test_pie/external/Eigen/src/Core/TriangularMatrix.h

986 lines
36 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TRIANGULARMATRIX_H
#define EIGEN_TRIANGULARMATRIX_H
namespace Eigen {
namespace internal {
template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval;
}
/** \class TriangularBase
* \ingroup Core_Module
*
* \brief Base class for triangular part in a matrix
*/
template<typename Derived> class TriangularBase : public EigenBase<Derived>
{
public:
enum {
Mode = internal::traits<Derived>::Mode,
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime>::ret),
/**< This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime>::ret)
};
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
typedef typename internal::traits<Derived>::FullMatrixType DenseMatrixType;
typedef DenseMatrixType DenseType;
typedef Derived const& Nested;
EIGEN_DEVICE_FUNC
inline TriangularBase() { eigen_assert(!((Mode&UnitDiag) && (Mode&ZeroDiag))); }
EIGEN_DEVICE_FUNC
inline Index rows() const { return derived().rows(); }
EIGEN_DEVICE_FUNC
inline Index cols() const { return derived().cols(); }
EIGEN_DEVICE_FUNC
inline Index outerStride() const { return derived().outerStride(); }
EIGEN_DEVICE_FUNC
inline Index innerStride() const { return derived().innerStride(); }
// dummy resize function
void resize(Index rows, Index cols)
{
EIGEN_UNUSED_VARIABLE(rows);
EIGEN_UNUSED_VARIABLE(cols);
eigen_assert(rows==this->rows() && cols==this->cols());
}
EIGEN_DEVICE_FUNC
inline Scalar coeff(Index row, Index col) const { return derived().coeff(row,col); }
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row,col); }
/** \see MatrixBase::copyCoeff(row,col)
*/
template<typename Other>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other)
{
derived().coeffRef(row, col) = other.coeff(row, col);
}
EIGEN_DEVICE_FUNC
inline Scalar operator()(Index row, Index col) const
{
check_coordinates(row, col);
return coeff(row,col);
}
EIGEN_DEVICE_FUNC
inline Scalar& operator()(Index row, Index col)
{
check_coordinates(row, col);
return coeffRef(row,col);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
EIGEN_DEVICE_FUNC
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
EIGEN_DEVICE_FUNC
inline Derived& derived() { return *static_cast<Derived*>(this); }
#endif // not EIGEN_PARSED_BY_DOXYGEN
template<typename DenseDerived>
EIGEN_DEVICE_FUNC
void evalTo(MatrixBase<DenseDerived> &other) const;
template<typename DenseDerived>
EIGEN_DEVICE_FUNC
void evalToLazy(MatrixBase<DenseDerived> &other) const;
EIGEN_DEVICE_FUNC
DenseMatrixType toDenseMatrix() const
{
DenseMatrixType res(rows(), cols());
evalToLazy(res);
return res;
}
protected:
void check_coordinates(Index row, Index col) const
{
EIGEN_ONLY_USED_FOR_DEBUG(row);
EIGEN_ONLY_USED_FOR_DEBUG(col);
eigen_assert(col>=0 && col<cols() && row>=0 && row<rows());
const int mode = int(Mode) & ~SelfAdjoint;
EIGEN_ONLY_USED_FOR_DEBUG(mode);
eigen_assert((mode==Upper && col>=row)
|| (mode==Lower && col<=row)
|| ((mode==StrictlyUpper || mode==UnitUpper) && col>row)
|| ((mode==StrictlyLower || mode==UnitLower) && col<row));
}
#ifdef EIGEN_INTERNAL_DEBUGGING
void check_coordinates_internal(Index row, Index col) const
{
check_coordinates(row, col);
}
#else
void check_coordinates_internal(Index , Index ) const {}
#endif
};
/** \class TriangularView
* \ingroup Core_Module
*
* \brief Expression of a triangular part in a matrix
*
* \param MatrixType the type of the object in which we are taking the triangular part
* \param Mode the kind of triangular matrix expression to construct. Can be #Upper,
* #Lower, #UnitUpper, #UnitLower, #StrictlyUpper, or #StrictlyLower.
* This is in fact a bit field; it must have either #Upper or #Lower,
* and additionally it may have #UnitDiag or #ZeroDiag or neither.
*
* This class represents a triangular part of a matrix, not necessarily square. Strictly speaking, for rectangular
* matrices one should speak of "trapezoid" parts. This class is the return type
* of MatrixBase::triangularView() and SparseMatrixBase::triangularView(), and most of the time this is the only way it is used.
*
* \sa MatrixBase::triangularView()
*/
namespace internal {
template<typename MatrixType, unsigned int _Mode>
struct traits<TriangularView<MatrixType, _Mode> > : traits<MatrixType>
{
typedef typename ref_selector<MatrixType>::non_const_type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
typedef typename MatrixType::PlainObject FullMatrixType;
typedef MatrixType ExpressionType;
enum {
Mode = _Mode,
FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits | FlagsLvalueBit) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)))
};
};
}
template<typename _MatrixType, unsigned int _Mode, typename StorageKind> class TriangularViewImpl;
template<typename _MatrixType, unsigned int _Mode> class TriangularView
: public TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind >
{
public:
typedef TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind > Base;
typedef typename internal::traits<TriangularView>::Scalar Scalar;
typedef _MatrixType MatrixType;
protected:
typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested;
typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef;
typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType;
public:
typedef typename internal::traits<TriangularView>::StorageKind StorageKind;
typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned NestedExpression;
enum {
Mode = _Mode,
Flags = internal::traits<TriangularView>::Flags,
TransposeMode = (Mode & Upper ? Lower : 0)
| (Mode & Lower ? Upper : 0)
| (Mode & (UnitDiag))
| (Mode & (ZeroDiag)),
IsVectorAtCompileTime = false
};
EIGEN_DEVICE_FUNC
explicit inline TriangularView(MatrixType& matrix) : m_matrix(matrix)
{}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TriangularView)
/** \copydoc EigenBase::rows() */
EIGEN_DEVICE_FUNC
inline Index rows() const { return m_matrix.rows(); }
/** \copydoc EigenBase::cols() */
EIGEN_DEVICE_FUNC
inline Index cols() const { return m_matrix.cols(); }
/** \returns a const reference to the nested expression */
EIGEN_DEVICE_FUNC
const NestedExpression& nestedExpression() const { return m_matrix; }
/** \returns a reference to the nested expression */
EIGEN_DEVICE_FUNC
NestedExpression& nestedExpression() { return m_matrix; }
typedef TriangularView<const MatrixConjugateReturnType,Mode> ConjugateReturnType;
/** \sa MatrixBase::conjugate() const */
EIGEN_DEVICE_FUNC
inline const ConjugateReturnType conjugate() const
{ return ConjugateReturnType(m_matrix.conjugate()); }
typedef TriangularView<const typename MatrixType::AdjointReturnType,TransposeMode> AdjointReturnType;
/** \sa MatrixBase::adjoint() const */
EIGEN_DEVICE_FUNC
inline const AdjointReturnType adjoint() const
{ return AdjointReturnType(m_matrix.adjoint()); }
typedef TriangularView<typename MatrixType::TransposeReturnType,TransposeMode> TransposeReturnType;
/** \sa MatrixBase::transpose() */
EIGEN_DEVICE_FUNC
inline TransposeReturnType transpose()
{
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
typename MatrixType::TransposeReturnType tmp(m_matrix);
return TransposeReturnType(tmp);
}
typedef TriangularView<const typename MatrixType::ConstTransposeReturnType,TransposeMode> ConstTransposeReturnType;
/** \sa MatrixBase::transpose() const */
EIGEN_DEVICE_FUNC
inline const ConstTransposeReturnType transpose() const
{
return ConstTransposeReturnType(m_matrix.transpose());
}
template<typename Other>
EIGEN_DEVICE_FUNC
inline const Solve<TriangularView, Other>
solve(const MatrixBase<Other>& other) const
{ return Solve<TriangularView, Other>(*this, other.derived()); }
// workaround MSVC ICE
#if EIGEN_COMP_MSVC
template<int Side, typename Other>
EIGEN_DEVICE_FUNC
inline const internal::triangular_solve_retval<Side,TriangularView, Other>
solve(const MatrixBase<Other>& other) const
{ return Base::template solve<Side>(other); }
#else
using Base::solve;
#endif
/** \returns a selfadjoint view of the referenced triangular part which must be either \c #Upper or \c #Lower.
*
* This is a shortcut for \code this->nestedExpression().selfadjointView<(*this)::Mode>() \endcode
* \sa MatrixBase::selfadjointView() */
EIGEN_DEVICE_FUNC
SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView()
{
EIGEN_STATIC_ASSERT((Mode&(UnitDiag|ZeroDiag))==0,PROGRAMMING_ERROR);
return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
}
/** This is the const version of selfadjointView() */
EIGEN_DEVICE_FUNC
const SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() const
{
EIGEN_STATIC_ASSERT((Mode&(UnitDiag|ZeroDiag))==0,PROGRAMMING_ERROR);
return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
}
/** \returns the determinant of the triangular matrix
* \sa MatrixBase::determinant() */
EIGEN_DEVICE_FUNC
Scalar determinant() const
{
if (Mode & UnitDiag)
return 1;
else if (Mode & ZeroDiag)
return 0;
else
return m_matrix.diagonal().prod();
}
protected:
MatrixTypeNested m_matrix;
};
/** \ingroup Core_Module
*
* \brief Base class for a triangular part in a \b dense matrix
*
* This class is an abstract base class of class TriangularView, and objects of type TriangularViewImpl cannot be instantiated.
* It extends class TriangularView with additional methods which available for dense expressions only.
*
* \sa class TriangularView, MatrixBase::triangularView()
*/
template<typename _MatrixType, unsigned int _Mode> class TriangularViewImpl<_MatrixType,_Mode,Dense>
: public TriangularBase<TriangularView<_MatrixType, _Mode> >
{
public:
typedef TriangularView<_MatrixType, _Mode> TriangularViewType;
typedef TriangularBase<TriangularViewType> Base;
typedef typename internal::traits<TriangularViewType>::Scalar Scalar;
typedef _MatrixType MatrixType;
typedef typename MatrixType::PlainObject DenseMatrixType;
typedef DenseMatrixType PlainObject;
public:
using Base::evalToLazy;
using Base::derived;
typedef typename internal::traits<TriangularViewType>::StorageKind StorageKind;
enum {
Mode = _Mode,
Flags = internal::traits<TriangularViewType>::Flags
};
/** \returns the outer-stride of the underlying dense matrix
* \sa DenseCoeffsBase::outerStride() */
EIGEN_DEVICE_FUNC
inline Index outerStride() const { return derived().nestedExpression().outerStride(); }
/** \returns the inner-stride of the underlying dense matrix
* \sa DenseCoeffsBase::innerStride() */
EIGEN_DEVICE_FUNC
inline Index innerStride() const { return derived().nestedExpression().innerStride(); }
/** \sa MatrixBase::operator+=() */
template<typename Other>
EIGEN_DEVICE_FUNC
TriangularViewType& operator+=(const DenseBase<Other>& other) {
internal::call_assignment_no_alias(derived(), other.derived(), internal::add_assign_op<Scalar,typename Other::Scalar>());
return derived();
}
/** \sa MatrixBase::operator-=() */
template<typename Other>
EIGEN_DEVICE_FUNC
TriangularViewType& operator-=(const DenseBase<Other>& other) {
internal::call_assignment_no_alias(derived(), other.derived(), internal::sub_assign_op<Scalar,typename Other::Scalar>());
return derived();
}
/** \sa MatrixBase::operator*=() */
EIGEN_DEVICE_FUNC
TriangularViewType& operator*=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = derived().nestedExpression() * other; }
/** \sa DenseBase::operator/=() */
EIGEN_DEVICE_FUNC
TriangularViewType& operator/=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = derived().nestedExpression() / other; }
/** \sa MatrixBase::fill() */
EIGEN_DEVICE_FUNC
void fill(const Scalar& value) { setConstant(value); }
/** \sa MatrixBase::setConstant() */
EIGEN_DEVICE_FUNC
TriangularViewType& setConstant(const Scalar& value)
{ return *this = MatrixType::Constant(derived().rows(), derived().cols(), value); }
/** \sa MatrixBase::setZero() */
EIGEN_DEVICE_FUNC
TriangularViewType& setZero() { return setConstant(Scalar(0)); }
/** \sa MatrixBase::setOnes() */
EIGEN_DEVICE_FUNC
TriangularViewType& setOnes() { return setConstant(Scalar(1)); }
/** \sa MatrixBase::coeff()
* \warning the coordinates must fit into the referenced triangular part
*/
EIGEN_DEVICE_FUNC
inline Scalar coeff(Index row, Index col) const
{
Base::check_coordinates_internal(row, col);
return derived().nestedExpression().coeff(row, col);
}
/** \sa MatrixBase::coeffRef()
* \warning the coordinates must fit into the referenced triangular part
*/
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index row, Index col)
{
EIGEN_STATIC_ASSERT_LVALUE(TriangularViewType);
Base::check_coordinates_internal(row, col);
return derived().nestedExpression().coeffRef(row, col);
}
/** Assigns a triangular matrix to a triangular part of a dense matrix */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
TriangularViewType& operator=(const TriangularBase<OtherDerived>& other);
/** Shortcut for\code *this = other.other.triangularView<(*this)::Mode>() \endcode */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
TriangularViewType& operator=(const MatrixBase<OtherDerived>& other);
#ifndef EIGEN_PARSED_BY_DOXYGEN
EIGEN_DEVICE_FUNC
TriangularViewType& operator=(const TriangularViewImpl& other)
{ return *this = other.derived().nestedExpression(); }
/** \deprecated */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void lazyAssign(const TriangularBase<OtherDerived>& other);
/** \deprecated */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void lazyAssign(const MatrixBase<OtherDerived>& other);
#endif
/** Efficient triangular matrix times vector/matrix product */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
const Product<TriangularViewType,OtherDerived>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
return Product<TriangularViewType,OtherDerived>(derived(), rhs.derived());
}
/** Efficient vector/matrix times triangular matrix product */
template<typename OtherDerived> friend
EIGEN_DEVICE_FUNC
const Product<OtherDerived,TriangularViewType>
operator*(const MatrixBase<OtherDerived>& lhs, const TriangularViewImpl& rhs)
{
return Product<OtherDerived,TriangularViewType>(lhs.derived(),rhs.derived());
}
/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
*
* This function computes the inverse-matrix matrix product inverse(\c *this) * \a other if
* \a Side==OnTheLeft (the default), or the right-inverse-multiply \a other * inverse(\c *this) if
* \a Side==OnTheRight.
*
* Note that the template parameter \c Side can be ommitted, in which case \c Side==OnTheLeft
*
* The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the
* diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this
* is an upper (resp. lower) triangular matrix.
*
* Example: \include Triangular_solve.cpp
* Output: \verbinclude Triangular_solve.out
*
* This function returns an expression of the inverse-multiply and can works in-place if it is assigned
* to the same matrix or vector \a other.
*
* For users coming from BLAS, this function (and more specifically solveInPlace()) offer
* all the operations supported by the \c *TRSV and \c *TRSM BLAS routines.
*
* \sa TriangularView::solveInPlace()
*/
template<int Side, typename Other>
EIGEN_DEVICE_FUNC
inline const internal::triangular_solve_retval<Side,TriangularViewType, Other>
solve(const MatrixBase<Other>& other) const;
/** "in-place" version of TriangularView::solve() where the result is written in \a other
*
* \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
* This function will const_cast it, so constness isn't honored here.
*
* Note that the template parameter \c Side can be ommitted, in which case \c Side==OnTheLeft
*
* See TriangularView:solve() for the details.
*/
template<int Side, typename OtherDerived>
EIGEN_DEVICE_FUNC
void solveInPlace(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void solveInPlace(const MatrixBase<OtherDerived>& other) const
{ return solveInPlace<OnTheLeft>(other); }
/** Swaps the coefficients of the common triangular parts of two matrices */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
#ifdef EIGEN_PARSED_BY_DOXYGEN
void swap(TriangularBase<OtherDerived> &other)
#else
void swap(TriangularBase<OtherDerived> const & other)
#endif
{
EIGEN_STATIC_ASSERT_LVALUE(OtherDerived);
call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>());
}
/** \deprecated
* Shortcut for \code (*this).swap(other.triangularView<(*this)::Mode>()) \endcode */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void swap(MatrixBase<OtherDerived> const & other)
{
EIGEN_STATIC_ASSERT_LVALUE(OtherDerived);
call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>());
}
template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _solve_impl(const RhsType &rhs, DstType &dst) const {
if(!internal::is_same_dense(dst,rhs))
dst = rhs;
this->solveInPlace(dst);
}
template<typename ProductType>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TriangularViewType& _assignProduct(const ProductType& prod, const Scalar& alpha, bool beta);
protected:
EIGEN_DEFAULT_COPY_CONSTRUCTOR(TriangularViewImpl)
EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(TriangularViewImpl)
};
/***************************************************************************
* Implementation of triangular evaluation/assignment
***************************************************************************/
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
inline TriangularView<MatrixType, Mode>&
TriangularViewImpl<MatrixType, Mode, Dense>::operator=(const MatrixBase<OtherDerived>& other)
{
internal::call_assignment_no_alias(derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>());
return derived();
}
// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
void TriangularViewImpl<MatrixType, Mode, Dense>::lazyAssign(const MatrixBase<OtherDerived>& other)
{
internal::call_assignment_no_alias(derived(), other.template triangularView<Mode>());
}
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
inline TriangularView<MatrixType, Mode>&
TriangularViewImpl<MatrixType, Mode, Dense>::operator=(const TriangularBase<OtherDerived>& other)
{
eigen_assert(Mode == int(OtherDerived::Mode));
internal::call_assignment(derived(), other.derived());
return derived();
}
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
void TriangularViewImpl<MatrixType, Mode, Dense>::lazyAssign(const TriangularBase<OtherDerived>& other)
{
eigen_assert(Mode == int(OtherDerived::Mode));
internal::call_assignment_no_alias(derived(), other.derived());
}
#endif
/***************************************************************************
* Implementation of TriangularBase methods
***************************************************************************/
/** Assigns a triangular or selfadjoint matrix to a dense matrix.
* If the matrix is triangular, the opposite part is set to zero. */
template<typename Derived>
template<typename DenseDerived>
void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
{
evalToLazy(other.derived());
}
/***************************************************************************
* Implementation of TriangularView methods
***************************************************************************/
/***************************************************************************
* Implementation of MatrixBase methods
***************************************************************************/
/**
* \returns an expression of a triangular view extracted from the current matrix
*
* The parameter \a Mode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper,
* \c #Lower, \c #StrictlyLower, \c #UnitLower.
*
* Example: \include MatrixBase_triangularView.cpp
* Output: \verbinclude MatrixBase_triangularView.out
*
* \sa class TriangularView
*/
template<typename Derived>
template<unsigned int Mode>
typename MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type
MatrixBase<Derived>::triangularView()
{
return typename TriangularViewReturnType<Mode>::Type(derived());
}
/** This is the const version of MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
typename MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type
MatrixBase<Derived>::triangularView() const
{
return typename ConstTriangularViewReturnType<Mode>::Type(derived());
}
/** \returns true if *this is approximately equal to an upper triangular matrix,
* within the precision given by \a prec.
*
* \sa isLowerTriangular()
*/
template<typename Derived>
bool MatrixBase<Derived>::isUpperTriangular(const RealScalar& prec) const
{
RealScalar maxAbsOnUpperPart = static_cast<RealScalar>(-1);
for(Index j = 0; j < cols(); ++j)
{
Index maxi = numext::mini(j, rows()-1);
for(Index i = 0; i <= maxi; ++i)
{
RealScalar absValue = numext::abs(coeff(i,j));
if(absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue;
}
}
RealScalar threshold = maxAbsOnUpperPart * prec;
for(Index j = 0; j < cols(); ++j)
for(Index i = j+1; i < rows(); ++i)
if(numext::abs(coeff(i, j)) > threshold) return false;
return true;
}
/** \returns true if *this is approximately equal to a lower triangular matrix,
* within the precision given by \a prec.
*
* \sa isUpperTriangular()
*/
template<typename Derived>
bool MatrixBase<Derived>::isLowerTriangular(const RealScalar& prec) const
{
RealScalar maxAbsOnLowerPart = static_cast<RealScalar>(-1);
for(Index j = 0; j < cols(); ++j)
for(Index i = j; i < rows(); ++i)
{
RealScalar absValue = numext::abs(coeff(i,j));
if(absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue;
}
RealScalar threshold = maxAbsOnLowerPart * prec;
for(Index j = 1; j < cols(); ++j)
{
Index maxi = numext::mini(j, rows()-1);
for(Index i = 0; i < maxi; ++i)
if(numext::abs(coeff(i, j)) > threshold) return false;
}
return true;
}
/***************************************************************************
****************************************************************************
* Evaluators and Assignment of triangular expressions
***************************************************************************
***************************************************************************/
namespace internal {
// TODO currently a triangular expression has the form TriangularView<.,.>
// in the future triangular-ness should be defined by the expression traits
// such that Transpose<TriangularView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
template<typename MatrixType, unsigned int Mode>
struct evaluator_traits<TriangularView<MatrixType,Mode> >
{
typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
typedef typename glue_shapes<typename evaluator_traits<MatrixType>::Shape, TriangularShape>::type Shape;
};
template<typename MatrixType, unsigned int Mode>
struct unary_evaluator<TriangularView<MatrixType,Mode>, IndexBased>
: evaluator<typename internal::remove_all<MatrixType>::type>
{
typedef TriangularView<MatrixType,Mode> XprType;
typedef evaluator<typename internal::remove_all<MatrixType>::type> Base;
unary_evaluator(const XprType &xpr) : Base(xpr.nestedExpression()) {}
};
// Additional assignment kinds:
struct Triangular2Triangular {};
struct Triangular2Dense {};
struct Dense2Triangular {};
template<typename Kernel, unsigned int Mode, int UnrollCount, bool ClearOpposite> struct triangular_assignment_loop;
/** \internal Specialization of the dense assignment kernel for triangular matrices.
* The main difference is that the triangular, diagonal, and opposite parts are processed through three different functions.
* \tparam UpLo must be either Lower or Upper
* \tparam Mode must be either 0, UnitDiag, ZeroDiag, or SelfAdjoint
*/
template<int UpLo, int Mode, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version = Specialized>
class triangular_dense_assignment_kernel : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version>
{
protected:
typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> Base;
typedef typename Base::DstXprType DstXprType;
typedef typename Base::SrcXprType SrcXprType;
using Base::m_dst;
using Base::m_src;
using Base::m_functor;
public:
typedef typename Base::DstEvaluatorType DstEvaluatorType;
typedef typename Base::SrcEvaluatorType SrcEvaluatorType;
typedef typename Base::Scalar Scalar;
typedef typename Base::AssignmentTraits AssignmentTraits;
EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
: Base(dst, src, func, dstExpr)
{}
#ifdef EIGEN_INTERNAL_DEBUGGING
EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col)
{
eigen_internal_assert(row!=col);
Base::assignCoeff(row,col);
}
#else
using Base::assignCoeff;
#endif
EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id)
{
if(Mode==UnitDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(1));
else if(Mode==ZeroDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(0));
else if(Mode==0) Base::assignCoeff(id,id);
}
EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index row, Index col)
{
eigen_internal_assert(row!=col);
if(SetOpposite)
m_functor.assignCoeff(m_dst.coeffRef(row,col), Scalar(0));
}
};
template<int Mode, bool SetOpposite, typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src, const Functor &func)
{
typedef evaluator<DstXprType> DstEvaluatorType;
typedef evaluator<SrcXprType> SrcEvaluatorType;
SrcEvaluatorType srcEvaluator(src);
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
DstEvaluatorType dstEvaluator(dst);
typedef triangular_dense_assignment_kernel< Mode&(Lower|Upper),Mode&(UnitDiag|ZeroDiag|SelfAdjoint),SetOpposite,
DstEvaluatorType,SrcEvaluatorType,Functor> Kernel;
Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
enum {
unroll = DstXprType::SizeAtCompileTime != Dynamic
&& SrcEvaluatorType::CoeffReadCost < HugeCost
&& DstXprType::SizeAtCompileTime * (DstEvaluatorType::CoeffReadCost+SrcEvaluatorType::CoeffReadCost) / 2 <= EIGEN_UNROLLING_LIMIT
};
triangular_assignment_loop<Kernel, Mode, unroll ? int(DstXprType::SizeAtCompileTime) : Dynamic, SetOpposite>::run(kernel);
}
template<int Mode, bool SetOpposite, typename DstXprType, typename SrcXprType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src)
{
call_triangular_assignment_loop<Mode,SetOpposite>(dst, src, internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
}
template<> struct AssignmentKind<TriangularShape,TriangularShape> { typedef Triangular2Triangular Kind; };
template<> struct AssignmentKind<DenseShape,TriangularShape> { typedef Triangular2Dense Kind; };
template<> struct AssignmentKind<TriangularShape,DenseShape> { typedef Dense2Triangular Kind; };
template< typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, Triangular2Triangular>
{
EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
{
eigen_assert(int(DstXprType::Mode) == int(SrcXprType::Mode));
call_triangular_assignment_loop<DstXprType::Mode, false>(dst, src, func);
}
};
template< typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, Triangular2Dense>
{
EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
{
call_triangular_assignment_loop<SrcXprType::Mode, (SrcXprType::Mode&SelfAdjoint)==0>(dst, src, func);
}
};
template< typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, Dense2Triangular>
{
EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
{
call_triangular_assignment_loop<DstXprType::Mode, false>(dst, src, func);
}
};
template<typename Kernel, unsigned int Mode, int UnrollCount, bool SetOpposite>
struct triangular_assignment_loop
{
// FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
enum {
col = (UnrollCount-1) / DstXprType::RowsAtCompileTime,
row = (UnrollCount-1) % DstXprType::RowsAtCompileTime
};
typedef typename Kernel::Scalar Scalar;
EIGEN_DEVICE_FUNC
static inline void run(Kernel &kernel)
{
triangular_assignment_loop<Kernel, Mode, UnrollCount-1, SetOpposite>::run(kernel);
if(row==col)
kernel.assignDiagonalCoeff(row);
else if( ((Mode&Lower) && row>col) || ((Mode&Upper) && row<col) )
kernel.assignCoeff(row,col);
else if(SetOpposite)
kernel.assignOppositeCoeff(row,col);
}
};
// prevent buggy user code from causing an infinite recursion
template<typename Kernel, unsigned int Mode, bool SetOpposite>
struct triangular_assignment_loop<Kernel, Mode, 0, SetOpposite>
{
EIGEN_DEVICE_FUNC
static inline void run(Kernel &) {}
};
// TODO: experiment with a recursive assignment procedure splitting the current
// triangular part into one rectangular and two triangular parts.
template<typename Kernel, unsigned int Mode, bool SetOpposite>
struct triangular_assignment_loop<Kernel, Mode, Dynamic, SetOpposite>
{
typedef typename Kernel::Scalar Scalar;
EIGEN_DEVICE_FUNC
static inline void run(Kernel &kernel)
{
for(Index j = 0; j < kernel.cols(); ++j)
{
Index maxi = numext::mini(j, kernel.rows());
Index i = 0;
if (((Mode&Lower) && SetOpposite) || (Mode&Upper))
{
for(; i < maxi; ++i)
if(Mode&Upper) kernel.assignCoeff(i, j);
else kernel.assignOppositeCoeff(i, j);
}
else
i = maxi;
if(i<kernel.rows()) // then i==j
kernel.assignDiagonalCoeff(i++);
if (((Mode&Upper) && SetOpposite) || (Mode&Lower))
{
for(; i < kernel.rows(); ++i)
if(Mode&Lower) kernel.assignCoeff(i, j);
else kernel.assignOppositeCoeff(i, j);
}
}
}
};
} // end namespace internal
/** Assigns a triangular or selfadjoint matrix to a dense matrix.
* If the matrix is triangular, the opposite part is set to zero. */
template<typename Derived>
template<typename DenseDerived>
void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
{
other.derived().resize(this->rows(), this->cols());
internal::call_triangular_assignment_loop<Derived::Mode,(Derived::Mode&SelfAdjoint)==0 /* SetOpposite */>(other.derived(), derived().nestedExpression());
}
namespace internal {
// Triangular = Product
template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::assign_op<Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, Dense2Triangular>
{
typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename SrcXprType::Scalar> &)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
dst._assignProduct(src, 1, 0);
}
};
// Triangular += Product
template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::add_assign_op<Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, Dense2Triangular>
{
typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar,typename SrcXprType::Scalar> &)
{
dst._assignProduct(src, 1, 1);
}
};
// Triangular -= Product
template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::sub_assign_op<Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, Dense2Triangular>
{
typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar,typename SrcXprType::Scalar> &)
{
dst._assignProduct(src, -1, 1);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_TRIANGULARMATRIX_H