test_pie/external/pmp/MatVec.h

1101 lines
33 KiB
C++

//=============================================================================
// Copyright (C) 2011-2018 The pmp-library developers
// Copyright (C) 2001-2005 by Computer Graphics Group, RWTH Aachen
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//=============================================================================
#pragma once
//=============================================================================
#include <cmath>
#include <iostream>
#include <assert.h>
#include <limits>
//=============================================================================
namespace pmp {
//=============================================================================
/// Base class for MxN matrix
template <typename Scalar, int M, int N>
class Matrix
{
public:
//! the scalar type of the vector
typedef Scalar value_type;
//! returns number of rows of the matrix
static constexpr int rows() { return M; }
//! returns number of columns of the matrix
static constexpr int cols() { return N; }
//! returns the dimension of the vector (or size of the matrix, rows*cols)
static constexpr int size() { return M * N; }
/// empty default constructor
Matrix() {}
/// construct with all entries being a given scalar (matrix and vector)
explicit Matrix(Scalar s)
{
for (int i = 0; i < size(); ++i)
data_[i] = s;
}
/// constructor for 2D vectors
explicit Matrix(Scalar x, Scalar y)
{
static_assert(M == 2 && N == 1, "only for 2D vectors");
data_[0] = x;
data_[1] = y;
}
/// constructor for 3D vectors
explicit Matrix(Scalar x, Scalar y, Scalar z)
{
static_assert(M == 3 && N == 1, "only for 3D vectors");
data_[0] = x;
data_[1] = y;
data_[2] = z;
}
/// constructor for 4D vectors
explicit Matrix(Scalar x, Scalar y, Scalar z, Scalar w)
{
static_assert(M == 4 && N == 1, "only for 4D vectors");
data_[0] = x;
data_[1] = y;
data_[2] = z;
data_[3] = w;
}
/// constructor for 4D vectors
explicit Matrix(Matrix<Scalar, 3, 1> xyz, Scalar w)
{
static_assert(M == 4 && N == 1, "only for 4D vectors");
data_[0] = xyz[0];
data_[1] = xyz[1];
data_[2] = xyz[2];
data_[3] = w;
}
/// construct 4x4 matrix from 4 column vectors
Matrix(Matrix<Scalar, 4, 1> c0,
Matrix<Scalar, 4, 1> c1,
Matrix<Scalar, 4, 1> c2,
Matrix<Scalar, 4, 1> c3)
{
static_assert(M == 4 && N == 4, "only for 4x4 matrices");
(*this)(0,0) = c0[0]; (*this)(0,1) = c1[0]; (*this)(0,2) = c2[0]; (*this)(0,3) = c3[0];
(*this)(1,0) = c0[1]; (*this)(1,1) = c1[1]; (*this)(1,2) = c2[1]; (*this)(1,3) = c3[1];
(*this)(2,0) = c0[2]; (*this)(2,1) = c1[2]; (*this)(2,2) = c2[2]; (*this)(2,3) = c3[2];
(*this)(3,0) = c0[3]; (*this)(3,1) = c1[3]; (*this)(3,2) = c2[3]; (*this)(3,3) = c3[3];
}
/// construct from 16 (row-wise) entries
Matrix(Scalar m00, Scalar m01, Scalar m02, Scalar m03,
Scalar m10, Scalar m11, Scalar m12, Scalar m13,
Scalar m20, Scalar m21, Scalar m22, Scalar m23,
Scalar m30, Scalar m31, Scalar m32, Scalar m33)
{
static_assert(M == 4 && N == 4, "only for 4x4 matrices");
(*this)(0,0) = m00; (*this)(0,1) = m01; (*this)(0,2) = m02; (*this)(0,3) = m03;
(*this)(1,0) = m10; (*this)(1,1) = m11; (*this)(1,2) = m12; (*this)(1,3) = m13;
(*this)(2,0) = m20; (*this)(2,1) = m21; (*this)(2,2) = m22; (*this)(2,3) = m23;
(*this)(3,0) = m30; (*this)(3,1) = m31; (*this)(3,2) = m32; (*this)(3,3) = m33;
}
/// copy constructor from other scalar type
/// is also invoked for type-casting
template <typename OtherScalarType>
explicit Matrix(const Matrix<OtherScalarType, M, N>& m)
{
for (int i = 0; i < size(); ++i)
data_[i] = static_cast<Scalar>(m[i]);
}
/// return identity matrix (only for square matrices, N==M)
static Matrix<Scalar, M, N> identity();
/// access entry at row i and column j
Scalar& operator()(unsigned int i, unsigned int j)
{
assert(i < M && j < N);
return data_[M * j + i];
}
/// const-access entry at row i and column j
const Scalar& operator()(unsigned int i, unsigned int j) const
{
assert(i < M && j < N);
return data_[M * j + i];
}
/// access i'th entry (use for vectors)
Scalar& operator[](unsigned int i)
{
assert(i < M * N);
return data_[i];
}
/// const-access i'th entry (use for vectors)
Scalar operator[](unsigned int i) const
{
assert(i < M * N);
return data_[i];
}
/// const-access as scalar array
const Scalar* data() const { return data_; }
/// access as scalar array
Scalar* data() { return data_; }
/// normalize matrix/vector by dividing through Frobenius/Euclidean norm
void normalize() { *this /= norm(*this); }
/// divide matrix by scalar
Matrix<Scalar, M, N>& operator/=(const Scalar s)
{
for (int i = 0; i < size(); ++i)
data_[i] /= s;
return *this;
}
/// multply matrix by scalar
Matrix<Scalar, M, N>& operator*=(const Scalar s)
{
for (int i = 0; i < size(); ++i)
data_[i] *= s;
return *this;
}
// add other matrix to this matrix
Matrix<Scalar, M, N>& operator+=(const Matrix<Scalar, M, N>& m)
{
for (int i = 0; i < size(); ++i)
data_[i] += m.data_[i];
return *this;
}
/// subtract other matrix from this matrix
Matrix<Scalar, M, N>& operator-=(const Matrix<Scalar, M, N>& m)
{
for (int i = 0; i < size(); ++i)
data_[i] -= m.data_[i];
return *this;
}
//! component-wise comparison
bool operator==(const Matrix<Scalar, M, N>& other) const
{
for (int i = 0; i < size(); ++i)
if (data_[i] != other.data_[i])
return false;
return true;
}
//! component-wise comparison
bool operator!=(const Matrix<Scalar, M, N>& other) const
{
for (int i = 0; i < size(); ++i)
if (data_[i] != other.data_[i])
return true;
return false;
}
//! return matrix with minimum of this and other in each component
//Matrix<Scalar,M,N> minimize(const Matrix<Scalar,M,N>& other)
//{
//for (int i=0; i<size(); ++i)
//if (other[i] < data_[i])
//data_[i] = other[i];
//return *this;
//}
//! return matrix with maximum of this and other in each component
//Matrix<Scalar,M,N> maximize(const Matrix<Scalar,M,N>& other)
//{
//for (int i=0; i<size(); ++i)
//if (other[i] > data_[i])
//data_[i] = other[i];
//return *this;
//}
protected:
Scalar data_[N * M];
};
//== TEMPLATE SPECIALIZATIONS =================================================
/// template specialization for Vector as Nx1 matrix
template <typename Scalar, int M>
using Vector = Matrix<Scalar, M, 1>;
/// template specialization for 4x4 matrices
template <typename Scalar>
using Mat4 = Matrix<Scalar, 4, 4>;
/// template specialization for 3x3 matrices
template <typename Scalar>
using Mat3 = Matrix<Scalar, 3, 3>;
/// template specialization for 2x2 matrices
template <typename Scalar>
using Mat2 = Matrix<Scalar, 2, 2>;
//== TYPEDEFS =================================================================
typedef Vector<float, 2> vec2;
typedef Vector<double, 2> dvec2;
typedef Vector<bool, 2> bvec2;
typedef Vector<int, 2> ivec2;
typedef Vector<unsigned int, 2> uvec2;
typedef Vector<float, 3> vec3;
typedef Vector<double, 3> dvec3;
typedef Vector<bool, 3> bvec3;
typedef Vector<int, 3> ivec3;
typedef Vector<unsigned int, 3> uvec3;
typedef Vector<float, 4> vec4;
typedef Vector<double, 4> dvec4;
typedef Vector<bool, 4> bvec4;
typedef Vector<int, 4> ivec4;
typedef Vector<unsigned int, 4> uvec4;
typedef Vector<float, 8> vec8;
typedef Vector<double, 8> dvec8;
typedef Vector<bool, 8> bvec8;
typedef Vector<int, 8> ivec8;
typedef Vector<unsigned int, 8> uvec8;
typedef Mat2<float> mat2;
typedef Mat2<double> dmat2;
typedef Mat3<float> mat3;
typedef Mat3<double> dmat3;
typedef Mat4<float> mat4;
typedef Mat4<double> dmat4;
//== GENERAL MATRIX FUNCTIONS =================================================
//! output a matrix by printing its space-separated compontens
template <typename Scalar, int M, int N>
inline std::ostream& operator<<(std::ostream& os, const Matrix<Scalar, M, N>& m)
{
for (int i=0; i<M; ++i)
{
for (int j=0; j<N; ++j)
os << m(i,j) << " ";
os << std::endl;
}
return os;
}
/// matrix-matrix multiplication
template <typename Scalar, int M, int N, int K>
Matrix<Scalar, M, N> operator*(const Matrix<Scalar, M, K>& m1,
const Matrix<Scalar, K, N>& m2)
{
Matrix<Scalar, M, N> m;
int i, j, k;
for (i = 0; i < M; ++i)
{
for (j = 0; j < N; ++j)
{
m(i, j) = Scalar(0);
for (k = 0; k < K; ++k)
m(i, j) += m1(i, k) * m2(k, j);
}
}
return m;
}
//-----------------------------------------------------------------------------
/// component-wise multiplication
template <typename Scalar, int M, int N>
Matrix<Scalar, M, N> cmult(const Matrix<Scalar, M, N>& m1,
const Matrix<Scalar, M, N>& m2)
{
Matrix<Scalar, M, N> m;
int i, j;
for (i = 0; i < M; ++i)
for (j = 0; j < N; ++j)
m(i,j) = m1(i,j) * m2(i,j);
return m;
}
//-----------------------------------------------------------------------------
template <typename Scalar, int M, int N>
Matrix<Scalar, N, M> transpose(const Matrix<Scalar, M, N>& m)
{
Matrix<Scalar, N, M> result;
for (int j = 0; j < M; ++j)
for (int i = 0; i < N; ++i)
result(i, j) = m(j, i);
return result;
}
//-----------------------------------------------------------------------------
template <typename Scalar, int M, int N>
Matrix<Scalar, M, N> Matrix<Scalar, M, N>::identity()
{
static_assert(M == N, "only for square matrices");
Matrix<Scalar, N, N> m;
for (int j = 0; j < N; ++j)
for (int i = 0; i < N; ++i)
m(i, j) = 0.0;
for (int i = 0; i < N; ++i)
m(i, i) = 1.0;
return m;
}
//-----------------------------------------------------------------------------
//! matrix + matrix
template <typename Scalar, int M, int N>
inline Matrix<Scalar, M, N> operator+(const Matrix<Scalar, M, N>& m1,
const Matrix<Scalar, M, N>& m2)
{
return Matrix<Scalar, M, N>(m1) += m2;
}
//-----------------------------------------------------------------------------
//! matrix - matrix
template <typename Scalar, int M, int N>
inline Matrix<Scalar, M, N> operator-(const Matrix<Scalar, M, N>& m1,
const Matrix<Scalar, M, N>& m2)
{
return Matrix<Scalar, M, N>(m1) -= m2;
}
//-----------------------------------------------------------------------------
//! negate matrix
template <typename Scalar, int M, int N>
inline Matrix<Scalar, M, N> operator-(const Matrix<Scalar, M, N>& m)
{
Matrix<Scalar, M, N> result;
for (int i = 0; i < result.size(); ++i)
result[i] = -m[i];
return result;
}
//-----------------------------------------------------------------------------
//! scalar * matrix
template <typename Scalar, typename Scalar2, int M, int N>
inline Matrix<Scalar, M, N> operator*(const Scalar2 s,
const Matrix<Scalar, M, N>& m)
{
return Matrix<Scalar, M, N>(m) *= s;
}
//-----------------------------------------------------------------------------
//! matrix * scalar
template <typename Scalar, typename Scalar2, int M, int N>
inline Matrix<Scalar, M, N> operator*(const Matrix<Scalar, M, N>& m,
const Scalar2 s)
{
return Matrix<Scalar, M, N>(m) *= s;
}
//-----------------------------------------------------------------------------
//! matrix / scalar
template <typename Scalar, typename Scalar2, int M, int N>
inline Matrix<Scalar, M, N> operator/(const Matrix<Scalar, M, N>& m,
const Scalar2 s)
{
return Matrix<Scalar, M, N>(m) /= s;
}
//-----------------------------------------------------------------------------
//! compute the Frobenius norm of a matrix (or Euclidean norm of a vector)
template <typename Scalar, int M, int N>
inline Scalar norm(const Matrix<Scalar, M, N>& m)
{
return sqrt(sqrnorm(m));
}
//-----------------------------------------------------------------------------
//! compute the squared Frobenius norm of a matrix (or squared Euclidean norm of a vector)
template <typename Scalar, int M, int N>
inline Scalar sqrnorm(const Matrix<Scalar, M, N>& m)
{
Scalar s(0.0);
for (int i = 0; i < m.size(); ++i)
s += m[i] * m[i];
return s;
}
//-----------------------------------------------------------------------------
//! return a normalized copy of a vector
template <typename Scalar, int M, int N>
inline Matrix<Scalar, M, N> normalize(const Matrix<Scalar, M, N>& m)
{
Scalar n = norm(m);
n = (n > std::numeric_limits<Scalar>::min()) ? 1.0 / n : 0.0;
return m * n;
}
//-----------------------------------------------------------------------------
//! return component-wise minimum
template <typename Scalar, int M, int N>
inline Matrix<Scalar, M, N> min(const Matrix<Scalar, M, N>& m1,
const Matrix<Scalar, M, N>& m2)
{
Matrix<Scalar, M, N> result;
for (int i = 0; i < result.size(); ++i)
result[i] = std::min(m1[i], m2[i]);
return result;
}
//-----------------------------------------------------------------------------
//! return component-wise maximum
template <typename Scalar, int M, int N>
inline Matrix<Scalar, M, N> max(const Matrix<Scalar, M, N>& m1,
const Matrix<Scalar, M, N>& m2)
{
Matrix<Scalar, M, N> result;
for (int i = 0; i < result.size(); ++i)
result[i] = std::max(m1[i], m2[i]);
return result;
}
//== Mat4 functions ===========================================================
template <typename Scalar>
Mat4<Scalar> viewportMatrix(Scalar l, Scalar b, Scalar w, Scalar h)
{
Mat4<Scalar> m(Scalar(0));
m(0, 0) = 0.5 * w;
m(0, 3) = 0.5 * w + l;
m(1, 1) = 0.5 * h;
m(1, 3) = 0.5 * h + b;
m(2, 2) = 0.5;
m(2, 3) = 0.5;
m(3, 3) = 1.0f;
return m;
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat4<Scalar> inverseViewportMatrix(Scalar l, Scalar b, Scalar w, Scalar h)
{
Mat4<Scalar> m(Scalar(0));
m(0, 0) = 2.0 / w;
m(0, 3) = -1.0 - (l + l) / w;
m(1, 1) = 2.0 / h;
m(1, 3) = -1.0 - (b + b) / h;
m(2, 2) = 2.0;
m(2, 3) = -1.0;
m(3, 3) = 1.0f;
return m;
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat4<Scalar> frustumMatrix(Scalar l, Scalar r, Scalar b, Scalar t, Scalar n,
Scalar f)
{
Mat4<Scalar> m(Scalar(0));
m(0, 0) = (n + n) / (r - l);
m(0, 2) = (r + l) / (r - l);
m(1, 1) = (n + n) / (t - b);
m(1, 2) = (t + b) / (t - b);
m(2, 2) = -(f + n) / (f - n);
m(2, 3) = -f * (n + n) / (f - n);
m(3, 2) = -1.0f;
return m;
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat4<Scalar> inverseFrustumMatrix(Scalar l, Scalar r, Scalar b, Scalar t,
Scalar n, Scalar f)
{
Mat4<Scalar> m(Scalar(0));
const Scalar nn = n + n;
m(0, 0) = (r - l) / nn;
m(0, 3) = (r + l) / nn;
m(1, 1) = (t - b) / nn;
m(1, 3) = (t + b) / nn;
m(2, 3) = -1.0;
m(3, 2) = (n - f) / (nn * f);
m(3, 3) = (n + f) / (nn * f);
return m;
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat4<Scalar> perspectiveMatrix(Scalar fovy, Scalar aspect, Scalar zNear,
Scalar zFar)
{
Scalar t = Scalar(zNear) * tan(fovy * M_PI / 360.0);
Scalar b = -t;
Scalar l = b * aspect;
Scalar r = t * aspect;
return frustumMatrix(l, r, b, t, Scalar(zNear), Scalar(zFar));
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat4<Scalar> inversePerspectiveMatrix(Scalar fovy, Scalar aspect, Scalar zNear,
Scalar zFar)
{
Scalar t = zNear * tan(fovy * M_PI / 360.0);
Scalar b = -t;
Scalar l = b * aspect;
Scalar r = t * aspect;
return inverseFrustumMatrix(l, r, b, t, zNear, zFar);
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat4<Scalar> orthoMatrix(Scalar left, Scalar right, Scalar bottom, Scalar top,
Scalar zNear=-1, Scalar zFar=1)
{
Mat4<Scalar> m(0.0);
m(0, 0) = Scalar(2) / (right - left);
m(1, 1) = Scalar(2) / (top - bottom);
m(2, 2) = -Scalar(2) / (zFar - zNear);
m(0, 3) = -(right + left) / (right - left);
m(1, 3) = -(top + bottom) / (top - bottom);
m(2, 3) = -(zFar + zNear) / (zFar - zNear);
m(3, 3) = Scalar(1);
return m;
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat4<Scalar> lookAtMatrix(const Vector<Scalar, 3>& eye,
const Vector<Scalar, 3>& center,
const Vector<Scalar, 3>& up)
{
Vector<Scalar, 3> z = normalize(eye - center);
Vector<Scalar, 3> x = normalize(cross(up, z));
Vector<Scalar, 3> y = normalize(cross(z, x));
// clang-format off
Mat4<Scalar> m;
m(0, 0) = x[0]; m(0, 1) = x[1]; m(0, 2) = x[2]; m(0, 3) = -dot(x, eye);
m(1, 0) = y[0]; m(1, 1) = y[1]; m(1, 2) = y[2]; m(1, 3) = -dot(y, eye);
m(2, 0) = z[0]; m(2, 1) = z[1]; m(2, 2) = z[2]; m(2, 3) = -dot(z, eye);
m(3, 0) = 0.0; m(3, 1) = 0.0; m(3, 2) = 0.0; m(3, 3) = 1.0;
// clang-format on
return m;
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat4<Scalar> translationMatrix(const Vector<Scalar, 3>& t)
{
Mat4<Scalar> m(Scalar(0));
m(0, 0) = m(1, 1) = m(2, 2) = m(3, 3) = 1.0f;
m(0, 3) = t[0];
m(1, 3) = t[1];
m(2, 3) = t[2];
return m;
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat4<Scalar> rotationMatrixX(Scalar angle)
{
Scalar ca = cos(angle * (M_PI / 180.0));
Scalar sa = sin(angle * (M_PI / 180.0));
Mat4<Scalar> m(0.0);
m(0, 0) = 1.0;
m(1, 1) = ca;
m(1, 2) = -sa;
m(2, 2) = ca;
m(2, 1) = sa;
m(3, 3) = 1.0;
return m;
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat4<Scalar> rotationMatrixY(Scalar angle)
{
Scalar ca = cos(angle * (M_PI / 180.0));
Scalar sa = sin(angle * (M_PI / 180.0));
Mat4<Scalar> m(0.0);
m(0, 0) = ca;
m(0, 2) = sa;
m(1, 1) = 1.0;
m(2, 0) = -sa;
m(2, 2) = ca;
m(3, 3) = 1.0;
return m;
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat4<Scalar> rotationMatrixZ(Scalar angle)
{
Scalar ca = cos(angle * (M_PI / 180.0));
Scalar sa = sin(angle * (M_PI / 180.0));
Mat4<Scalar> m(0.0);
m(0, 0) = ca;
m(0, 1) = -sa;
m(1, 0) = sa;
m(1, 1) = ca;
m(2, 2) = 1.0;
m(3, 3) = 1.0;
return m;
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat4<Scalar> rotationMatrix(const Vector<Scalar, 3>& axis, Scalar angle)
{
Mat4<Scalar> m(Scalar(0));
Scalar a = angle * (M_PI / 180.0f);
Scalar c = cosf(a);
Scalar s = sinf(a);
Scalar one_m_c = Scalar(1) - c;
Vector<Scalar, 3> ax = normalize(axis);
m(0, 0) = ax[0] * ax[0] * one_m_c + c;
m(0, 1) = ax[0] * ax[1] * one_m_c - ax[2] * s;
m(0, 2) = ax[0] * ax[2] * one_m_c + ax[1] * s;
m(1, 0) = ax[1] * ax[0] * one_m_c + ax[2] * s;
m(1, 1) = ax[1] * ax[1] * one_m_c + c;
m(1, 2) = ax[1] * ax[2] * one_m_c - ax[0] * s;
m(2, 0) = ax[2] * ax[0] * one_m_c - ax[1] * s;
m(2, 1) = ax[2] * ax[1] * one_m_c + ax[0] * s;
m(2, 2) = ax[2] * ax[2] * one_m_c + c;
m(3, 3) = 1.0f;
return m;
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat4<Scalar> rotationMatrix(const Vector<Scalar, 4>& quat)
{
Mat4<Scalar> m(0.0f);
Scalar s1(1);
Scalar s2(2);
m(0,0) = s1 - s2 * quat[1] * quat[1] - s2 * quat[2] * quat[2];
m(1,0) = s2 * quat[0] * quat[1] + s2 * quat[3] * quat[2];
m(2,0) = s2 * quat[0] * quat[2] - s2 * quat[3] * quat[1];
m(0,1) = s2 * quat[0] * quat[1] - s2 * quat[3] * quat[2];
m(1,1) = s1 - s2 * quat[0] * quat[0] - s2 * quat[2] * quat[2];
m(2,1) = s2 * quat[1] * quat[2] + s2 * quat[3] * quat[0];
m(0,2) = s2 * quat[0] * quat[2] + s2 * quat[3] * quat[1];
m(1,2) = s2 * quat[1] * quat[2] - s2 * quat[3] * quat[0];
m(2,2) = s1 - s2 * quat[0] * quat[0] - s2 * quat[1] * quat[1];
m(3,3) = 1.0f;
return m;
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat3<Scalar> linearPart(const Mat4<Scalar>& m)
{
Mat3<Scalar> result;
for (int j = 0; j < 3; ++j)
for (int i = 0; i < 3; ++i)
result(i, j) = m(i, j);
return result;
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Vector<Scalar, 3> projectiveTransform(const Mat4<Scalar>& m,
const Vector<Scalar, 3>& v)
{
const Scalar x = m(0, 0) * v[0] + m(0, 1) * v[1] + m(0, 2) * v[2] + m(0, 3);
const Scalar y = m(1, 0) * v[0] + m(1, 1) * v[1] + m(1, 2) * v[2] + m(1, 3);
const Scalar z = m(2, 0) * v[0] + m(2, 1) * v[1] + m(2, 2) * v[2] + m(2, 3);
const Scalar w = m(3, 0) * v[0] + m(3, 1) * v[1] + m(3, 2) * v[2] + m(3, 3);
return Vector<Scalar, 3>(x / w, y / w, z / w);
}
//-----------------------------------------------------------------------------
// transforms a position `v` by an affine transformation. (linear*v + translation)
template <typename Scalar>
Vector<Scalar, 3> affineTransform(const Mat4<Scalar>& m,
const Vector<Scalar, 3>& v)
{
const Scalar x = m(0, 0) * v[0] + m(0, 1) * v[1] + m(0, 2) * v[2] + m(0, 3);
const Scalar y = m(1, 0) * v[0] + m(1, 1) * v[1] + m(1, 2) * v[2] + m(1, 3);
const Scalar z = m(2, 0) * v[0] + m(2, 1) * v[1] + m(2, 2) * v[2] + m(2, 3);
return Vector<Scalar, 3>(x, y, z);
}
//-----------------------------------------------------------------------------
// transforms a vector `v` by the linear part of an affine transformation.
template <typename Scalar>
Vector<Scalar, 3> linearTransform(const Mat4<Scalar>& m,
const Vector<Scalar, 3>& v)
{
const Scalar x = m(0, 0) * v[0] + m(0, 1) * v[1] + m(0, 2) * v[2];
const Scalar y = m(1, 0) * v[0] + m(1, 1) * v[1] + m(1, 2) * v[2];
const Scalar z = m(2, 0) * v[0] + m(2, 1) * v[1] + m(2, 2) * v[2];
return Vector<Scalar, 3>(x, y, z);
}
//-----------------------------------------------------------------------------
template <typename Scalar>
Mat4<Scalar> inverse(const Mat4<Scalar>& m)
{
Scalar Coef00 = m(2, 2) * m(3, 3) - m(2, 3) * m(3, 2);
Scalar Coef02 = m(2, 1) * m(3, 3) - m(2, 3) * m(3, 1);
Scalar Coef03 = m(2, 1) * m(3, 2) - m(2, 2) * m(3, 1);
Scalar Coef04 = m(1, 2) * m(3, 3) - m(1, 3) * m(3, 2);
Scalar Coef06 = m(1, 1) * m(3, 3) - m(1, 3) * m(3, 1);
Scalar Coef07 = m(1, 1) * m(3, 2) - m(1, 2) * m(3, 1);
Scalar Coef08 = m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2);
Scalar Coef10 = m(1, 1) * m(2, 3) - m(1, 3) * m(2, 1);
Scalar Coef11 = m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1);
Scalar Coef12 = m(0, 2) * m(3, 3) - m(0, 3) * m(3, 2);
Scalar Coef14 = m(0, 1) * m(3, 3) - m(0, 3) * m(3, 1);
Scalar Coef15 = m(0, 1) * m(3, 2) - m(0, 2) * m(3, 1);
Scalar Coef16 = m(0, 2) * m(2, 3) - m(0, 3) * m(2, 2);
Scalar Coef18 = m(0, 1) * m(2, 3) - m(0, 3) * m(2, 1);
Scalar Coef19 = m(0, 1) * m(2, 2) - m(0, 2) * m(2, 1);
Scalar Coef20 = m(0, 2) * m(1, 3) - m(0, 3) * m(1, 2);
Scalar Coef22 = m(0, 1) * m(1, 3) - m(0, 3) * m(1, 1);
Scalar Coef23 = m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1);
Vector<Scalar, 4> const SignA(+1, -1, +1, -1);
Vector<Scalar, 4> const SignB(-1, +1, -1, +1);
Vector<Scalar, 4> Fac0(Coef00, Coef00, Coef02, Coef03);
Vector<Scalar, 4> Fac1(Coef04, Coef04, Coef06, Coef07);
Vector<Scalar, 4> Fac2(Coef08, Coef08, Coef10, Coef11);
Vector<Scalar, 4> Fac3(Coef12, Coef12, Coef14, Coef15);
Vector<Scalar, 4> Fac4(Coef16, Coef16, Coef18, Coef19);
Vector<Scalar, 4> Fac5(Coef20, Coef20, Coef22, Coef23);
Vector<Scalar, 4> Vec0(m(0, 1), m(0, 0), m(0, 0), m(0, 0));
Vector<Scalar, 4> Vec1(m(1, 1), m(1, 0), m(1, 0), m(1, 0));
Vector<Scalar, 4> Vec2(m(2, 1), m(2, 0), m(2, 0), m(2, 0));
Vector<Scalar, 4> Vec3(m(3, 1), m(3, 0), m(3, 0), m(3, 0));
Vector<Scalar, 4> Inv0 = cmult(SignA, (cmult(Vec1, Fac0) - cmult(Vec2, Fac1) + cmult(Vec3, Fac2)));
Vector<Scalar, 4> Inv1 = cmult(SignB, (cmult(Vec0, Fac0) - cmult(Vec2, Fac3) + cmult(Vec3, Fac4)));
Vector<Scalar, 4> Inv2 = cmult(SignA, (cmult(Vec0, Fac1) - cmult(Vec1, Fac3) + cmult(Vec3, Fac5)));
Vector<Scalar, 4> Inv3 = cmult(SignB, (cmult(Vec0, Fac2) - cmult(Vec1, Fac4) + cmult(Vec2, Fac5)));
Mat4<Scalar> Inverse(Inv0, Inv1, Inv2, Inv3);
Vector<Scalar, 4> Row0(Inverse(0, 0), Inverse(1, 0), Inverse(2, 0),
Inverse(3, 0));
Vector<Scalar, 4> Col0(m(0, 0), m(0, 1), m(0, 2), m(0, 3));
Scalar Determinant = dot(Col0, Row0);
Inverse /= Determinant;
return Inverse;
}
//== Mat3 functions ===========================================================
template <typename Scalar>
Mat3<Scalar> inverse(const Mat3<Scalar>& m)
{
Scalar det = (-m(0, 0) * m(1, 1) * m(2, 2) + m(0, 0) * m(1, 2) * m(2, 1) +
m(1, 0) * m(0, 1) * m(2, 2) - m(1, 0) * m(0, 2) * m(2, 1) -
m(2, 0) * m(0, 1) * m(1, 2) + m(2, 0) * m(0, 2) * m(1, 1));
Mat3<Scalar> inv;
inv(0, 0) = (m(1, 2) * m(2, 1) - m(1, 1) * m(2, 2)) / det;
inv(0, 1) = (m(0, 1) * m(2, 2) - m(0, 2) * m(2, 1)) / det;
inv(0, 2) = (m(0, 2) * m(1, 1) - m(0, 1) * m(1, 2)) / det;
inv(1, 0) = (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) / det;
inv(1, 1) = (m(0, 2) * m(2, 0) - m(0, 0) * m(2, 2)) / det;
inv(1, 2) = (m(0, 0) * m(1, 2) - m(0, 2) * m(1, 0)) / det;
inv(2, 0) = (m(1, 1) * m(2, 0) - m(1, 0) * m(2, 1)) / det;
inv(2, 1) = (m(0, 0) * m(2, 1) - m(0, 1) * m(2, 0)) / det;
inv(2, 2) = (m(0, 1) * m(1, 0) - m(0, 0) * m(1, 1)) / det;
return inv;
}
//-----------------------------------------------------------------------------
template <typename Scalar>
bool symmetricEigendecomposition(const Mat3<Scalar>& m, Scalar& eval1,
Scalar& eval2, Scalar& eval3,
Vector<Scalar, 3>& evec1,
Vector<Scalar, 3>& evec2,
Vector<Scalar, 3>& evec3)
{
unsigned int i, j;
Scalar theta, t, c, s;
Mat3<Scalar> V = Mat3<Scalar>::identity();
Mat3<Scalar> R;
Mat3<Scalar> A = m;
const Scalar eps = 1e-10; //0.000001;
int iterations = 100;
while (iterations--)
{
// find largest off-diagonal elem
if (fabs(A(0, 1)) < fabs(A(0, 2)))
{
if (fabs(A(0, 2)) < fabs(A(1, 2)))
{
i = 1, j = 2;
}
else
{
i = 0, j = 2;
}
}
else
{
if (fabs(A(0, 1)) < fabs(A(1, 2)))
{
i = 1, j = 2;
}
else
{
i = 0, j = 1;
}
}
// converged?
if (fabs(A(i, j)) < eps)
break;
// compute Jacobi-Rotation
theta = 0.5 * (A(j, j) - A(i, i)) / A(i, j);
t = 1.0 / (fabs(theta) + sqrt(1.0 + theta * theta));
if (theta < 0.0)
t = -t;
c = 1.0 / sqrt(1.0 + t * t);
s = t * c;
R = Mat3<Scalar>::identity();
R(i, i) = R(j, j) = c;
R(i, j) = s;
R(j, i) = -s;
A = transpose(R) * A * R;
V = V * R;
}
if (iterations > 0)
{
// sort and return
int sorted[3];
Scalar d[3] = {A(0, 0), A(1, 1), A(2, 2)};
if (d[0] > d[1])
{
if (d[1] > d[2])
{
sorted[0] = 0, sorted[1] = 1, sorted[2] = 2;
}
else
{
if (d[0] > d[2])
{
sorted[0] = 0, sorted[1] = 2, sorted[2] = 1;
}
else
{
sorted[0] = 2, sorted[1] = 0, sorted[2] = 1;
}
}
}
else
{
if (d[0] > d[2])
{
sorted[0] = 1, sorted[1] = 0, sorted[2] = 2;
}
else
{
if (d[1] > d[2])
{
sorted[0] = 1, sorted[1] = 2, sorted[2] = 0;
}
else
{
sorted[0] = 2, sorted[1] = 1, sorted[2] = 0;
}
}
}
eval1 = d[sorted[0]];
eval2 = d[sorted[1]];
eval3 = d[sorted[2]];
evec1 = Vector<Scalar, 3>(V(0, sorted[0]), V(1, sorted[0]),
V(2, sorted[0]));
evec2 = Vector<Scalar, 3>(V(0, sorted[1]), V(1, sorted[1]),
V(2, sorted[1]));
evec3 = normalize(cross(evec1, evec2));
return true;
}
return false;
}
//== Vector functions =========================================================
//! read the space-separated components of a vector from a stream
template <typename Scalar, int N>
inline std::istream& operator>>(std::istream& is, Vector<Scalar, N>& vec)
{
for (int i = 0; i < N; ++i)
is >> vec[i];
return is;
}
//! output a vector by printing its space-separated compontens
template <typename Scalar, int N>
inline std::ostream& operator<<(std::ostream& os, const Vector<Scalar, N>& vec)
{
for (int i = 0; i < N - 1; ++i)
os << vec[i] << " ";
os << vec[N - 1];
return os;
}
//! compute the dot product of two vectors
template <typename Scalar, int N>
inline Scalar dot(const Vector<Scalar, N>& v0, const Vector<Scalar, N>& v1)
{
Scalar p = v0[0] * v1[0];
for (int i = 1; i < N; ++i)
p += v0[i] * v1[i];
return p;
}
//! compute the Euclidean distance between two points
template <typename Scalar, int N>
inline Scalar distance(const Vector<Scalar, N>& v0, const Vector<Scalar, N>& v1)
{
Scalar dist(0), d;
for (int i = 0; i < N; ++i)
{
d = v0[i] - v1[i];
d *= d;
dist += d;
}
return (Scalar)sqrt(dist);
}
//! compute the cross product of two vectors (only valid for 3D vectors)
template <typename Scalar>
inline Vector<Scalar, 3> cross(const Vector<Scalar, 3>& v0,
const Vector<Scalar, 3>& v1)
{
return Vector<Scalar, 3>(v0[1] * v1[2] - v0[2] * v1[1],
v0[2] * v1[0] - v0[0] * v1[2],
v0[0] * v1[1] - v0[1] * v1[0]);
}
//=============================================================================
} // namespace
//=============================================================================