test_pie/external/MRF/BP-S.cpp

1056 lines
25 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <new>
#include "BP-S.h"
#define private public
#include "typeTruncatedQuadratic2D.h"
#undef private
#define m_D(pix,l) m_D[(pix)*m_nLabels+(l)]
#define m_V(l1,l2) m_V[(l1)*m_nLabels+(l2)]
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define TRUNCATE_MIN(a,b) { if ((a) > (b)) (a) = (b); }
#define TRUNCATE_MAX(a,b) { if ((a) < (b)) (a) = (b); }
#define TRUNCATE TRUNCATE_MIN
/////////////////////////////////////////////////////////////////////////////
// Operations on vectors (arrays of size K) //
/////////////////////////////////////////////////////////////////////////////
inline void CopyVector(BPS::REAL* to, MRF::CostVal* from, int K)
{
BPS::REAL* to_finish = to + K;
do
{
*to ++ = *from ++;
} while (to < to_finish);
}
inline void AddVector(BPS::REAL* to, BPS::REAL* from, int K)
{
BPS::REAL* to_finish = to + K;
do
{
*to ++ += *from ++;
} while (to < to_finish);
}
inline BPS::REAL SubtractMin(BPS::REAL *D, int K)
{
int k;
BPS::REAL delta;
delta = D[0];
for (k=1; k<K; k++) TRUNCATE(delta, D[k]);
for (k=0; k<K; k++) D[k] -= delta;
return delta;
}
// Functions UpdateMessageTYPE (see the paper for details):
//
// - Set Di[ki] := gamma*Di_hat[ki] - M[ki]
// - Set M[kj] := min_{ki} (Di[ki] + V[ki,kj])
// - Normalize message:
// delta := min_{kj} M[kj]
// M[kj] := M[kj] - delta
// return delta
//
// If dir = 1, then the meaning of i and j is swapped.
///////////////////////////////////////////
// L1 //
///////////////////////////////////////////
inline BPS::REAL UpdateMessageL1(BPS::REAL* M, BPS::REAL* Di_hat, int K, BPS::REAL gamma, MRF::CostVal lambda, MRF::CostVal smoothMax)
{
int k;
BPS::REAL delta;
delta = M[0] = gamma*Di_hat[0] - M[0];
for (k=1; k<K; k++)
{
M[k] = gamma*Di_hat[k] - M[k];
TRUNCATE(delta, M[k]);
TRUNCATE(M[k], M[k-1] + lambda);
}
M[--k] -= delta;
TRUNCATE(M[k], lambda*smoothMax);
for (k--; k>=0; k--)
{
M[k] -= delta;
TRUNCATE(M[k], M[k+1] + lambda);
TRUNCATE(M[k], lambda*smoothMax);
}
return delta;
}
////////////////////////////////////////
// L2 //
////////////////////////////////////////
inline BPS::REAL UpdateMessageL2(BPS::REAL* M, BPS::REAL* Di_hat, int K, BPS::REAL gamma, MRF::CostVal lambda, MRF::CostVal smoothMax, void *buf)
{
BPS::REAL* Di = (BPS::REAL*) buf;
int* parabolas = (int*) ((char*)buf + K*sizeof(BPS::REAL));
int* intersections = parabolas + K;
TypeTruncatedQuadratic2D::REAL* Di_tmp = (TypeTruncatedQuadratic2D::REAL*) (intersections + K + 1);
TypeTruncatedQuadratic2D::REAL* M_tmp = Di_tmp + K;
TypeTruncatedQuadratic2D::Edge* tmp = NULL;
int k;
BPS::REAL delta;
assert(lambda >= 0);
Di[0] = gamma*Di_hat[0] - M[0];
delta = Di[0];
for (k=1; k<K; k++)
{
Di[k] = gamma*Di_hat[k] - M[k];
TRUNCATE(delta, Di[k]);
}
if (lambda == 0)
{
for (k=0; k<K; k++) M[k] = 0;
return delta;
}
for (k=0; k<K; k++) Di_tmp[k] = Di[k];
tmp->DistanceTransformL2(K, 1, lambda, Di_tmp, M_tmp, parabolas, intersections);
for (k=0; k<K; k++) M[k] = (BPS::REAL) M_tmp[k];
for (k=0; k<K; k++)
{
M[k] -= delta;
TRUNCATE(M[k], lambda*smoothMax);
}
return delta;
}
//////////////////////////////////////////////////
// FIXED_MATRIX //
//////////////////////////////////////////////////
inline BPS::REAL UpdateMessageFIXED_MATRIX(BPS::REAL* M, BPS::REAL* Di_hat, int K, BPS::REAL gamma, MRF::CostVal lambda, MRF::CostVal* V, void* buf)
{
BPS::REAL* Di = (BPS::REAL*) buf;
int ki, kj;
BPS::REAL delta;
for (ki=0; ki<K; ki++)
{
Di[ki] = gamma*Di_hat[ki] - M[ki];
}
for (kj=0; kj<K; kj++)
{
M[kj] = Di[0] + lambda*V[0];
V ++;
for (ki=1; ki<K; ki++)
{
TRUNCATE(M[kj], Di[ki] + lambda*V[0]);
V ++;
}
}
delta = M[0];
for (kj=1; kj<K; kj++) TRUNCATE(delta, M[kj]);
for (kj=0; kj<K; kj++) M[kj] -= delta;
return delta;
}
/////////////////////////////////////////////
// GENERAL //
/////////////////////////////////////////////
inline BPS::REAL UpdateMessageGENERAL(BPS::REAL* M, BPS::REAL* Di_hat, int K, BPS::REAL gamma, int dir, MRF::CostVal* V, void* buf)
{
BPS::REAL* Di = (BPS::REAL*) buf;
int ki, kj;
BPS::REAL delta;
for (ki=0; ki<K; ki++)
{
Di[ki] = (gamma*Di_hat[ki] - M[ki]);
}
if (dir == 0)
{
for (kj=0; kj<K; kj++)
{
M[kj] = Di[0] + V[0];
V ++;
for (ki=1; ki<K; ki++)
{
TRUNCATE(M[kj], Di[ki] + V[0]);
V ++;
}
}
}
else
{
for (kj=0; kj<K; kj++)
{
M[kj] = Di[0] + V[0];
V += K;
for (ki=1; ki<K; ki++)
{
TRUNCATE(M[kj], Di[ki] + V[0]);
V += K;
}
V -= K*K - 1;
}
}
delta = M[0];
for (kj=1; kj<K; kj++) TRUNCATE(delta, M[kj]);
for (kj=0; kj<K; kj++) M[kj] -= delta;
return delta;
}
inline BPS::REAL UpdateMessageGENERAL(BPS::REAL* M, BPS::REAL* Di_hat, int K, BPS::REAL gamma, BPS::SmoothCostGeneralFn fn, int i, int j, void* buf)
{
BPS::REAL* Di = (BPS::REAL*) buf;
int ki, kj;
BPS::REAL delta;
for (ki=0; ki<K; ki++)
{
Di[ki] = (gamma*Di_hat[ki] - M[ki]);
}
for (kj=0; kj<K; kj++)
{
M[kj] = Di[0] + fn(i, j, 0, kj);
for (ki=1; ki<K; ki++)
{
delta = Di[ki] + fn(i, j, ki, kj);
TRUNCATE(M[kj], delta);
}
}
delta = M[0];
for (kj=1; kj<K; kj++) TRUNCATE(delta, M[kj]);
for (kj=0; kj<K; kj++) M[kj] -= delta;
return delta;
}
BPS::BPS(int width, int height, int nLabels,EnergyFunction *eng):MRF(width,height,nLabels,eng)
{
Allocate();
}
BPS::BPS(int nPixels, int nLabels,EnergyFunction *eng):MRF(nPixels,nLabels,eng)
{
Allocate();
}
BPS::~BPS()
{
delete[] m_answer;
if ( m_needToFreeD ) delete [] m_D;
if ( m_needToFreeV ) delete [] m_V;
if ( m_messages ) delete [] m_messages;
if ( m_DBinary ) delete [] m_DBinary;
if ( m_horzWeightsBinary ) delete [] m_horzWeightsBinary;
if ( m_vertWeightsBinary ) delete [] m_vertWeightsBinary;
}
void BPS::Allocate()
{
m_type = NONE;
m_needToFreeV = false;
m_needToFreeD = false;
m_D = NULL;
m_V = NULL;
m_horzWeights = NULL;
m_vertWeights = NULL;
m_horzWeightsBinary = NULL;
m_vertWeightsBinary = NULL;
m_DBinary = NULL;
m_messages = NULL;
m_messageArraySizeInBytes = 0;
m_answer = new Label[m_nPixels];
}
void BPS::clearAnswer()
{
memset(m_answer, 0, m_nPixels*sizeof(Label));
if (m_messages)
{
memset(m_messages, 0, m_messageArraySizeInBytes);
}
}
MRF::EnergyVal BPS::smoothnessEnergy()
{
EnergyVal eng = (EnergyVal) 0;
EnergyVal weight;
int x,y,pix;
if ( m_grid_graph )
{
if ( m_smoothType != FUNCTION )
{
for ( y = 0; y < m_height; y++ )
for ( x = 1; x < m_width; x++ )
{
pix = x+y*m_width;
weight = m_varWeights ? m_horzWeights[pix-1] : 1;
eng = eng + m_V(m_answer[pix],m_answer[pix-1])*weight;
}
for ( y = 1; y < m_height; y++ )
for ( x = 0; x < m_width; x++ )
{
pix = x+y*m_width;
weight = m_varWeights ? m_vertWeights[pix-m_width] : 1;
eng = eng + m_V(m_answer[pix],m_answer[pix-m_width])*weight;
}
}
else
{
for ( y = 0; y < m_height; y++ )
for ( x = 1; x < m_width; x++ )
{
pix = x+y*m_width;
eng = eng + m_smoothFn(pix,pix-1,m_answer[pix],m_answer[pix-1]);
}
for ( y = 1; y < m_height; y++ )
for ( x = 0; x < m_width; x++ )
{
pix = x+y*m_width;
eng = eng + m_smoothFn(pix,pix-m_width,m_answer[pix],m_answer[pix-m_width]);
}
}
}
else
{
// not implemented
}
return(eng);
}
MRF::EnergyVal BPS::dataEnergy()
{
EnergyVal eng = (EnergyVal) 0;
if ( m_dataType == ARRAY)
{
for ( int i = 0; i < m_nPixels; i++ )
eng = eng + m_D(i,m_answer[i]);
}
else
{
for ( int i = 0; i < m_nPixels; i++ )
eng = eng + m_dataFn(i,m_answer[i]);
}
return(eng);
}
void BPS::setData(DataCostFn dcost)
{
int i, k;
m_dataFn = dcost;
CostVal* ptr;
m_D = new CostVal[m_nPixels*m_nLabels];
for (ptr=m_D, i=0; i<m_nPixels; i++)
for (k=0; k<m_nLabels; k++, ptr++)
{
*ptr = m_dataFn(i,k);
}
m_needToFreeD = true;
}
void BPS::setData(CostVal* data)
{
m_D = data;
m_needToFreeD = false;
}
void BPS::setSmoothness(SmoothCostGeneralFn cost)
{
assert(m_horzWeights == NULL && m_vertWeights == NULL && m_V == NULL);
int x, y, i, ki, kj;
CostVal* ptr;
m_smoothFn = cost;
m_type = GENERAL;
if (!m_allocateArrayForSmoothnessCostFn) return;
// try to cache all the function values in an array for efficiency
m_V = new(std::nothrow) CostVal[2*m_nPixels*m_nLabels*m_nLabels];
if (!m_V) {
fprintf(stderr, "not caching smoothness cost values (not enough memory)\n");
return; // if not enough space, just call the function directly
}
m_needToFreeV = true;
for (ptr=m_V,i=0,y=0; y<m_height; y++)
for (x=0; x<m_width; x++, i++)
{
if (x < m_width-1)
{
for (kj=0; kj<m_nLabels; kj++)
for (ki=0; ki<m_nLabels; ki++)
{
*ptr++ = cost(i,i+1,ki,kj);
}
}
else ptr += m_nLabels*m_nLabels;
if (y < m_height-1)
{
for (kj=0; kj<m_nLabels; kj++)
for (ki=0; ki<m_nLabels; ki++)
{
*ptr++ = cost(i,i+m_width,ki,kj);
}
}
else ptr += m_nLabels*m_nLabels;
}
}
void BPS::setSmoothness(CostVal* V)
{
m_type = FIXED_MATRIX;
m_V = V;
}
void BPS::setSmoothness(int smoothExp,CostVal smoothMax, CostVal lambda)
{
assert(smoothExp == 1 || smoothExp == 2);
assert(lambda >= 0);
m_type = (smoothExp == 1) ? L1 : L2;
int ki, kj;
CostVal cost;
m_needToFreeV = true;
m_V = new CostVal[m_nLabels*m_nLabels];
for (ki=0; ki<m_nLabels; ki++)
for (kj=ki; kj<m_nLabels; kj++)
{
cost = (CostVal) ((smoothExp == 1) ? kj - ki : (kj - ki)*(kj - ki));
if (cost > smoothMax) cost = smoothMax;
m_V[ki*m_nLabels + kj] = m_V[kj*m_nLabels + ki] = cost*lambda;
}
m_smoothMax = smoothMax;
m_lambda = lambda;
}
void BPS::setCues(CostVal* hCue, CostVal* vCue)
{
m_horzWeights = hCue;
m_vertWeights = vCue;
}
void BPS::initializeAlg()
{
assert(m_type != NONE);
int i;
// determine type
if (m_type == L1 && m_nLabels == 2)
{
m_type = BINARY;
}
// allocate messages
int messageNum = (m_type == BINARY) ? 4*m_nPixels : 4*m_nPixels*m_nLabels;
m_messageArraySizeInBytes = messageNum*sizeof(REAL);
m_messages = new REAL[messageNum];
memset(m_messages, 0, messageNum*sizeof(REAL));
if (m_type == BINARY)
{
assert(m_DBinary == NULL && m_horzWeightsBinary == NULL && m_horzWeightsBinary == NULL);
m_DBinary = new CostVal[m_nPixels];
m_horzWeightsBinary = new CostVal[m_nPixels];
m_vertWeightsBinary = new CostVal[m_nPixels];
if ( m_dataType == ARRAY)
{
for (i=0; i<m_nPixels; i++)
{
m_DBinary[i] = m_D[2*i+1] - m_D[2*i];
}
}
else
{
for (i=0; i<m_nPixels; i++)
{
m_DBinary[i] = m_dataFn(i,1) - m_dataFn(i,0);
}
}
assert(m_V[0] == 0 && m_V[1] == m_V[2] && m_V[3] == 0);
for (i=0; i<m_nPixels; i++)
{
m_horzWeightsBinary[i] = (m_varWeights) ? m_V[1]*m_horzWeights[i] : m_V[1];
m_vertWeightsBinary[i] = (m_varWeights) ? m_V[1]*m_vertWeights[i] : m_V[1];
}
}
}
void BPS::optimizeAlg(int nIterations)
{
assert(m_type != NONE);
if (m_grid_graph)
{
switch (m_type)
{
case L1: optimize_GRID_L1(nIterations); break;
case L2: optimize_GRID_L2(nIterations); break;
case FIXED_MATRIX: optimize_GRID_FIXED_MATRIX(nIterations); break;
case GENERAL: optimize_GRID_GENERAL(nIterations); break;
case BINARY: optimize_GRID_BINARY(nIterations); break;
default: assert(0); exit(1);
}
}
else {printf("\nNot implemented for general graphs yet, exiting!");exit(1);}
// printf("lower bound = %f\n", m_lowerBound);
////////////////////////////////////////////////
// computing solution //
////////////////////////////////////////////////
if (m_type != BINARY)
{
int x, y, n, K = m_nLabels;
CostVal* D_ptr;
REAL* M_ptr;
REAL* Di;
REAL delta;
int ki, kj;
Di = new REAL[K];
n = 0;
D_ptr = m_D;
M_ptr = m_messages;
for (y=0; y<m_height; y++)
for (x=0; x<m_width; x++, D_ptr+=K, M_ptr+=2*K, n++)
{
CopyVector(Di, D_ptr, K);
if (m_type == GENERAL)
{
if (m_V)
{
CostVal* ptr = m_V + 2*(x+y*m_width-1)*K*K;
if (x > 0)
{
kj = m_answer[n-1];
for (ki=0; ki<K; ki++)
{
Di[ki] += ptr[kj + ki*K];
}
}
ptr -= (2*m_width-3)*K*K;
if (y > 0)
{
kj = m_answer[n-m_width];
for (ki=0; ki<K; ki++)
{
Di[ki] += ptr[kj + ki*K];
}
}
}
else
{
if (x > 0)
{
kj = m_answer[n-1];
for (ki=0; ki<K; ki++)
{
Di[ki] += m_smoothFn(n, n-1, ki, kj);
}
}
if (y > 0)
{
kj = m_answer[n-m_width];
for (ki=0; ki<K; ki++)
{
Di[ki] += m_smoothFn(n, n-m_width, ki, kj);
}
}
}
}
else // m_type == L1, L2 or FIXED_MATRIX
{
if (x > 0)
{
kj = m_answer[n-1];
CostVal lambda = (m_varWeights) ? m_horzWeights[n-1] : 1;
for (ki=0; ki<K; ki++)
{
Di[ki] += lambda*m_V[kj*K + ki];
}
}
if (y > 0)
{
kj = m_answer[n-m_width];
CostVal lambda = (m_varWeights) ? m_vertWeights[n-m_width] : 1;
for (ki=0; ki<K; ki++)
{
Di[ki] += lambda*m_V[kj*K + ki];
}
}
}
if (x < m_width-1) AddVector(Di, M_ptr, K); // message (x+1,y)->(x,y)
if (y < m_height-1) AddVector(Di, M_ptr+K, K); // message (x,y+1)->(x,y)
// compute min
delta = Di[0];
m_answer[n] = 0;
for (ki=1; ki<K; ki++)
{
if (delta > Di[ki])
{
delta = Di[ki];
m_answer[n] = ki;
}
}
}
delete [] Di;
}
else // m_type == BINARY
{
int x, y, n;
REAL* M_ptr;
REAL Di;
n = 0;
M_ptr = m_messages;
for (y=0; y<m_height; y++)
for (x=0; x<m_width; x++, M_ptr+=2, n++)
{
Di = m_DBinary[n];
if (x > 0) Di += (m_answer[n-1] == 0) ? m_horzWeightsBinary[n-1] : -m_horzWeightsBinary[n-1];
if (y > 0) Di += (m_answer[n-m_width] == 0) ? m_vertWeightsBinary[n-m_width] : -m_vertWeightsBinary[n-m_width];
if (x < m_width-1) Di += M_ptr[0]; // message (x+1,y)->(x,y)
if (y < m_height-1) Di += M_ptr[1]; // message (x,y+1)->(x,y)
// compute min
m_answer[n] = (Di >= 0) ? 0 : 1;
}
}
}
void BPS::optimize_GRID_L1(int nIterations)
{
int x, y, n, K = m_nLabels;
CostVal* D_ptr;
REAL* M_ptr;
REAL* Di;
Di = new REAL[K];
for ( ; nIterations > 0; nIterations --)
{
// forward pass
n = 0;
D_ptr = m_D;
M_ptr = m_messages;
for (y=0; y<m_height; y++)
for (x=0; x<m_width; x++, D_ptr+=K, M_ptr+=2*K, n++)
{
CopyVector(Di, D_ptr, K);
if (x > 0) AddVector(Di, M_ptr-2*K, K); // message (x-1,y)->(x,y)
if (y > 0) AddVector(Di, M_ptr-(2*m_width-1)*K, K); // message (x,y-1)->(x,y)
if (x < m_width-1) AddVector(Di, M_ptr, K); // message (x+1,y)->(x,y)
if (y < m_height-1) AddVector(Di, M_ptr+K, K); // message (x,y+1)->(x,y)
if (x < m_width-1)
{
CostVal lambda = (m_varWeights) ? m_lambda*m_horzWeights[n] : m_lambda;
UpdateMessageL1(M_ptr, Di, K, 1, lambda, m_smoothMax);
}
if (y < m_height-1)
{
CostVal lambda = (m_varWeights) ? m_lambda*m_vertWeights[n] : m_lambda;
UpdateMessageL1(M_ptr+K, Di, K, 1, lambda, m_smoothMax);
}
}
// backward pass
n --;
D_ptr -= K;
M_ptr -= 2*K;
for (y=m_height-1; y>=0; y--)
for (x=m_width-1; x>=0; x--, D_ptr-=K, M_ptr-=2*K, n--)
{
CopyVector(Di, D_ptr, K);
if (x > 0) AddVector(Di, M_ptr-2*K, K); // message (x-1,y)->(x,y)
if (y > 0) AddVector(Di, M_ptr-(2*m_width-1)*K, K); // message (x,y-1)->(x,y)
if (x < m_width-1) AddVector(Di, M_ptr, K); // message (x+1,y)->(x,y)
if (y < m_height-1) AddVector(Di, M_ptr+K, K); // message (x,y+1)->(x,y)
SubtractMin(Di, K);
if (x > 0)
{
CostVal lambda = (m_varWeights) ? m_lambda*m_horzWeights[n-1] : m_lambda;
UpdateMessageL1(M_ptr-2*K, Di, K, 1, lambda, m_smoothMax);
}
if (y > 0)
{
CostVal lambda = (m_varWeights) ? m_lambda*m_vertWeights[n-m_width] : m_lambda;
UpdateMessageL1(M_ptr-(2*m_width-1)*K, Di, K, 1, lambda, m_smoothMax);
}
}
}
delete [] Di;
}
void BPS::optimize_GRID_L2(int nIterations)
{
int x, y, n, K = m_nLabels;
CostVal* D_ptr;
REAL* M_ptr;
REAL* Di;
void* buf;
Di = new REAL[K];
buf = new char[2*K*sizeof(TypeTruncatedQuadratic2D::REAL) + (2*K+1)*sizeof(int) + K*sizeof(REAL)];
for ( ; nIterations > 0; nIterations --)
{
// forward pass
n = 0;
D_ptr = m_D;
M_ptr = m_messages;
for (y=0; y<m_height; y++)
for (x=0; x<m_width; x++, D_ptr+=K, M_ptr+=2*K, n++)
{
CopyVector(Di, D_ptr, K);
if (x > 0) AddVector(Di, M_ptr-2*K, K); // message (x-1,y)->(x,y)
if (y > 0) AddVector(Di, M_ptr-(2*m_width-1)*K, K); // message (x,y-1)->(x,y)
if (x < m_width-1) AddVector(Di, M_ptr, K); // message (x+1,y)->(x,y)
if (y < m_height-1) AddVector(Di, M_ptr+K, K); // message (x,y+1)->(x,y)
if (x < m_width-1)
{
CostVal lambda = (m_varWeights) ? m_lambda*m_horzWeights[n] : m_lambda;
UpdateMessageL2(M_ptr, Di, K, 1, lambda, m_smoothMax, buf);
}
if (y < m_height-1)
{
CostVal lambda = (m_varWeights) ? m_lambda*m_vertWeights[n] : m_lambda;
UpdateMessageL2(M_ptr+K, Di, K, 1, lambda, m_smoothMax, buf);
}
}
// backward pass
n --;
D_ptr -= K;
M_ptr -= 2*K;
for (y=m_height-1; y>=0; y--)
for (x=m_width-1; x>=0; x--, D_ptr-=K, M_ptr-=2*K, n--)
{
CopyVector(Di, D_ptr, K);
if (x > 0) AddVector(Di, M_ptr-2*K, K); // message (x-1,y)->(x,y)
if (y > 0) AddVector(Di, M_ptr-(2*m_width-1)*K, K); // message (x,y-1)->(x,y)
if (x < m_width-1) AddVector(Di, M_ptr, K); // message (x+1,y)->(x,y)
if (y < m_height-1) AddVector(Di, M_ptr+K, K); // message (x,y+1)->(x,y)
SubtractMin(Di, K);
if (x > 0)
{
CostVal lambda = (m_varWeights) ? m_lambda*m_horzWeights[n-1] : m_lambda;
UpdateMessageL2(M_ptr-2*K, Di, K, 1, lambda, m_smoothMax, buf);
}
if (y > 0)
{
CostVal lambda = (m_varWeights) ? m_lambda*m_vertWeights[n-m_width] : m_lambda;
UpdateMessageL2(M_ptr-(2*m_width-1)*K, Di, K, 1, lambda, m_smoothMax, buf);
}
}
}
delete [] Di;
delete [] (REAL *)buf;
}
void BPS::optimize_GRID_BINARY(int nIterations)
{
int x, y, n;
REAL* M_ptr;
REAL Di;
for ( ; nIterations > 0; nIterations --)
{
// forward pass
n = 0;
M_ptr = m_messages;
for (y=0; y<m_height; y++)
for (x=0; x<m_width; x++, M_ptr+=2, n++)
{
Di = m_DBinary[n];
if (x > 0) Di += M_ptr[-2]; // message (x-1,y)->(x,y)
if (y > 0) Di += M_ptr[-2*m_width+1]; // message (x,y-1)->(x,y)
if (x < m_width-1) Di += M_ptr[0]; // message (x+1,y)->(x,y)
if (y < m_height-1) Di += M_ptr[1]; // message (x,y+1)->(x,y)
REAL DiScaled = Di * 1;
if (x < m_width-1)
{
Di = DiScaled - M_ptr[0];
CostVal lambda = m_horzWeightsBinary[n];
if (lambda < 0) { Di = -Di; lambda = -lambda; }
if (Di > lambda) M_ptr[0] = lambda;
else M_ptr[0] = (Di < -lambda) ? -lambda : Di;
}
if (y < m_height-1)
{
Di = DiScaled - M_ptr[1];
CostVal lambda = m_vertWeightsBinary[n];
if (lambda < 0) { Di = -Di; lambda = -lambda; }
if (Di > lambda) M_ptr[1] = lambda;
else M_ptr[1] = (Di < -lambda) ? -lambda : Di;
}
}
// backward pass
n --;
M_ptr -= 2;
for (y=m_height-1; y>=0; y--)
for (x=m_width-1; x>=0; x--, M_ptr-=2, n--)
{
Di = m_DBinary[n];
if (x > 0) Di += M_ptr[-2]; // message (x-1,y)->(x,y)
if (y > 0) Di += M_ptr[-2*m_width+1]; // message (x,y-1)->(x,y)
if (x < m_width-1) Di += M_ptr[0]; // message (x+1,y)->(x,y)
if (y < m_height-1) Di += M_ptr[1]; // message (x,y+1)->(x,y)
REAL DiScaled = Di * 1;
if (x > 0)
{
Di = DiScaled - M_ptr[-2];
CostVal lambda = m_horzWeightsBinary[n-1];
if (lambda < 0) { Di = -Di; lambda = -lambda; }
if (Di > lambda) M_ptr[-2] = lambda;
else M_ptr[-2] = (Di < -lambda) ? -lambda : Di;
}
if (y > 0)
{
Di = DiScaled - M_ptr[-2*m_width+1];
CostVal lambda = m_vertWeightsBinary[n-m_width];
if (lambda < 0) { Di = -Di; lambda = -lambda; }
if (Di > lambda) M_ptr[-2*m_width+1] = lambda;
else M_ptr[-2*m_width+1] = (Di < -lambda) ? -lambda : Di;
}
}
}
}
void BPS::optimize_GRID_FIXED_MATRIX(int nIterations)
{
int x, y, n, K = m_nLabels;
CostVal* D_ptr;
REAL* M_ptr;
REAL* Di;
void* buf;
Di = new REAL[K];
buf = new REAL[K];
for ( ; nIterations > 0; nIterations --)
{
// forward pass
n = 0;
D_ptr = m_D;
M_ptr = m_messages;
for (y=0; y<m_height; y++)
for (x=0; x<m_width; x++, D_ptr+=K, M_ptr+=2*K, n++)
{
CopyVector(Di, D_ptr, K);
if (x > 0) AddVector(Di, M_ptr-2*K, K); // message (x-1,y)->(x,y)
if (y > 0) AddVector(Di, M_ptr-(2*m_width-1)*K, K); // message (x,y-1)->(x,y)
if (x < m_width-1) AddVector(Di, M_ptr, K); // message (x+1,y)->(x,y)
if (y < m_height-1) AddVector(Di, M_ptr+K, K); // message (x,y+1)->(x,y)
if (x < m_width-1)
{
CostVal lambda = (m_varWeights) ? m_horzWeights[n] : 1;
UpdateMessageFIXED_MATRIX(M_ptr, Di, K, 1, lambda, m_V, buf);
}
if (y < m_height-1)
{
CostVal lambda = (m_varWeights) ? m_vertWeights[n] : 1;
UpdateMessageFIXED_MATRIX(M_ptr+K, Di, K, 1, lambda, m_V, buf);
}
}
// backward pass
n --;
D_ptr -= K;
M_ptr -= 2*K;
for (y=m_height-1; y>=0; y--)
for (x=m_width-1; x>=0; x--, D_ptr-=K, M_ptr-=2*K, n--)
{
CopyVector(Di, D_ptr, K);
if (x > 0) AddVector(Di, M_ptr-2*K, K); // message (x-1,y)->(x,y)
if (y > 0) AddVector(Di, M_ptr-(2*m_width-1)*K, K); // message (x,y-1)->(x,y)
if (x < m_width-1) AddVector(Di, M_ptr, K); // message (x+1,y)->(x,y)
if (y < m_height-1) AddVector(Di, M_ptr+K, K); // message (x,y+1)->(x,y)
SubtractMin(Di, K);
if (x > 0)
{
CostVal lambda = (m_varWeights) ? m_horzWeights[n-1] : 1;
UpdateMessageFIXED_MATRIX(M_ptr-2*K, Di, K, 1, lambda, m_V, buf);
}
if (y > 0)
{
CostVal lambda = (m_varWeights) ? m_vertWeights[n-m_width] : 1;
UpdateMessageFIXED_MATRIX(M_ptr-(2*m_width-1)*K, Di, K, 1, lambda, m_V, buf);
}
}
}
delete [] Di;
delete [] (REAL *)buf;
}
void BPS::optimize_GRID_GENERAL(int nIterations)
{
int x, y, n, K = m_nLabels;
CostVal* D_ptr;
REAL* M_ptr;
REAL* Di;
void* buf;
Di = new REAL[K];
buf = new REAL[K];
for ( ; nIterations > 0; nIterations --)
{
// forward pass
n = 0;
D_ptr = m_D;
M_ptr = m_messages;
CostVal* V_ptr = m_V;
for (y=0; y<m_height; y++)
for (x=0; x<m_width; x++, D_ptr+=K, M_ptr+=2*K, V_ptr+=2*K*K, n++)
{
CopyVector(Di, D_ptr, K);
if (x > 0) AddVector(Di, M_ptr-2*K, K); // message (x-1,y)->(x,y)
if (y > 0) AddVector(Di, M_ptr-(2*m_width-1)*K, K); // message (x,y-1)->(x,y)
if (x < m_width-1) AddVector(Di, M_ptr, K); // message (x+1,y)->(x,y)
if (y < m_height-1) AddVector(Di, M_ptr+K, K); // message (x,y+1)->(x,y)
if (x < m_width-1)
{
if (m_V) UpdateMessageGENERAL(M_ptr, Di, K, 1, /* forward dir*/ 0, V_ptr, buf);
else UpdateMessageGENERAL(M_ptr, Di, K, 1, m_smoothFn, n, n+1, buf);
}
if (y < m_height-1)
{
if (m_V) UpdateMessageGENERAL(M_ptr+K, Di, K, 1, /* forward dir*/ 0, V_ptr+K*K, buf);
else UpdateMessageGENERAL(M_ptr+K, Di, K, 1, m_smoothFn, n, n+m_width, buf);
}
}
// backward pass
n --;
D_ptr -= K;
M_ptr -= 2*K;
V_ptr -= 2*K*K;
for (y=m_height-1; y>=0; y--)
for (x=m_width-1; x>=0; x--, D_ptr-=K, M_ptr-=2*K, V_ptr-=2*K*K, n--)
{
CopyVector(Di, D_ptr, K);
if (x > 0) AddVector(Di, M_ptr-2*K, K); // message (x-1,y)->(x,y)
if (y > 0) AddVector(Di, M_ptr-(2*m_width-1)*K, K); // message (x,y-1)->(x,y)
if (x < m_width-1) AddVector(Di, M_ptr, K); // message (x+1,y)->(x,y)
if (y < m_height-1) AddVector(Di, M_ptr+K, K); // message (x,y+1)->(x,y)
// normalize Di, update lower bound
SubtractMin(Di, K);
if (x > 0)
{
if (m_V) UpdateMessageGENERAL(M_ptr-2*K, Di, K, 1, /* backward dir */ 1, V_ptr-2*K*K, buf);
else UpdateMessageGENERAL(M_ptr-2*K, Di, K, 1, m_smoothFn, n, n-1, buf);
}
if (y > 0)
{
if (m_V) UpdateMessageGENERAL(M_ptr-(2*m_width-1)*K, Di, K, 1, /* backward dir */ 1, V_ptr-(2*m_width-1)*K*K, buf);
else UpdateMessageGENERAL(M_ptr-(2*m_width-1)*K, Di, K, 1, m_smoothFn, n, n-m_width, buf);
}
}
}
delete [] Di;
delete [] (REAL *)buf;
}