695 lines
19 KiB
C
695 lines
19 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0 */
|
||
|
#ifndef _SMU_H
|
||
|
#define _SMU_H
|
||
|
|
||
|
/*
|
||
|
* Definitions for talking to the SMU chip in newer G5 PowerMacs
|
||
|
*/
|
||
|
#ifdef __KERNEL__
|
||
|
#include <linux/list.h>
|
||
|
#endif
|
||
|
#include <linux/types.h>
|
||
|
|
||
|
/*
|
||
|
* Known SMU commands
|
||
|
*
|
||
|
* Most of what is below comes from looking at the Open Firmware driver,
|
||
|
* though this is still incomplete and could use better documentation here
|
||
|
* or there...
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Partition info commands
|
||
|
*
|
||
|
* These commands are used to retrieve the sdb-partition-XX datas from
|
||
|
* the SMU. The length is always 2. First byte is the subcommand code
|
||
|
* and second byte is the partition ID.
|
||
|
*
|
||
|
* The reply is 6 bytes:
|
||
|
*
|
||
|
* - 0..1 : partition address
|
||
|
* - 2 : a byte containing the partition ID
|
||
|
* - 3 : length (maybe other bits are rest of header ?)
|
||
|
*
|
||
|
* The data must then be obtained with calls to another command:
|
||
|
* SMU_CMD_MISC_ee_GET_DATABLOCK_REC (described below).
|
||
|
*/
|
||
|
#define SMU_CMD_PARTITION_COMMAND 0x3e
|
||
|
#define SMU_CMD_PARTITION_LATEST 0x01
|
||
|
#define SMU_CMD_PARTITION_BASE 0x02
|
||
|
#define SMU_CMD_PARTITION_UPDATE 0x03
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Fan control
|
||
|
*
|
||
|
* This is a "mux" for fan control commands. The command seem to
|
||
|
* act differently based on the number of arguments. With 1 byte
|
||
|
* of argument, this seem to be queries for fans status, setpoint,
|
||
|
* etc..., while with 0xe arguments, we will set the fans speeds.
|
||
|
*
|
||
|
* Queries (1 byte arg):
|
||
|
* ---------------------
|
||
|
*
|
||
|
* arg=0x01: read RPM fans status
|
||
|
* arg=0x02: read RPM fans setpoint
|
||
|
* arg=0x11: read PWM fans status
|
||
|
* arg=0x12: read PWM fans setpoint
|
||
|
*
|
||
|
* the "status" queries return the current speed while the "setpoint" ones
|
||
|
* return the programmed/target speed. It _seems_ that the result is a bit
|
||
|
* mask in the first byte of active/available fans, followed by 6 words (16
|
||
|
* bits) containing the requested speed.
|
||
|
*
|
||
|
* Setpoint (14 bytes arg):
|
||
|
* ------------------------
|
||
|
*
|
||
|
* first arg byte is 0 for RPM fans and 0x10 for PWM. Second arg byte is the
|
||
|
* mask of fans affected by the command. Followed by 6 words containing the
|
||
|
* setpoint value for selected fans in the mask (or 0 if mask value is 0)
|
||
|
*/
|
||
|
#define SMU_CMD_FAN_COMMAND 0x4a
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Battery access
|
||
|
*
|
||
|
* Same command number as the PMU, could it be same syntax ?
|
||
|
*/
|
||
|
#define SMU_CMD_BATTERY_COMMAND 0x6f
|
||
|
#define SMU_CMD_GET_BATTERY_INFO 0x00
|
||
|
|
||
|
/*
|
||
|
* Real time clock control
|
||
|
*
|
||
|
* This is a "mux", first data byte contains the "sub" command.
|
||
|
* The "RTC" part of the SMU controls the date, time, powerup
|
||
|
* timer, but also a PRAM
|
||
|
*
|
||
|
* Dates are in BCD format on 7 bytes:
|
||
|
* [sec] [min] [hour] [weekday] [month day] [month] [year]
|
||
|
* with month being 1 based and year minus 100
|
||
|
*/
|
||
|
#define SMU_CMD_RTC_COMMAND 0x8e
|
||
|
#define SMU_CMD_RTC_SET_PWRUP_TIMER 0x00 /* i: 7 bytes date */
|
||
|
#define SMU_CMD_RTC_GET_PWRUP_TIMER 0x01 /* o: 7 bytes date */
|
||
|
#define SMU_CMD_RTC_STOP_PWRUP_TIMER 0x02
|
||
|
#define SMU_CMD_RTC_SET_PRAM_BYTE_ACC 0x20 /* i: 1 byte (address?) */
|
||
|
#define SMU_CMD_RTC_SET_PRAM_AUTOINC 0x21 /* i: 1 byte (data?) */
|
||
|
#define SMU_CMD_RTC_SET_PRAM_LO_BYTES 0x22 /* i: 10 bytes */
|
||
|
#define SMU_CMD_RTC_SET_PRAM_HI_BYTES 0x23 /* i: 10 bytes */
|
||
|
#define SMU_CMD_RTC_GET_PRAM_BYTE 0x28 /* i: 1 bytes (address?) */
|
||
|
#define SMU_CMD_RTC_GET_PRAM_LO_BYTES 0x29 /* o: 10 bytes */
|
||
|
#define SMU_CMD_RTC_GET_PRAM_HI_BYTES 0x2a /* o: 10 bytes */
|
||
|
#define SMU_CMD_RTC_SET_DATETIME 0x80 /* i: 7 bytes date */
|
||
|
#define SMU_CMD_RTC_GET_DATETIME 0x81 /* o: 7 bytes date */
|
||
|
|
||
|
/*
|
||
|
* i2c commands
|
||
|
*
|
||
|
* To issue an i2c command, first is to send a parameter block to
|
||
|
* the SMU. This is a command of type 0x9a with 9 bytes of header
|
||
|
* eventually followed by data for a write:
|
||
|
*
|
||
|
* 0: bus number (from device-tree usually, SMU has lots of busses !)
|
||
|
* 1: transfer type/format (see below)
|
||
|
* 2: device address. For combined and combined4 type transfers, this
|
||
|
* is the "write" version of the address (bit 0x01 cleared)
|
||
|
* 3: subaddress length (0..3)
|
||
|
* 4: subaddress byte 0 (or only byte for subaddress length 1)
|
||
|
* 5: subaddress byte 1
|
||
|
* 6: subaddress byte 2
|
||
|
* 7: combined address (device address for combined mode data phase)
|
||
|
* 8: data length
|
||
|
*
|
||
|
* The transfer types are the same good old Apple ones it seems,
|
||
|
* that is:
|
||
|
* - 0x00: Simple transfer
|
||
|
* - 0x01: Subaddress transfer (addr write + data tx, no restart)
|
||
|
* - 0x02: Combined transfer (addr write + restart + data tx)
|
||
|
*
|
||
|
* This is then followed by actual data for a write.
|
||
|
*
|
||
|
* At this point, the OF driver seems to have a limitation on transfer
|
||
|
* sizes of 0xd bytes on reads and 0x5 bytes on writes. I do not know
|
||
|
* whether this is just an OF limit due to some temporary buffer size
|
||
|
* or if this is an SMU imposed limit. This driver has the same limitation
|
||
|
* for now as I use a 0x10 bytes temporary buffer as well
|
||
|
*
|
||
|
* Once that is completed, a response is expected from the SMU. This is
|
||
|
* obtained via a command of type 0x9a with a length of 1 byte containing
|
||
|
* 0 as the data byte. OF also fills the rest of the data buffer with 0xff's
|
||
|
* though I can't tell yet if this is actually necessary. Once this command
|
||
|
* is complete, at this point, all I can tell is what OF does. OF tests
|
||
|
* byte 0 of the reply:
|
||
|
* - on read, 0xfe or 0xfc : bus is busy, wait (see below) or nak ?
|
||
|
* - on read, 0x00 or 0x01 : reply is in buffer (after the byte 0)
|
||
|
* - on write, < 0 -> failure (immediate exit)
|
||
|
* - else, OF just exists (without error, weird)
|
||
|
*
|
||
|
* So on read, there is this wait-for-busy thing when getting a 0xfc or
|
||
|
* 0xfe result. OF does a loop of up to 64 retries, waiting 20ms and
|
||
|
* doing the above again until either the retries expire or the result
|
||
|
* is no longer 0xfe or 0xfc
|
||
|
*
|
||
|
* The Darwin I2C driver is less subtle though. On any non-success status
|
||
|
* from the response command, it waits 5ms and tries again up to 20 times,
|
||
|
* it doesn't differentiate between fatal errors or "busy" status.
|
||
|
*
|
||
|
* This driver provides an asynchronous paramblock based i2c command
|
||
|
* interface to be used either directly by low level code or by a higher
|
||
|
* level driver interfacing to the linux i2c layer. The current
|
||
|
* implementation of this relies on working timers & timer interrupts
|
||
|
* though, so be careful of calling context for now. This may be "fixed"
|
||
|
* in the future by adding a polling facility.
|
||
|
*/
|
||
|
#define SMU_CMD_I2C_COMMAND 0x9a
|
||
|
/* transfer types */
|
||
|
#define SMU_I2C_TRANSFER_SIMPLE 0x00
|
||
|
#define SMU_I2C_TRANSFER_STDSUB 0x01
|
||
|
#define SMU_I2C_TRANSFER_COMBINED 0x02
|
||
|
|
||
|
/*
|
||
|
* Power supply control
|
||
|
*
|
||
|
* The "sub" command is an ASCII string in the data, the
|
||
|
* data length is that of the string.
|
||
|
*
|
||
|
* The VSLEW command can be used to get or set the voltage slewing.
|
||
|
* - length 5 (only "VSLEW") : it returns "DONE" and 3 bytes of
|
||
|
* reply at data offset 6, 7 and 8.
|
||
|
* - length 8 ("VSLEWxyz") has 3 additional bytes appended, and is
|
||
|
* used to set the voltage slewing point. The SMU replies with "DONE"
|
||
|
* I yet have to figure out their exact meaning of those 3 bytes in
|
||
|
* both cases. They seem to be:
|
||
|
* x = processor mask
|
||
|
* y = op. point index
|
||
|
* z = processor freq. step index
|
||
|
* I haven't yet deciphered result codes
|
||
|
*
|
||
|
*/
|
||
|
#define SMU_CMD_POWER_COMMAND 0xaa
|
||
|
#define SMU_CMD_POWER_RESTART "RESTART"
|
||
|
#define SMU_CMD_POWER_SHUTDOWN "SHUTDOWN"
|
||
|
#define SMU_CMD_POWER_VOLTAGE_SLEW "VSLEW"
|
||
|
|
||
|
/*
|
||
|
* Read ADC sensors
|
||
|
*
|
||
|
* This command takes one byte of parameter: the sensor ID (or "reg"
|
||
|
* value in the device-tree) and returns a 16 bits value
|
||
|
*/
|
||
|
#define SMU_CMD_READ_ADC 0xd8
|
||
|
|
||
|
|
||
|
/* Misc commands
|
||
|
*
|
||
|
* This command seem to be a grab bag of various things
|
||
|
*
|
||
|
* Parameters:
|
||
|
* 1: subcommand
|
||
|
*/
|
||
|
#define SMU_CMD_MISC_df_COMMAND 0xdf
|
||
|
|
||
|
/*
|
||
|
* Sets "system ready" status
|
||
|
*
|
||
|
* I did not yet understand how it exactly works or what it does.
|
||
|
*
|
||
|
* Guessing from OF code, 0x02 activates the display backlight. Apple uses/used
|
||
|
* the same codebase for all OF versions. On PowerBooks, this command would
|
||
|
* enable the backlight. For the G5s, it only activates the front LED. However,
|
||
|
* don't take this for granted.
|
||
|
*
|
||
|
* Parameters:
|
||
|
* 2: status [0x00, 0x01 or 0x02]
|
||
|
*/
|
||
|
#define SMU_CMD_MISC_df_SET_DISPLAY_LIT 0x02
|
||
|
|
||
|
/*
|
||
|
* Sets mode of power switch.
|
||
|
*
|
||
|
* What this actually does is not yet known. Maybe it enables some interrupt.
|
||
|
*
|
||
|
* Parameters:
|
||
|
* 2: enable power switch? [0x00 or 0x01]
|
||
|
* 3 (optional): enable nmi? [0x00 or 0x01]
|
||
|
*
|
||
|
* Returns:
|
||
|
* If parameter 2 is 0x00 and parameter 3 is not specified, returns whether
|
||
|
* NMI is enabled. Otherwise unknown.
|
||
|
*/
|
||
|
#define SMU_CMD_MISC_df_NMI_OPTION 0x04
|
||
|
|
||
|
/* Sets LED dimm offset.
|
||
|
*
|
||
|
* The front LED dimms itself during sleep. Its brightness (or, well, the PWM
|
||
|
* frequency) depends on current time. Therefore, the SMU needs to know the
|
||
|
* timezone.
|
||
|
*
|
||
|
* Parameters:
|
||
|
* 2-8: unknown (BCD coding)
|
||
|
*/
|
||
|
#define SMU_CMD_MISC_df_DIMM_OFFSET 0x99
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Version info commands
|
||
|
*
|
||
|
* Parameters:
|
||
|
* 1 (optional): Specifies version part to retrieve
|
||
|
*
|
||
|
* Returns:
|
||
|
* Version value
|
||
|
*/
|
||
|
#define SMU_CMD_VERSION_COMMAND 0xea
|
||
|
#define SMU_VERSION_RUNNING 0x00
|
||
|
#define SMU_VERSION_BASE 0x01
|
||
|
#define SMU_VERSION_UPDATE 0x02
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Switches
|
||
|
*
|
||
|
* These are switches whose status seems to be known to the SMU.
|
||
|
*
|
||
|
* Parameters:
|
||
|
* none
|
||
|
*
|
||
|
* Result:
|
||
|
* Switch bits (ORed, see below)
|
||
|
*/
|
||
|
#define SMU_CMD_SWITCHES 0xdc
|
||
|
|
||
|
/* Switches bits */
|
||
|
#define SMU_SWITCH_CASE_CLOSED 0x01
|
||
|
#define SMU_SWITCH_AC_POWER 0x04
|
||
|
#define SMU_SWITCH_POWER_SWITCH 0x08
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Misc commands
|
||
|
*
|
||
|
* This command seem to be a grab bag of various things
|
||
|
*
|
||
|
* SMU_CMD_MISC_ee_GET_DATABLOCK_REC is used, among others, to
|
||
|
* transfer blocks of data from the SMU. So far, I've decrypted it's
|
||
|
* usage to retrieve partition data. In order to do that, you have to
|
||
|
* break your transfer in "chunks" since that command cannot transfer
|
||
|
* more than a chunk at a time. The chunk size used by OF is 0xe bytes,
|
||
|
* but it seems that the darwin driver will let you do 0x1e bytes if
|
||
|
* your "PMU" version is >= 0x30. You can get the "PMU" version apparently
|
||
|
* either in the last 16 bits of property "smu-version-pmu" or as the 16
|
||
|
* bytes at offset 1 of "smu-version-info"
|
||
|
*
|
||
|
* For each chunk, the command takes 7 bytes of arguments:
|
||
|
* byte 0: subcommand code (0x02)
|
||
|
* byte 1: 0x04 (always, I don't know what it means, maybe the address
|
||
|
* space to use or some other nicety. It's hard coded in OF)
|
||
|
* byte 2..5: SMU address of the chunk (big endian 32 bits)
|
||
|
* byte 6: size to transfer (up to max chunk size)
|
||
|
*
|
||
|
* The data is returned directly
|
||
|
*/
|
||
|
#define SMU_CMD_MISC_ee_COMMAND 0xee
|
||
|
#define SMU_CMD_MISC_ee_GET_DATABLOCK_REC 0x02
|
||
|
|
||
|
/* Retrieves currently used watts.
|
||
|
*
|
||
|
* Parameters:
|
||
|
* 1: 0x03 (Meaning unknown)
|
||
|
*/
|
||
|
#define SMU_CMD_MISC_ee_GET_WATTS 0x03
|
||
|
|
||
|
#define SMU_CMD_MISC_ee_LEDS_CTRL 0x04 /* i: 00 (00,01) [00] */
|
||
|
#define SMU_CMD_MISC_ee_GET_DATA 0x05 /* i: 00 , o: ?? */
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Power related commands
|
||
|
*
|
||
|
* Parameters:
|
||
|
* 1: subcommand
|
||
|
*/
|
||
|
#define SMU_CMD_POWER_EVENTS_COMMAND 0x8f
|
||
|
|
||
|
/* SMU_POWER_EVENTS subcommands */
|
||
|
enum {
|
||
|
SMU_PWR_GET_POWERUP_EVENTS = 0x00,
|
||
|
SMU_PWR_SET_POWERUP_EVENTS = 0x01,
|
||
|
SMU_PWR_CLR_POWERUP_EVENTS = 0x02,
|
||
|
SMU_PWR_GET_WAKEUP_EVENTS = 0x03,
|
||
|
SMU_PWR_SET_WAKEUP_EVENTS = 0x04,
|
||
|
SMU_PWR_CLR_WAKEUP_EVENTS = 0x05,
|
||
|
|
||
|
/*
|
||
|
* Get last shutdown cause
|
||
|
*
|
||
|
* Returns:
|
||
|
* 1 byte (signed char): Last shutdown cause. Exact meaning unknown.
|
||
|
*/
|
||
|
SMU_PWR_LAST_SHUTDOWN_CAUSE = 0x07,
|
||
|
|
||
|
/*
|
||
|
* Sets or gets server ID. Meaning or use is unknown.
|
||
|
*
|
||
|
* Parameters:
|
||
|
* 2 (optional): Set server ID (1 byte)
|
||
|
*
|
||
|
* Returns:
|
||
|
* 1 byte (server ID?)
|
||
|
*/
|
||
|
SMU_PWR_SERVER_ID = 0x08,
|
||
|
};
|
||
|
|
||
|
/* Power events wakeup bits */
|
||
|
enum {
|
||
|
SMU_PWR_WAKEUP_KEY = 0x01, /* Wake on key press */
|
||
|
SMU_PWR_WAKEUP_AC_INSERT = 0x02, /* Wake on AC adapter plug */
|
||
|
SMU_PWR_WAKEUP_AC_CHANGE = 0x04,
|
||
|
SMU_PWR_WAKEUP_LID_OPEN = 0x08,
|
||
|
SMU_PWR_WAKEUP_RING = 0x10,
|
||
|
};
|
||
|
|
||
|
|
||
|
/*
|
||
|
* - Kernel side interface -
|
||
|
*/
|
||
|
|
||
|
#ifdef __KERNEL__
|
||
|
|
||
|
/*
|
||
|
* Asynchronous SMU commands
|
||
|
*
|
||
|
* Fill up this structure and submit it via smu_queue_command(),
|
||
|
* and get notified by the optional done() callback, or because
|
||
|
* status becomes != 1
|
||
|
*/
|
||
|
|
||
|
struct smu_cmd;
|
||
|
|
||
|
struct smu_cmd
|
||
|
{
|
||
|
/* public */
|
||
|
u8 cmd; /* command */
|
||
|
int data_len; /* data len */
|
||
|
int reply_len; /* reply len */
|
||
|
void *data_buf; /* data buffer */
|
||
|
void *reply_buf; /* reply buffer */
|
||
|
int status; /* command status */
|
||
|
void (*done)(struct smu_cmd *cmd, void *misc);
|
||
|
void *misc;
|
||
|
|
||
|
/* private */
|
||
|
struct list_head link;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Queues an SMU command, all fields have to be initialized
|
||
|
*/
|
||
|
extern int smu_queue_cmd(struct smu_cmd *cmd);
|
||
|
|
||
|
/*
|
||
|
* Simple command wrapper. This structure embeds a small buffer
|
||
|
* to ease sending simple SMU commands from the stack
|
||
|
*/
|
||
|
struct smu_simple_cmd
|
||
|
{
|
||
|
struct smu_cmd cmd;
|
||
|
u8 buffer[16];
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Queues a simple command. All fields will be initialized by that
|
||
|
* function
|
||
|
*/
|
||
|
extern int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
|
||
|
unsigned int data_len,
|
||
|
void (*done)(struct smu_cmd *cmd, void *misc),
|
||
|
void *misc,
|
||
|
...);
|
||
|
|
||
|
/*
|
||
|
* Completion helper. Pass it to smu_queue_simple or as 'done'
|
||
|
* member to smu_queue_cmd, it will call complete() on the struct
|
||
|
* completion passed in the "misc" argument
|
||
|
*/
|
||
|
extern void smu_done_complete(struct smu_cmd *cmd, void *misc);
|
||
|
|
||
|
/*
|
||
|
* Synchronous helpers. Will spin-wait for completion of a command
|
||
|
*/
|
||
|
extern void smu_spinwait_cmd(struct smu_cmd *cmd);
|
||
|
|
||
|
static inline void smu_spinwait_simple(struct smu_simple_cmd *scmd)
|
||
|
{
|
||
|
smu_spinwait_cmd(&scmd->cmd);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Poll routine to call if blocked with irqs off
|
||
|
*/
|
||
|
extern void smu_poll(void);
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Init routine, presence check....
|
||
|
*/
|
||
|
int __init smu_init(void);
|
||
|
extern int smu_present(void);
|
||
|
struct platform_device;
|
||
|
extern struct platform_device *smu_get_ofdev(void);
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Common command wrappers
|
||
|
*/
|
||
|
extern void smu_shutdown(void);
|
||
|
extern void smu_restart(void);
|
||
|
struct rtc_time;
|
||
|
extern int smu_get_rtc_time(struct rtc_time *time, int spinwait);
|
||
|
extern int smu_set_rtc_time(struct rtc_time *time, int spinwait);
|
||
|
|
||
|
/*
|
||
|
* Kernel asynchronous i2c interface
|
||
|
*/
|
||
|
|
||
|
#define SMU_I2C_READ_MAX 0x1d
|
||
|
#define SMU_I2C_WRITE_MAX 0x15
|
||
|
|
||
|
/* SMU i2c header, exactly matches i2c header on wire */
|
||
|
struct smu_i2c_param
|
||
|
{
|
||
|
u8 bus; /* SMU bus ID (from device tree) */
|
||
|
u8 type; /* i2c transfer type */
|
||
|
u8 devaddr; /* device address (includes direction) */
|
||
|
u8 sublen; /* subaddress length */
|
||
|
u8 subaddr[3]; /* subaddress */
|
||
|
u8 caddr; /* combined address, filled by SMU driver */
|
||
|
u8 datalen; /* length of transfer */
|
||
|
u8 data[SMU_I2C_READ_MAX]; /* data */
|
||
|
};
|
||
|
|
||
|
struct smu_i2c_cmd
|
||
|
{
|
||
|
/* public */
|
||
|
struct smu_i2c_param info;
|
||
|
void (*done)(struct smu_i2c_cmd *cmd, void *misc);
|
||
|
void *misc;
|
||
|
int status; /* 1 = pending, 0 = ok, <0 = fail */
|
||
|
|
||
|
/* private */
|
||
|
struct smu_cmd scmd;
|
||
|
int read;
|
||
|
int stage;
|
||
|
int retries;
|
||
|
u8 pdata[32];
|
||
|
struct list_head link;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Call this to queue an i2c command to the SMU. You must fill info,
|
||
|
* including info.data for a write, done and misc.
|
||
|
* For now, no polling interface is provided so you have to use completion
|
||
|
* callback.
|
||
|
*/
|
||
|
extern int smu_queue_i2c(struct smu_i2c_cmd *cmd);
|
||
|
|
||
|
|
||
|
#endif /* __KERNEL__ */
|
||
|
|
||
|
|
||
|
/*
|
||
|
* - SMU "sdb" partitions informations -
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Partition header format
|
||
|
*/
|
||
|
struct smu_sdbp_header {
|
||
|
__u8 id;
|
||
|
__u8 len;
|
||
|
__u8 version;
|
||
|
__u8 flags;
|
||
|
};
|
||
|
|
||
|
|
||
|
/*
|
||
|
* demangle 16 and 32 bits integer in some SMU partitions
|
||
|
* (currently, afaik, this concerns only the FVT partition
|
||
|
* (0x12)
|
||
|
*/
|
||
|
#define SMU_U16_MIX(x) le16_to_cpu(x)
|
||
|
#define SMU_U32_MIX(x) ((((x) & 0xff00ff00u) >> 8)|(((x) & 0x00ff00ffu) << 8))
|
||
|
|
||
|
|
||
|
/* This is the definition of the SMU sdb-partition-0x12 table (called
|
||
|
* CPU F/V/T operating points in Darwin). The definition for all those
|
||
|
* SMU tables should be moved to some separate file
|
||
|
*/
|
||
|
#define SMU_SDB_FVT_ID 0x12
|
||
|
|
||
|
struct smu_sdbp_fvt {
|
||
|
__u32 sysclk; /* Base SysClk frequency in Hz for
|
||
|
* this operating point. Value need to
|
||
|
* be unmixed with SMU_U32_MIX()
|
||
|
*/
|
||
|
__u8 pad;
|
||
|
__u8 maxtemp; /* Max temp. supported by this
|
||
|
* operating point
|
||
|
*/
|
||
|
|
||
|
__u16 volts[3]; /* CPU core voltage for the 3
|
||
|
* PowerTune modes, a mode with
|
||
|
* 0V = not supported. Value need
|
||
|
* to be unmixed with SMU_U16_MIX()
|
||
|
*/
|
||
|
};
|
||
|
|
||
|
/* This partition contains voltage & current sensor calibration
|
||
|
* informations
|
||
|
*/
|
||
|
#define SMU_SDB_CPUVCP_ID 0x21
|
||
|
|
||
|
struct smu_sdbp_cpuvcp {
|
||
|
__u16 volt_scale; /* u4.12 fixed point */
|
||
|
__s16 volt_offset; /* s4.12 fixed point */
|
||
|
__u16 curr_scale; /* u4.12 fixed point */
|
||
|
__s16 curr_offset; /* s4.12 fixed point */
|
||
|
__s32 power_quads[3]; /* s4.28 fixed point */
|
||
|
};
|
||
|
|
||
|
/* This partition contains CPU thermal diode calibration
|
||
|
*/
|
||
|
#define SMU_SDB_CPUDIODE_ID 0x18
|
||
|
|
||
|
struct smu_sdbp_cpudiode {
|
||
|
__u16 m_value; /* u1.15 fixed point */
|
||
|
__s16 b_value; /* s10.6 fixed point */
|
||
|
|
||
|
};
|
||
|
|
||
|
/* This partition contains Slots power calibration
|
||
|
*/
|
||
|
#define SMU_SDB_SLOTSPOW_ID 0x78
|
||
|
|
||
|
struct smu_sdbp_slotspow {
|
||
|
__u16 pow_scale; /* u4.12 fixed point */
|
||
|
__s16 pow_offset; /* s4.12 fixed point */
|
||
|
};
|
||
|
|
||
|
/* This partition contains machine specific version information about
|
||
|
* the sensor/control layout
|
||
|
*/
|
||
|
#define SMU_SDB_SENSORTREE_ID 0x25
|
||
|
|
||
|
struct smu_sdbp_sensortree {
|
||
|
__u8 model_id;
|
||
|
__u8 unknown[3];
|
||
|
};
|
||
|
|
||
|
/* This partition contains CPU thermal control PID informations. So far
|
||
|
* only single CPU machines have been seen with an SMU, so we assume this
|
||
|
* carries only informations for those
|
||
|
*/
|
||
|
#define SMU_SDB_CPUPIDDATA_ID 0x17
|
||
|
|
||
|
struct smu_sdbp_cpupiddata {
|
||
|
__u8 unknown1;
|
||
|
__u8 target_temp_delta;
|
||
|
__u8 unknown2;
|
||
|
__u8 history_len;
|
||
|
__s16 power_adj;
|
||
|
__u16 max_power;
|
||
|
__s32 gp,gr,gd;
|
||
|
};
|
||
|
|
||
|
|
||
|
/* Other partitions without known structures */
|
||
|
#define SMU_SDB_DEBUG_SWITCHES_ID 0x05
|
||
|
|
||
|
#ifdef __KERNEL__
|
||
|
/*
|
||
|
* This returns the pointer to an SMU "sdb" partition data or NULL
|
||
|
* if not found. The data format is described below
|
||
|
*/
|
||
|
extern const struct smu_sdbp_header *smu_get_sdb_partition(int id,
|
||
|
unsigned int *size);
|
||
|
|
||
|
/* Get "sdb" partition data from an SMU satellite */
|
||
|
extern struct smu_sdbp_header *smu_sat_get_sdb_partition(unsigned int sat_id,
|
||
|
int id, unsigned int *size);
|
||
|
|
||
|
|
||
|
#endif /* __KERNEL__ */
|
||
|
|
||
|
|
||
|
/*
|
||
|
* - Userland interface -
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* A given instance of the device can be configured for 2 different
|
||
|
* things at the moment:
|
||
|
*
|
||
|
* - sending SMU commands (default at open() time)
|
||
|
* - receiving SMU events (not yet implemented)
|
||
|
*
|
||
|
* Commands are written with write() of a command block. They can be
|
||
|
* "driver" commands (for example to switch to event reception mode)
|
||
|
* or real SMU commands. They are made of a header followed by command
|
||
|
* data if any.
|
||
|
*
|
||
|
* For SMU commands (not for driver commands), you can then read() back
|
||
|
* a reply. The reader will be blocked or not depending on how the device
|
||
|
* file is opened. poll() isn't implemented yet. The reply will consist
|
||
|
* of a header as well, followed by the reply data if any. You should
|
||
|
* always provide a buffer large enough for the maximum reply data, I
|
||
|
* recommand one page.
|
||
|
*
|
||
|
* It is illegal to send SMU commands through a file descriptor configured
|
||
|
* for events reception
|
||
|
*
|
||
|
*/
|
||
|
struct smu_user_cmd_hdr
|
||
|
{
|
||
|
__u32 cmdtype;
|
||
|
#define SMU_CMDTYPE_SMU 0 /* SMU command */
|
||
|
#define SMU_CMDTYPE_WANTS_EVENTS 1 /* switch fd to events mode */
|
||
|
#define SMU_CMDTYPE_GET_PARTITION 2 /* retrieve an sdb partition */
|
||
|
|
||
|
__u8 cmd; /* SMU command byte */
|
||
|
__u8 pad[3]; /* padding */
|
||
|
__u32 data_len; /* Length of data following */
|
||
|
};
|
||
|
|
||
|
struct smu_user_reply_hdr
|
||
|
{
|
||
|
__u32 status; /* Command status */
|
||
|
__u32 reply_len; /* Length of data follwing */
|
||
|
};
|
||
|
|
||
|
#endif /* _SMU_H */
|