62 lines
1.8 KiB
C++
62 lines
1.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_EIGENVALUES_MODULE_H
|
|
#define EIGEN_EIGENVALUES_MODULE_H
|
|
|
|
#include "Core"
|
|
|
|
#include "Cholesky"
|
|
#include "Jacobi"
|
|
#include "Householder"
|
|
#include "LU"
|
|
#include "Geometry"
|
|
|
|
#include "src/Core/util/DisableStupidWarnings.h"
|
|
|
|
/** \defgroup Eigenvalues_Module Eigenvalues module
|
|
*
|
|
*
|
|
*
|
|
* This module mainly provides various eigenvalue solvers.
|
|
* This module also provides some MatrixBase methods, including:
|
|
* - MatrixBase::eigenvalues(),
|
|
* - MatrixBase::operatorNorm()
|
|
*
|
|
* \code
|
|
* #include <Eigen/Eigenvalues>
|
|
* \endcode
|
|
*/
|
|
|
|
#include "src/misc/RealSvd2x2.h"
|
|
#include "src/Eigenvalues/Tridiagonalization.h"
|
|
#include "src/Eigenvalues/RealSchur.h"
|
|
#include "src/Eigenvalues/EigenSolver.h"
|
|
#include "src/Eigenvalues/SelfAdjointEigenSolver.h"
|
|
#include "src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h"
|
|
#include "src/Eigenvalues/HessenbergDecomposition.h"
|
|
#include "src/Eigenvalues/ComplexSchur.h"
|
|
#include "src/Eigenvalues/ComplexEigenSolver.h"
|
|
#include "src/Eigenvalues/RealQZ.h"
|
|
#include "src/Eigenvalues/GeneralizedEigenSolver.h"
|
|
#include "src/Eigenvalues/MatrixBaseEigenvalues.h"
|
|
#ifdef EIGEN_USE_LAPACKE
|
|
#ifdef EIGEN_USE_MKL
|
|
#include "mkl_lapacke.h"
|
|
#else
|
|
#include "src/misc/lapacke.h"
|
|
#endif
|
|
#include "src/Eigenvalues/RealSchur_LAPACKE.h"
|
|
#include "src/Eigenvalues/ComplexSchur_LAPACKE.h"
|
|
#include "src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h"
|
|
#endif
|
|
|
|
#include "src/Core/util/ReenableStupidWarnings.h"
|
|
|
|
#endif // EIGEN_EIGENVALUES_MODULE_H
|
|
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|