linuxdebug/arch/arm/include/asm/pgalloc.h

150 lines
3.3 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* arch/arm/include/asm/pgalloc.h
*
* Copyright (C) 2000-2001 Russell King
*/
#ifndef _ASMARM_PGALLOC_H
#define _ASMARM_PGALLOC_H
#include <linux/pagemap.h>
#include <asm/domain.h>
#include <asm/pgtable-hwdef.h>
#include <asm/processor.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#ifdef CONFIG_MMU
#define _PAGE_USER_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_USER))
#define _PAGE_KERNEL_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_KERNEL))
#ifdef CONFIG_ARM_LPAE
#define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
{
set_pud(pud, __pud(__pa(pmd) | PMD_TYPE_TABLE));
}
#else /* !CONFIG_ARM_LPAE */
#define PGD_SIZE (PAGE_SIZE << 2)
/*
* Since we have only two-level page tables, these are trivial
*/
#define pmd_alloc_one(mm,addr) ({ BUG(); ((pmd_t *)2); })
#define pmd_free(mm, pmd) do { } while (0)
#ifdef CONFIG_KASAN
/* The KASan core unconditionally calls pud_populate() on all architectures */
#define pud_populate(mm,pmd,pte) do { } while (0)
#else
#define pud_populate(mm,pmd,pte) BUG()
#endif
#endif /* CONFIG_ARM_LPAE */
extern pgd_t *pgd_alloc(struct mm_struct *mm);
extern void pgd_free(struct mm_struct *mm, pgd_t *pgd);
static inline void clean_pte_table(pte_t *pte)
{
clean_dcache_area(pte + PTE_HWTABLE_PTRS, PTE_HWTABLE_SIZE);
}
/*
* Allocate one PTE table.
*
* This actually allocates two hardware PTE tables, but we wrap this up
* into one table thus:
*
* +------------+
* | Linux pt 0 |
* +------------+
* | Linux pt 1 |
* +------------+
* | h/w pt 0 |
* +------------+
* | h/w pt 1 |
* +------------+
*/
#define __HAVE_ARCH_PTE_ALLOC_ONE_KERNEL
#define __HAVE_ARCH_PTE_ALLOC_ONE
#define __HAVE_ARCH_PGD_FREE
#include <asm-generic/pgalloc.h>
static inline pte_t *
pte_alloc_one_kernel(struct mm_struct *mm)
{
pte_t *pte = __pte_alloc_one_kernel(mm);
if (pte)
clean_pte_table(pte);
return pte;
}
#ifdef CONFIG_HIGHPTE
#define PGTABLE_HIGHMEM __GFP_HIGHMEM
#else
#define PGTABLE_HIGHMEM 0
#endif
static inline pgtable_t
pte_alloc_one(struct mm_struct *mm)
{
struct page *pte;
pte = __pte_alloc_one(mm, GFP_PGTABLE_USER | PGTABLE_HIGHMEM);
if (!pte)
return NULL;
if (!PageHighMem(pte))
clean_pte_table(page_address(pte));
return pte;
}
static inline void __pmd_populate(pmd_t *pmdp, phys_addr_t pte,
pmdval_t prot)
{
pmdval_t pmdval = (pte + PTE_HWTABLE_OFF) | prot;
pmdp[0] = __pmd(pmdval);
#ifndef CONFIG_ARM_LPAE
pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t));
#endif
flush_pmd_entry(pmdp);
}
/*
* Populate the pmdp entry with a pointer to the pte. This pmd is part
* of the mm address space.
*
* Ensure that we always set both PMD entries.
*/
static inline void
pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmdp, pte_t *ptep)
{
/*
* The pmd must be loaded with the physical address of the PTE table
*/
__pmd_populate(pmdp, __pa(ptep), _PAGE_KERNEL_TABLE);
}
static inline void
pmd_populate(struct mm_struct *mm, pmd_t *pmdp, pgtable_t ptep)
{
extern pmdval_t user_pmd_table;
pmdval_t prot;
if (__LINUX_ARM_ARCH__ >= 6 && !IS_ENABLED(CONFIG_ARM_LPAE))
prot = user_pmd_table;
else
prot = _PAGE_USER_TABLE;
__pmd_populate(pmdp, page_to_phys(ptep), prot);
}
#endif /* CONFIG_MMU */
#endif