
|
||
|
|
||
|
BUILD_BUG_ON(sizeof(struct vsie_page) != PAGE_SIZE);
|
||
|
scb_addr = kvm_s390_get_base_disp_s(vcpu, NULL);
|
||
|
|
||
|
/* 512 byte alignment */
|
||
|
if (unlikely(scb_addr & 0x1ffUL))
|
||
|
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
|
||
|
|
||
|
if (signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0) ||
|
||
|
kvm_s390_vcpu_sie_inhibited(vcpu))
|
||
|
return 0;
|
||
|
|
||
|
vsie_page = get_vsie_page(vcpu->kvm, scb_addr);
|
||
|
if (IS_ERR(vsie_page))
|
||
|
return PTR_ERR(vsie_page);
|
||
|
else if (!vsie_page)
|
||
|
/* double use of sie control block - simply do nothing */
|
||
|
return 0;
|
||
|
|
||
|
rc = pin_scb(vcpu, vsie_page, scb_addr);
|
||
|
if (rc)
|
||
|
goto out_put;
|
||
|
rc = shadow_scb(vcpu, vsie_page);
|
||
|
if (rc)
|
||
|
goto out_unpin_scb;
|
||
|
rc = pin_blocks(vcpu, vsie_page);
|
||
|
if (rc)
|
||
|
goto out_unshadow;
|
||
|
register_shadow_scb(vcpu, vsie_page);
|
||
|
rc = vsie_run(vcpu, vsie_page);
|
||
|
unregister_shadow_scb(vcpu);
|
||
|
unpin_blocks(vcpu, vsie_page);
|
||
|
out_unshadow:
|
||
|
unshadow_scb(vcpu, vsie_page);
|
||
|
out_unpin_scb:
|
||
|
unpin_scb(vcpu, vsie_page, scb_addr);
|
||
|
out_put:
|
||
|
put_vsie_page(vcpu->kvm, vsie_page);
|
||
|
|
||
|
return rc < 0 ? rc : 0;
|
||
|
}
|
||
|
|
||
|
/* Init the vsie data structures. To be called when a vm is initialized. */
|
||
|
void kvm_s390_vsie_init(struct kvm *kvm)
|
||
|
{
|
||
|
mutex_init(&kvm->arch.vsie.mutex);
|
||
|
INIT_RADIX_TREE(&kvm->arch.vsie.addr_to_page, GFP_KERNEL_ACCOUNT);
|
||
|
}
|
||
|
|
||
|
/* Destroy the vsie data structures. To be called when a vm is destroyed. */
|
||
|
void kvm_s390_vsie_destroy(struct kvm *kvm)
|
||
|
{
|
||
|
struct vsie_page *vsie_page;
|
||
|
struct page *page;
|
||
|
int i;
|
||
|
|
||
|
mutex_lock(&kvm->arch.vsie.mutex);
|
||
|
for (i = 0; i < kvm->arch.vsie.page_count; i++) {
|
||
|
page = kvm->arch.vsie.pages[i];
|
||
|
kvm->arch.vsie.pages[i] = NULL;
|
||
|
vsie_page = page_to_virt(page);
|
||
|
release_gmap_shadow(vsie_page);
|
||
|
/* free the radix tree entry */
|
||
|
radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
|
||
|
__free_page(page);
|
||
|
}
|
||
|
kvm->arch.vsie.page_count = 0;
|
||
|
mutex_unlock(&kvm->arch.vsie.mutex);
|
||
|
}
|
||
|
|
||
|
void kvm_s390_vsie_kick(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_s390_sie_block *scb = READ_ONCE(vcpu->arch.vsie_block);
|
||
|
|
||
|
/*
|
||
|
* Even if the VCPU lets go of the shadow sie block reference, it is
|
||
|
* still valid in the cache. So we can safely kick it.
|
||
|
*/
|
||
|
if (scb) {
|
||
|
atomic_or(PROG_BLOCK_SIE, &scb->prog20);
|
||
|
if (scb->prog0c & PROG_IN_SIE)
|
||
|
atomic_or(CPUSTAT_STOP_INT, &scb->cpuflags);
|
||
|
}
|
||
|
}
|